Marx, V ((2013)). Biology: The big challenges of big data. Nature, 498(7453), 255–260.
Kouretas, P, Koutroumpas, K, Lygeros, J, Lygerou, Z. (2006). Stochastic hybrid modeling of biochemical processes. Boca Raton, FL: CRC Press.
Book
Google Scholar
Kim, T, Afonin, KA, Viard, M, Koyfman, AY, Sparks, S, Heldman, E, Grinberg, S, Linder, C, Blumenthal, RP, Shapiro, BA (2013). In silico, in vitro, and in vivo studies indicate the potential use of bolaamphiphiles for therapeutic siRNAs delivery. Mol Ther Nucleic Acids, 2, e80.
Article
Google Scholar
de Jong, H (2002). Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol, 9(1), 67–103. doi:10.1089/10665270252833208.
Article
MathSciNet
Google Scholar
Walhout, A (2011). What does biologically meaningful mean? a perspective on gene regulatory network validation. Genome Biol, 12(4), 109.http://genomebiology.com/content/12/4/109.
Article
Google Scholar
Tucker, W, & Moulton, V (2005). Reconstructing metabolic networks using interval analysis. In Algorithms in bioinformatics, ser. Lecture Notes in Comput. Sci. vol. 3692.Springer, Berlin, (pp. 192–203).
Google Scholar
Glass, L, & Kauffman, SA (1973). The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol, 39(1), 103–129. http://www.sciencedirect.com/science/article/pii/0022519373902087.
Article
Google Scholar
Kringstein, AM, Rossi, FMV, Hofmann, A, Blau, HM (1367). Graded transcriptional response to different concentrations of a single transactivator. Proc Nat Acad Sci, 95(23), 0–13675. http://www.pnas.org/content/95/23/13670.abstract.
Google Scholar
Amonlirdviman, K, Khare, NA, Tree, DR, Chen, WS, Axelrod, JD, Tomlin, CJ (2005). Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science, 307(5708), 423–426. doi:10.1126/science.110547110.1126/science.1105471.
Article
Google Scholar
Batt, G, Ropers, D, de Jong, H, Geiselmann, J, Page, M, Schneider, D (2005). Qualitative analysis and verification of hybrid models of genetic regulatory networks: Nutritional stress response in escherichia coli. In: Morari, M, & Thiele, L (Eds.) In Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science. http://dx.doi.org/10.1007/978-3-540-31954-2_9.
de Jong, H, Gouz, J-L, Hernandez, C, Page, M, Sari, T, Geiselmann, J (2003). Hybrid modeling and simulation of genetic regulatory networks: a qualitative approach. In: Maler, O, & Pnueli, A (Eds.) In Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science, vol. 2623. http://dx.doi.org/10.1007/3-540-36580-X_21.
Drulhe, S, Ferrari-Trecate, G, de Jong, H, Viari, A (2006). Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks. In: Hespanha, J, & Tiwari, A (Eds.) In Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science, vol. 3927. http://dx.doi.org/10.1007/11730637_16.
Ghosh, R, & Tomlin, C (2001). Lateral inhibition through delta-notch signaling: a piecewise affine hybrid model. In: Di Benedetto, M, & Sangiovanni-Vincentelli, A (Eds.) In Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science, vol. 2034. http://dx.doi.org/10.1007/3-540-45351-2_21.
Kaern, M, Elston, TC, Blake, WJ, Collins, JJ (2005). Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6(6), 451–464.
Article
Google Scholar
Rao, CV, Wolf, DM, Arkin, AP (2002). Control, exploitation and tolerance of intracellular noise. Nature, 420(6912), 231–237.
Article
Google Scholar
J MG, Vilar, HY, Kueh, N, Barkai, S, Leibler (2002). Mechanisms of noise-resistance in genetic oscillators. Proc. Nat. Acad. Sci, 99(9), 5988–5992.
Article
Google Scholar
Wolf, DM, Vazirani, VV, Arkin, AP (2005). Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol, 234(2), 227–253. http://www.sciencedirect.com/science/article/pii/S0022519304005740.
Article
MathSciNet
Google Scholar
Weinberger, LS, Burnett, JC, Toettcher, JE, Arkin, AP, Schaffer, DV (2005). Stochastic gene expression in a lentiviral positive-feedback loop: Hiv-1 tat fluctuations drive phenotypic diversity. Cell, 122(2), 169–182. http://www.sciencedirect.com/science/article/pii/S0092867405005490.
Article
Google Scholar
Dai, J, Chuang, R-Y, Kelly, TJ (2005). DNA replication origins in the schizosaccharomyces pombe genome. Proc. Nat. Acad. Sci. USA, 102(2), 337–342.
Article
Google Scholar
Patel, PK, Arcangioli, B, Baker, SP, Bensimon, A, Rhind, N (2006). DNA replication origins fire stochastically in fission yeast. Mol Biol. Cell, 17(1), 308–316.
Article
Google Scholar
Antsaklis, P (2000). Special issue on hybrid systems: theory and applications a brief introduction to the theory and applications of hybrid systems. Proc. IEEE, 88(7), 879–887.
