D Petrey, B Honig, Structural bioinformatics of the interactome. Annu. Rev. Biophys. 43:, 193–210 (2014). doi:10.1146/annurev-biophys-051013-022726.
Article
Google Scholar
H Kohestani, A Giuliani, Organization principles of biological networks: an explorative study. Biosystems. 141:, 31–39 (2016). doi:10.1016/j.biosystems.2016.01.004.
Article
Google Scholar
Z Mousavian, J Díaz, A Masoudi-Nejad, Information theory in systems biology. part ii: protein-protein interaction and signaling networks. Semin. Cell Dev. Biol. 51:, 14–23 (2016). doi:10.1016/j.semcdb.2015.12.006.
Article
Google Scholar
CE Mason, SG Porter, TM Smith, Characterizing multi-omic data in systems biology. J. Exper. Med. Biol. 799:, 15–38 (2014).
Article
Google Scholar
BFMSD Di Silvestre, P Mauri, in Biomarker Validation, Technological, Clinical and Commercial Aspects. Evaluation of Proteomic Data: From Profiling to Network Analysis by Way of Biomarker Discovery (Wiley-VCH Verlag GmbH & Co. KGaAWeinheim, 2015). doi:10.1002/9783527680658.ch9.
Google Scholar
V Mehta, L Trinkle-Mulcahy, Recent advances in large-scale protein interactome mapping. F1000Research. 29(5) (2016). doi:10.12688/f1000research.7629.1.
F Azuaje, Y Devaux, DR Wagner, Coordinated modular functionality and prognostic potential of a heart failure biomarker-driven interaction network. BMC Syst. Biol. 4:, 60 (2010). doi:10.1186/1752-0509-4-60.
Article
Google Scholar
RK Nibbe, M Koyutürk, MR Chance, An integrative -omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput. Biol. 6(1), 1000639 (2010). doi:10.1371/journal.pcbi.1000639.
Article
Google Scholar
J Nair, M Ghatge, VV Kakkar, J Shanker, Network analysis of inflammatory genes and their transcriptional regulators in coronary artery disease. PLoS ONE. 9(4), 94328 (2014). doi:10.1371/journal.pone.0094328.
Article
Google Scholar
C Procaccini, F Carbone, D Di Silvestre, F Brambilla, V De Rosa, M Galgani, D Faicchia, G Marone, D Tramontano, M Corona, C Alviggi, A Porcellini, A La Cava, P Mauri, G Matarese, The proteomic landscape of human ex vivo regulatory and conventional t cells reveals specific metabolic requirements. Immunity. 44(2), 406–421 (2016). doi:10.1016/j.immuni.2016.01.028.
Article
Google Scholar
Y Yu, S Li, H Wang, L Bi, Comprehensive network analysis of genes expressed in human oropharyngeal cancer. Am. J. Otolaryngol. 36(2), 235–241 (2015). doi:10.1016/j.amjoto.2014.11.002.
Article
Google Scholar
J Liu, L Jing, X Tu, Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. BMC Cardiovasc. Disord. 16(1), 54 (2016). doi:10.1186/s12872-016-0217-3.
Article
Google Scholar
Y Guo, Y Xing, Weighted gene co-expression network analysis of pneumocytes under exposure to a carcinogenic dose of chloroprene. Life Sci (2016). doi:10.1016/j.lfs.2016.02.074.
DL Gibbs, A Baratt, RS Baric, Y Kawaoka, RD Smith, ES Orwoll, MG Katze, SK McWeeney, Protein co-expression network analysis (procona). J. Clin. Bioinforma. 3(1), 11 (2013). doi:10.1186/2043-9113-3-11.
Article
Google Scholar
DL Gibbs, L Gralinski, RS Baric, SK McWeeney, Multi-omic network signatures of disease. Front. Genet. 4:, 309 (2014). doi:10.3389/fgene.2013.00309.
Article
Google Scholar
C Guo, X-J Liu, Z-X Cheng, Y-J Liu, H Li, X Peng, Characterization of protein species and weighted protein co-expression network regulation of escherichia coli in response to serum killing using a 2-de based proteomics approach. Mol. Biosyst. 10(3), 475–484 (2014). doi:10.1039/c3mb70404a.
Article
Google Scholar
D Wu, X Liu, C Liu, Z Liu, M Xu, R Rong, M Qian, L Chen, T Zhu, Network analysis reveals roles of inflammatory factors in different phenotypes of kidney transplant patients. J. Theor. Biol. 362:, 62–68 (2014). doi:10.1016/j.jtbi.2014.03.006.
Article
Google Scholar
ML MacDonald, Y Ding, J Newman, S Hemby, P Penzes, DA Lewis, NA Yates, RA Sweet, Altered glutamate protein co-expression network topology linked to spine loss in the auditory cortex of schizophrenia. Biol. Psychiatr. 77(11), 959–968 (2015). doi:10.1016/j.biopsych.2014.09.006.
Article
Google Scholar
EI Kanonidis, MM Roy, RF Deighton, T Le Bihan, Protein co-expression analysis as a strategy to complement a standard quantitative proteomics approach: Case of a glioblastoma multiforme study. PLoS ONE. 11(8), 0161828 (2016). doi:10.1371/journal.pone.0161828.
Article
Google Scholar
X Yu, L Feng, D Liu, L Zhang, B Wu, W Jiang, Z Han, S Cheng, Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme. Oncotarget (2016). doi:10.18632/oncotarget.7416.
F Brambilla, F Lavatelli, D Di Silvestre, V Valentini, R Rossi, G Palladini, L Obici, L Verga, P Mauri, G Merlini, Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. Blood. 119:, 1844–1847 (2012). doi:10.1182/blood-2011-07-365510.
Article
Google Scholar
I Zoppis, M Borsani, E Gianazza, C Chinello, F Rocco, G Albo, AM Deelder, YEM Van Der Burgt, M Antoniotti, F Magni, G Mauri, in BIOINFORMATICS 2012 - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms. Analysis of correlation structures in renal cell carcinoma patient data (SCITEPRESSSetubal, 2012), pp. 251–256. doi:10.5220/0003855702510256.
Google Scholar
C Cava, I Zoppis, G Mauri, M Ripamonti, F Gallivanone, C Salvatore, M Gilardi, I Castiglioni, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Combination of gene expression and genome copy number alteration has a prognostic value for breast cancer (IEEEUS/Canada, 2013), pp. 608–611. doi:10.1109/EMBC.2013.6609573.
Chapter
Google Scholar
C Cava, I Zoppis, M Gariboldi, I Castiglioni, G Mauri, M Antoniotti, Combined analysis of chromosomal instabilities and gene expression for colon cancer progression inference. J. Clin. Bioinforma. 4(1) (2014). doi:10.1186/2043-9113-4-2.
M Vidal, ME Cusick, A-L Barabási, Interactome networks and human disease. Cell. 144(6), 986–998 (2011). doi:10.1016/j.cell.2011.02.016.
Article
Google Scholar
M Gustafsson, CE Nestor, H Zhang, A-L Barabási, S Baranzini, S Brunak, KF Chung, HJ Federoff, A-C Gavin, RR Meehan, P Picotti, MÀ Pujana, N Rajewsky, KG Smith, PJ Sterk, P Villoslada, M Benson, Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 6(10), 82 (2014). doi:10.1186/s13073-014-0082-6.
Article
Google Scholar
E Guney, J Menche, M Vidal, A-L Barábasi, Network-based in silico drug efficacy screening. Nat. Commun. 7:, 10331 (2016). doi:10.1038/ncomms10331.
Article
Google Scholar
O Mason, M Verwoerd, Graph theory and networks in biology. IET Syst. Biol. 1(2), 89–119 (2007).