Article
Google Scholar
Antsaklis, P, & Nerode, A (1998). Hybrid control systems: an introductory discussion to the special issue. Automatic Control. IEEE Trans, 43(4), 457–460.
Article
Google Scholar
van der Schaft, A. (2000). An introduction to hybrid dynamical systems. New York: Springer.
Book
MATH
Google Scholar
Goebel, R, Sanfelice, RG, Teel, AR. (2012). Hybrid dynamical systems: modeling, stability, and robustness. Princeton, NJ: Princeton Univ. Press.
MATH
Google Scholar
Goebel, R, Sanfelice, R, Teel, A ((2009)). Hybrid dynamical systems. Control Syst. IEEE, 29(2), 28–93.
Lygeros, J, Johansson, K, Simic, S, Zhang, J, Sastry, S (2003). Dynamical properties of hybrid automata. Automatic Control. IEEE Trans, 48(1), 2–17.
Article
MathSciNet
MATH
Google Scholar
Lygeros, J, Tomlin, C, Sastry, S. (December, 2008). Hybrid systems: modeling, analysis and control: Princeton Univ. Press.
Hu, J, Lygeros, J, Sastry, S (2000). Towards a theory of stochastic hybrid systems. In: Lynch, N, & Krogh, B (Eds.) In Hybrid Systems: Computation and, Control, ser. Lecture Notes in Computer Science, vol. 1790. http://dx.doi.org/10.1007/3-540-46430-1_16.
Hespanha, JP (2005). A model for stochastic hybrid systems with application to communication networks. Nonlinear Anal.: Theory, Methods Appli, 62(8), 1353–1383. hybrid Systems and Applications Hybrid Systems and Applications. http://www.sciencedirect.com/science/article/pii/S0362546X05004074.
Article
MathSciNet
MATH
Google Scholar
Swain, PS, Elowitz, MB, Siggia, ED (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Nat. Acad. Sci, 99(20), 12795–12800. http://www.pnas.org/content/99/20/12795.abstract.
Article
Google Scholar
Kepler, TB, & Elston, TC (2001). Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J, 81(6), 3116–3136.
Article
Google Scholar
Lipniacki, T, Paszek, P, Marciniak-Czochra, A, Brasier, AR, Kimmel, M (2006). Transcriptional stochasticity in gene expression. J. Theor. Biol, 238(2), 348–367. http://www.sciencedirect.com/science/article/pii/S002251930500250X.
Article
MathSciNet
Google Scholar
Pola, G, Bujorianu, ML, Lygeros, J, Di Benedetto, MD. Stochastic Hybrid Models: An Overview, IFAC Proceedings (Vol. 36, pp. 45–50). http://dx.doi.org/10.1016/S1474-6670(17)36405-4.
Ghosh, MK, Arapostathis, A, Marcus, SI (1997). Ergodic control of switching diffusions. SIAM J. Control Optimization, 35(6), 1952–1988. http://dx.doi.org/10.1137/S0363012996299302.
Article
MathSciNet
MATH
Google Scholar
Ethier, S, & Kurtz, T. (1986). Markov processes: characterisation and convergence. New York: Wiley.
Book
MATH
Google Scholar
Davis, M. (1993). Markov processes and optimization. London: Chapman & Hall.
MATH
Google Scholar
Davis, MHA (1984). Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. Roy. Statist. Soc. Ser. B, 46(3), 353–388. http://links.jstor.org/sici?sici=0035-9246(1984)46:3%3C353:PMPAGC%3E2.0.CO%3B2-9%26.
MathSciNet
MATH
Google Scholar
Ghosh, M, Arapostathis, A, Marcus, S (1993). Optimal control of switching diffusions with application to flexible manufacturing systems. SIAM J. Control Optimization, 31(5), 1183–1204. http://dx.doi.org/10.1137/0331056.
Article
MathSciNet
MATH
Google Scholar
Elowitz, MB, Levine, AJ, Siggia, ED, Swain, PS (2002). Stochastic gene expression in a single cell. Science, 297(5584), 1183–1186. http://www.sciencemag.org/content/297/5584/1183.abstract.
Article
Google Scholar
McAdams, H, & Arkin, A (1997). Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci, 94(3), 814–819. http://www.pnas.org/content/94/3/814.abstract.
Article
Google Scholar
Ozbudak, EM, Thattai, M, Kurtser, I, Grossman, AD (2002). A van Oudenaarden, Regulation of noise in the expression of a single gene. Nat. Genet, 31(1), 69–73.
Article
Google Scholar
Gillespie, DT (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem, 81(25), 2340–2361. http://dx.doi.org/10.1021/j100540a008.
Article
Google Scholar
Pal, R, Bhattacharya, S, Caglar, M (2012). Robust approaches for genetic regulatory network modeling and intervention: A review of recent advances. Signal Process. Mag. IEEE, 29(1), 66–76.