Article
Google Scholar
J De Las Rivas, C Fontanillo, Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput. Biol. 6(6), 1000807 (2010). doi:10.1371/journal.pcbi.1000807.
Article
Google Scholar
J Mintseris, Z Weng, Structure, function, and evolution of transient and obligate protein-protein interactions. Proc. Natl. Acad. Sci. U. S. A. 102(31), 10930–10935 (2005). doi:10.1073/pnas.0502667102.
Article
Google Scholar
ED Levy, CR Landry, SW Michnick, How perfect can protein interactomes be?Sci. Signal. 2(60), 11 (2009). doi:10.1126/scisignal.260pe11.
Article
Google Scholar
AG Ngounou Wetie, I Sokolowska, AG Woods, U Roy, JA Loo, CC Darie, Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics. 13(3-4), 538–557 (2013). doi:10.1002/pmic.201200328.
Article
Google Scholar
D La, M Kong, W Hoffman, YI Choi, D Kihara, Predicting permanent and transient protein-protein interfaces. Proteins. 81(5), 805–818 (2013). doi:10.1002/prot.24235.
Article
Google Scholar
A Vinayagam, J Zirin, C Roesel, Y Hu, B Yilmazel, AA Samsonova, RA Neumüller, SE Mohr, N Perrimon, Integrating protein-protein interaction networks with phenotypes reveals signs of interactions. Nat. Methods. 11(1), 94–99 (2014). doi:10.1038/nmeth.2733.
Article
Google Scholar
BA Shoemaker, AR Panchenko, Deciphering protein-protein interactions. part ii. computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3(4), 43 (2007). doi:10.1371/journal.pcbi.0030043.
Article
Google Scholar
A Ceol, A Chatr Aryamontri, L Licata, D Peluso, L Briganti, L Perfetto, L Castagnoli, G Cesareni, Mint, the molecular interaction database: 2009 update. Nucleic Acids Res. 38(Database issue), 532–539 (2010). doi:10.1093/nar/gkp983.
Article
Google Scholar
S Kerrien, Y Alam-Faruque, B Aranda, I Bancarz, A Bridge, C Derow, E Dimmer, M Feuermann, A Friedrichsen, R Huntley, C Kohler, J Khadake, C Leroy, A Liban, C Lieftink, L Montecchi-Palazzi, S Orchard, J Risse, K Robbe, B Roechert, D Thorneycroft, Y Zhang, R Apweiler, H Hermjakob, Intact–open source resource for molecular interaction data. Nucleic Acids Res. 35(Database issue), 561–565 (2007). doi:10.1093/nar/gkl958.
Article
Google Scholar
A Franceschini, D Szklarczyk, S Frankild, M Kuhn, M Simonovic, A Roth, J Lin, P Minguez, P Bork, C von Mering, LJ Jensen, String v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41(Database issue), 808–815 (2013). doi:10.1093/nar/gks1094.
Article
Google Scholar
TS Keshava Prasad, R Goel, K Kandasamy, S Keerthikumar, S Kumar, S Mathivanan, D Telikicherla, R Raju, B Shafreen, A Venugopal, L Balakrishnan, A Marimuthu, S Banerjee, DS Somanathan, A Sebastian, S Rani, S Ray, CJ Harrys Kishore, S Kanth, M Ahmed, MK Kashyap, R Mohmood, YL Ramachandra, V Krishna, BA Rahiman, S Mohan, P Ranganathan, S Ramabadran, R Chaerkady, A Pandey, Human protein reference database–2009 update. Nucleic Acids Res. 37(Database issue), 767–772 (2009). doi:10.1093/nar/gkn892.
Article
Google Scholar
GD Bader, MP Cary, C Sander, Pathguide: a pathway resource list. Nucleic Acids Res. 34(Database issue), 504–506 (2006). doi:10.1093/nar/gkj126.
Article
Google Scholar
R Saito, ME Smoot, K Ono, J Ruscheinski, P-L Wang, S Lotia, AR Pico, GD Bader, T Ideker, A travel guide to cytoscape plugins. Nat. Methods. 9:, 1069–1076 (2012). doi:10.1038/nmeth.2212.
Article
Google Scholar
Z Hu, J Mellor, J Wu, C DeLisi, Visant: an online visualization and analysis tool for biological interaction data. BMC Bioinforma. 5:, 17 (2004). doi:10.1186/1471-2105-5-17.
Article
Google Scholar
Y Ding, M Chen, Z Liu, D Ding, Y Ye, M Zhang, R Kelly, L Guo, Z Su, SC Harris, F Qian, W Ge, H Fang, X Xu, W Tong, atbionet–an integrated network analysis tool for genomics and biomarker discovery. BMC Genomics. 13:, 325 (2012). doi:10.1186/1471-2164-13-325.
Article
Google Scholar
J Wu, T Vallenius, K Ovaska, J Westermarck, TP Mäkelä, S Hautaniemi, Integrated network analysis platform for protein-protein interactions. Nat. Methods. 6(1), 75–77 (2009). doi:10.1038/nmeth.1282.
Article
Google Scholar
QIAGEN’s Ingenuity pathway analysis. https://www.ingenuity.com/.
G Wu, E Dawson, A Duong, R Haw, L Stein, Reactomefiviz: a cytoscape app for pathway and network-based data analysis. F1000Res. 3:, 146 (2014). doi:10.12688/f1000research.4431.2.
Google Scholar
D-Y Cho, Y-A Kim, TM Przytycka, Chapter 5: Network biology approach to complex diseases. PLoS Comput. Biol. 8(12), 1002820 (2012). doi:10.1371/journal.pcbi.1002820.
Article
Google Scholar
L Song, P Langfelder, S Horvath, Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinforma. 13:, 328 (2012). doi:10.1186/1471-2105-13-328.
Article
Google Scholar
Z-P Liu, Reverse engineering of genome-wide gene regulatory networks from gene expression data. Curr. Genomics. 16:, 3–22 (2015). doi:10.2174/1389202915666141110210634.
Article
Google Scholar
J Ruan, AK Dean, W Zhang, A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst. Biol. 4:, 8 (2010). doi:10.1186/1752-0509-4-8.
Article
Google Scholar
A-L Barabási, N Gulbahce, J Loscalzo, Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). doi:10.1038/nrg2918.
Article
Google Scholar
CJ Wolfe, IS Kohane, AJ Butte, Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinforma. 6:, 227 (2005). doi:10.1186/1471-2105-6-227.
Article
Google Scholar
Y Zhang, BR Fonslow, B Shan, MC Baek, JR Yates 3rd, Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 10(113), 2343–94 (2013). doi:10.1021/cr3003533.
Article
Google Scholar
B Usadel, T Obayashi, M Mutwil, FM Giorgi, GW Bassel, M Tanimoto, A Chow, D Steinhauser, S Persson, NJ Provart, Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009). doi:10.1111/j.1365-3040.2009.02040.x.
Article
Google Scholar
F Luo, Y Yang, J Zhong, H Gao, L Khan, DK Thompson, J Zhou, Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinforma. 8:, 299 (2007). doi:10.1186/1471-2105-8-299.
Article
Google Scholar
LL Elo, H Järvenpää, M Oresic, R Lahesmaa, T Aittokallio, Systematic construction of gene coexpression networks with applications to human t helper cell differentiation process. Bioinformatics. 23(16), 2096–2103 (2007). doi:10.1093/bioinformatics/btm309.
Article
Google Scholar
A Gobbi, G Jurman, A null model for pearson coexpression networks. PLoS ONE. 10(6), 0128115 (2015). doi:10.1371/journal.pone.0128115.
Article
Google Scholar
ExpressionCorrelation. http://www.baderlab.org/Software/ExpressionCorrelation.
P Langfelder, S Horvath, Wgcna: an r package for weighted correlation network analysis. BMC Bioinforma. 9:, 559 (2008). doi:10.1186/1471-2105-9-559.
Article
Google Scholar
P Langfelder, S Horvath, Fast r functions for robust correlations and hierarchical clustering. J. Stat. Softw. 46(11), i11 (2012).
Article
Google Scholar
JD Storey, R Tibshirani, Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100(16), 9440–9445 (2003).
Article
MATH
MathSciNet
Google Scholar
B Zhang, S Horvath, A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4:, 17 (2005). doi:10.2202/1544-6115.1128.
MATH
MathSciNet
Google Scholar
C Lazar, L Gatto, M Ferro, C Bruley, T Burger, Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J. Proteome Res. 15:, 1116–1125 (2016). doi:10.1021/acs.jproteome.5b00981.
Article
Google Scholar
L Nie, G Wu, DE Culley, JCM Scholten, W Zhang, Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit. Rev. Biotechnol. 27:, 63–75 (2007). doi:10.1080/07388550701334212.
Article
Google Scholar
L Zhang, Y-Z Liu, Y Zeng, W Zhu, Y-C Zhao, J-G Zhang, J-Q Zhu, H He, H Shen, Q Tian, et al, Network-based proteomic analysis for postmenopausal osteoporosis in caucasian females. Proteomics. 16(1), 12–28 (2016).
Article
Google Scholar
PC Carvalho, J Hewel, VC Barbosa, JR Yates, Identifying differences in protein expression levels by spectral counting and feature selection. Genet. Mol. Res. GMR. 7:, 342–356 (2008).
Article
Google Scholar
SWH Wong, N Cercone, I Jurisica, Comparative network analysis via differential graphlet communities. Proteomics. 15(2–3), 608–617 (2015). doi:10.1002/pmic.201400233.
Article
Google Scholar
M Girvan, MEJ Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A. 99(12), 7821–7826 (2002). doi:10.1073/pnas.122653799.
Article
MATH
MathSciNet
Google Scholar
P Erdõs, On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5:, 17–61 (1960).
MATH
MathSciNet
Google Scholar
AL Barabasi, R Albert, Emergence of scaling in random networks. Science. 286(5439), 509–512 (1999).
Article
MATH
MathSciNet
Google Scholar
JP Josep Diaz, MD Penrose, M SERNA, Convergence theorems for some layout measures on random lattice and random geometric graphs. Comb. Probab. Comput. 9:, 489–511 (2000).
Article
MATH
MathSciNet
Google Scholar
DJ Watts, SH Strogatz, Collective dynamics of ’small-world’ networks. Nature. 393(6684), 440–442 (1998). doi:10.1038/30918.
Article
Google Scholar
R Albert, H Jeong, A-L Barabasi, Error and attack tolerance of complex networks. Nature. 406(6794), 378–382 (2000). doi:10.1038/35019019.
Article
Google Scholar
H Jeong, SP Mason, AL Barabási, ZN Oltvai, Lethality and centrality in protein networks. Nature. 411(6833), 41–42 (2001). doi:10.1038/35075138.
Article
Google Scholar
J-DJ Han, D Dupuy, N Bertin, ME Cusick, M Vidal, Effect of sampling on topology predictions of protein-protein interaction networks. Nat. Biotechnol. 23(7), 839–844 (2005). doi:10.1038/nbt1116.
Article
Google Scholar
N Przulj, DG Corneil, I Jurisica, Modeling interactome: scale-free or geometric?Bioinformatics. 20(18), 3508–3515 (2004). doi:10.1093/bioinformatics/bth436.
Article
Google Scholar
N Przulj, Biological network comparison using graphlet degree distribution. Bioinformatics. 23(2), 177–183 (2007). doi:10.1093/bioinformatics/btl301.
Article
Google Scholar
V Janjić, N Pržulj, The topology of the growing human interactome data. J. Integr. Bioinform. 11(2), 238 (2014). doi:10.2390/biecoll-jib-2014-238.
Google Scholar
B Al-Anzi, P Arpp, S Gerges, C Ormerod, N Olsman, K Zinn, Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network. PLoS Comput. Biol. 11(5), 1004264 (2015). doi:10.1371/journal.pcbi.1004264.
Article
Google Scholar
J-DJ Han, N Bertin, T Hao, DS Goldberg, GF Berriz, LV Zhang, D Dupuy, AJM Walhout, ME Cusick, FP Roth, M Vidal, Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature. 430(6995), 88–93 (2004). doi:10.1038/nature02555.
Article
Google Scholar
P Tsaparas, L Mariño-Ramírez, O Bodenreider, EV Koonin, IK Jordan, Global similarity and local divergence in human and mouse gene co-expression networks. BMC Evol. Biol. 6:, 70 (2006). doi:10.1186/1471-2148-6-70.
Article
Google Scholar
SL Carter, CM Brechbühler, M Griffin, AT Bond, Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics. 20(14), 2242–2250 (2004). doi:10.1093/bioinformatics/bth234.
Article
Google Scholar
G Scardoni, M Petterlini, C Laudanna, Analyzing biological network parameters with centiscape. Bioinformatics. 25(21), 2857–2859 (2009). doi:10.1093/bioinformatics/btp517.
Article
Google Scholar
H Wang, JM Hernandez, P Van Mieghem, Betweenness centrality in a weighted network. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 77:, 046105 (2008). doi:10.1103/PhysRevE.77.046105.
Article
Google Scholar
X He, J Zhang, Why do hubs tend to be essential in protein networks?PLoS Genet. 2:, 88 (2006). doi:10.1371/journal.pgen.0020088.
Article
Google Scholar
H Yu, PM Kim, E Sprecher, V Trifonov, M Gerstein, The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3:, 59 (2007). doi:10.1371/journal.pcbi.0030059.
Article
MathSciNet
Google Scholar
MEJ Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103(23), 8577–8582 (2006). doi:10.1073/pnas.0601602103.
Article
Google Scholar
R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, U Alon, Network motifs: simple building blocks of complex networks. Science. 298(5594), 824–827 (2002). doi:10.1126/science.298.5594.824.
Article
Google Scholar
J Wang, M Li, H Wang, Y Pan, Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans. Comput. Biol. Bioinforma. 9(4), 1070–1080 (2012). doi:10.1109/TCBB.2011.147.
Article
Google Scholar
C-H Chin, S-H Chen, H-H Wu, C-W Ho, M-T Ko, C-Y Lin, cytohubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), 11 (2014). doi:10.1186/1752-0509-8-S4-S11.
Article
Google Scholar
NT Doncheva, Y Assenov, FS Domingues, M Albrecht, Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7:, 670–685 (2012). doi:10.1038/nprot.2012.004.
Article
Google Scholar
Y Tang, M Li, J Wang, Y Pan, F-X Wu, Cytonca: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Bio. Syst. 127:, 67–72 (2015). doi:10.1016/j.biosystems.2014.11.005.
Google Scholar
V Spirin, LA Mirny, Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. U. S. A. 100(21), 12123–12128 (2003). doi:10.1073/pnas.2032324100.
Article
Google Scholar
LH Hartwell, JJ Hopfield, S Leibler, AW Murray, From molecular to modular cell biology. Nature. 402(6761 Suppl), 47–52 (1999). doi:10.1038/35011540.
Article
Google Scholar
MEJ Newman, M Girvan, Finding and evaluating community structure in networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 69(2 Pt 2), 026113 (2004). doi:10.1103/PhysRevE.69.026113.
Article
Google Scholar
MEJ Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066133 (2004). doi:10.1103/PhysRevE.69.066133.
Article
Google Scholar
L Donetti, MA Muñoz, Detecting network communities: a new systematic and efficient algorithm. J. Stat. Mech, P10012 (2004). doi:10.1088/1742-5468/2004/10/P10012.
M Wu, X Li, C-K Kwoh, S-K Ng, A core-attachment based method to detect protein complexes in ppi networks. BMC Bioinforma. 10:, 169 (2009). doi:10.1186/1471-2105-10-169.
Article
Google Scholar
B Adamcsek, G Palla, IJ Farkas, I Derenyí, T Vicsek, Cfinder: locating cliques and overlapping modules in biological networks. Bioinformatics. 22(8), 1021–1023 (2006). doi:10.1093/bioinformatics/btl039.
Article
Google Scholar
GD Bader, CWV Hogue, An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma. 4:, 2 (2003).
Article
Google Scholar
AL Hu, KCC Chan, Utilizing both topological and attribute information for protein complex identification in ppi networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(3), 780–792 (2013). doi:10.1109/TCBB.2013.37.
Article
Google Scholar
S Srihari, HW Leong, A survey of computational methods for protein complex prediction from protein interaction networks. J. Bioinform. Comput. Biol. 11(2), 1230002 (2013). doi:10.1142/S021972001230002X.
Article
Google Scholar
X-F Zhang, D-Q Dai, L Ou-Yang, H Yan, Detecting overlapping protein complexes based on a generative model with functional and topological properties. BMC Bioinforma. 15:, 186 (2014). doi:10.1186/1471-2105-15-186.
Article
Google Scholar
L Hu, KCC Chan, A density-based clustering approach for identifying overlapping protein complexes with functional preferences. BMC Bioinforma. 16:, 174 (2015). doi:10.1186/s12859-015-0583-3.
Article
Google Scholar
J Wang, D Xie, H Lin, Z Yang, Y Zhang, Filtering gene ontology semantic similarity for identifying protein complexes in large protein interaction networks. Proteome Sci. 10(Suppl 1), 18 (2012). doi:10.1186/1477-5956-10-S1-S18.
Article
Google Scholar
M Kouhsar, F Zare-Mirakabad, Y Jamali, Wcoach: Protein complex prediction in weighted ppi networks. Genes Genet. Syst. 90(5), 317–324 (2015). doi:10.1266/ggs.15-00032.
Article
Google Scholar
A Subramanian, P Tamayo, VK Mootha, S Mukherjee, BL Ebert, MA Gillette, A Paulovich, SL Pomeroy, TR Golub, ES Lander, JP Mesirov, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 102(43), 15545–15550 (2005). doi:10.1073/pnas.0506580102.
Article
Google Scholar
F Brambilla, F Lavatelli, D Di Silvestre, V Valentini, G Palladini, G Merlini, P Mauri, Shotgun protein profile of human adipose tissue and its changes in relation to systemic amyloidoses. J Proteome Res. 12(12), 5642–5655 (2013). doi:10.1021/pr400583h.
Article
Google Scholar
C Zhang, J Wang, K Hanspers, D Xu, L Chen, AR Pico, Noa: a cytoscape plugin for network ontology analysis. Bioinformatics. 29(16), 2066–2067 (2013). doi:10.1093/bioinformatics/btt334.
Article
Google Scholar
A Alexeyenko, W Lee, M Pernemalm, J Guegan, P Dessen, V Lazar, J Lehtiö, Y Pawitan, Network enrichment analysis: extension of gene-set enrichment analysis to gene networks. BMC Bioinforma. 13:, 226 (2012). doi:10.1186/1471-2105-13-226.
Article
Google Scholar
P Di Lena, PL Martelli, P Fariselli, R Casadio, Net-ge: a novel network-based gene enrichment for detecting biological processes associated to mendelian diseases. BMC Genomics. 16(Suppl 8), 6 (2015). doi:10.1186/1471-2164-16-S8-S6.
Google Scholar
DJ Reiss, NS Baliga, R Bonneau, Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinforma. 7:, 280 (2006). doi:10.1186/1471-2105-7-280.
Article
Google Scholar
P Langfelder, S Horvath, Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1:, 54 (2007). doi:10.1186/1752-0509-1-54.
Article
Google Scholar
T Nepusz, H Yu, A Paccanaro, Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods. 9(5), 471–472 (2012). doi:10.1038/nmeth.1938.
Article
Google Scholar
S van Dongen, Graph clustering by flow simulation (2000). PhD thesis, University of Utrecht.
J Ji, A Zhang, C Liu, X Quan, Z Liu, Survey: Functional module detection from protein-protein interaction networks. IEEE Trans. Knowl. Data Eng. 26(2), 261–277 (2016). doi:10.1109/TKDE.2012.225.
Article
Google Scholar
CC Tsou, D Avtonomov, B Larsen, M Tucholska, H Choi, AC Gingras, AI Nesvizhskii, Dia-umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods. 12(3), 258–64 (2015). doi:10.1038/nmeth.3255.
Article
Google Scholar
M Gstaiger, R Aebersold, Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet. 10(9), 617–627 (2009). doi:10.1038/nrg2633.
Article
Google Scholar
P Mauri, AM Riccio, R Rossi, D Di Silvestre, L Benazzi, L De Ferrari, RW Dal Negro, ST Holgate, GW Canonica, Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-treated severe asthma patients. Immunol. Lett. 162(1) (2014). doi:10.1016/j.imlet.2014.08.010.
S Ma, Q Gong, HJ Bohnert, An arabidopsis gene network based on the graphical gaussian model. Genome Res. 17:, 1614–1625 (2007). doi:10.1101/gr.6911207.
Article
Google Scholar
L Han, J Zhu, Using matrix of thresholding partial correlation coefficients to infer regulatory network. Bio. Syst. 91:, 158–165 (2008). doi:10.1016/j.biosystems.2007.08.008.
Google Scholar
D Pe’er, Bayesian network analysis of signaling networks: a primer. Science’s STKE Signal Transduct. Knowl. Environ. 2005:, 4 (2005). doi:10.1126/stke.2812005pl4.
Google Scholar
AR Joyce, BØ Palsson, The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell. Biol. 7(3), 198–210 (2006). doi:10.1038/nrm1857.
Article
Google Scholar
R Van Assche, V Broeckx, K Boonen, E Maes, W De Haes, L Schoofs, L Temmerman, Integrating -omics: Systems biology as explored through c. elegans research. J. Mol. Biol. 427(21), 3441–3451 (2015). doi:10.1016/j.jmb.2015.03.015.
Article
Google Scholar
G-W Li, XS Xie, Central dogma at the single-molecule level in living cells. Nature. 475(7356), 308–315 (2011). doi:10.1038/nature10315.
Article
Google Scholar
T Maier, M Güell, L Serrano, Correlation of mrna and protein in complex biological samples. FEBS Lett. 583(24), 3966–3973 (2009). doi:10.1016/j.febslet.2009.10.036.
Article
Google Scholar
R de Sousa Abreu, LO Penalva, EM Marcotte, C Vogel, Global signatures of protein and mrna expression levels. Mol. Biosyst. 5(12), 1512–1526 (2009). doi:10.1039/b908315d.
Google Scholar
B Schwanhäusser, D Busse, N Li, G Dittmar, J Schuchhardt, J Wolf, W Chen, M Selbach, Global quantification of mammalian gene expression control. Nature. 473(7347), 337–342 (2011). doi:10.1038/nature10098.
Article
Google Scholar
X Peng, J Wang, W Peng, FX Wu, Y Pan, Protein-protein interactions: detection, reliability assessment and applications. Brief. Bioinform (2016). doi:10.1093/bib/bbw066.
K Wanichthanarak, JF Fahrmann, D Grapov, Genomic, proteomic, and metabolomic data integration strategies. Biomark. Insights. 10:, 1–6 (2015). doi:10.4137/BMI.S29511.
Google Scholar
ELIXIR A distributed infrastructure for life-science information. http://160.80.34.9/elixir2015/.