Article
Google Scholar
Sima, C, Hua, J, Jung, S (2009). Inference of gene regulatory networks using time-series data: a survey. Curr. Genomics, 10(6), 416–429.
Article
Google Scholar
Li, X, Qian, L, Bittner, M, Dougherty, E (2011). Characterization of drug efficacy regions based on dosage and frequency schedules. Biomed. Eng. IEEE Trans, 58(3), 488–498.
Article
Google Scholar
Li, X, Qian, L, Dougherty, E (2010). Modeling treatment and drug effects at the molecular level using hybrid system theory. In Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2010 IEEE Symposium on, Montreal, (pp. 1–7).
Liu, B, Kong S, Gao, S, Zuliani, P, Clarke, EM (2014). Towards personalized cancer therapy using delta-reachability analysis. CoRR abs/1410.7346. [Online]. Available: http://arxiv.org/abs/1410.7346.
Meselson, M, & Stahl, FW (1958). The replication of DNA in escherichia coli. Proc. Nat. Acad. Sci, 44(7), 671–682. http://www.pnas.org/content/44/7/671.short.
Article
Google Scholar
Gilbert, DM (2001). Making sense of eukaryotic DNA replication origins. Science, 294(5540), 96–100.
Article
Google Scholar
Costa, S, & Blow, JJ (2007). The elusive determinants of replication origins. EMBO Rep., 8(4), 332–334.
Article
Google Scholar
DePamphilis, ML (1999). Replication origins in metazoan chromosomes: fact or fiction?BioEssays, 21(1), 5–16. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-1878(199901)21:1%3C5::AID-BIES2%3E3.0.CO;2-6/full.
Article
Google Scholar
Faghih, RT, Dahleh, MA, Adler, GK, Klerman, EB, Brown, EN (2014). Deconvolution of serum cortisol levels by using compressed sensing. PLoS ONE, 9(1), 1–12.
Article
Google Scholar
Li, X, Qian, L, Bittner, M, Dougherty, E (2013). Drug effect study on proliferation and survival pathways on cell line-based platform: A stochastic hybrid systems approach. In Genomic Signal Processing and Statistics (GENSIPS), 2013 IEEE International Workshop on, Houston, (pp. 54–57).
Hu, J, Wu, W-C, Sastry, S (2004). Modeling subtilin production in bacillus subtilis using stochastic hybrid systems. In: Alur, R, & Pappas, G (Eds.) In Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science, vol. 2993. http://dx.doi.org/10.1007/978-3-540-24743-2_28.
Cinquemani, E, Porreca, R, Ferrari-Trecate, G, Lygeros, J (2008). Subtilin production by bacillus subtilis: Stochastic hybrid models and parameter identification. Automatic Control. IEEE Trans, 53(no. Special Issue), 38–50.
Article
MathSciNet
Google Scholar
Cinquemani, E, Porreca, R, Ferrari-Trecate, G, Lygeros, J (2007). Parameter identification for stochastic hybrid models of biological interaction networks. In Decision and Control, 2007s 46th IEEE Conference on, New Orleans, (pp. 5180–5185).
Koutroumpas, K, Cinquemani, E, Kouretas, P, Lygeros, J (2008). Parameter identification for stochastic hybrid systems using randomized optimization: a case study on subtilin production by bacillus subtilis. Nonlinear Anal.: Hybrid Syst, 2(3), 786–802. http://www.sciencedirect.com/science/article/pii/S1751570X07001537.
MathSciNet
MATH
Google Scholar
Julius, A, Halasz, A, Sakar, M, Rubin, H, Kumar, V, Pappas, G (2008). Stochastic modeling and control of biological systems: the lactose regulation system of escherichia coli. Automatic Control. IEEE Trans, 53(no. Special Issue), 51–65.
Article
MathSciNet
Google Scholar
Singh, A, & Hespanha, J (2007). Stochastic analysis of gene regulatory networks using moment closure. In American Control Conference, 2007, ACC ’07, New York, (pp. 1299–1304).
Lygeros, J, Koutroumpas, K, Dimopoulos, S, Legouras, I, Kouretas, P, Heichinger, C, Nurse, P, Lygerou, Z (2008). Stochastic hybrid modeling of DNA replication across a complete genome. Proc. Natl. Acad. Sci. USA, 105(34), 12295–12300. [PubMed Central http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527905] [doi: URL 10.1073/pnas.0805549105] [PubMed http://www.ncbi.nlm.nih.gov/pubmed/18713859].
Article
Google Scholar
Koutroumpas, K, & Lygeros, J (2010). Modeling and verification of stochastic hybrid systems using hioa: a case study on dna replication. In Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, ser. HSCC ’10. http://doi.acm.org/10.1145/1755952.1755989.
Chapter
Google Scholar
Riley, D, Koutsoukos, X, Riley, K (2008). Modeling and simulation of biochemical processes using stochastic hybrid systems: The sugar cataract development process. In: Egerstedt, M, & Mishra, B (Eds.) In Hybrid Systems: Computation and Control, ser. Lecture Notes in Computer Science, vol. 4981. http://dx.doi.org/10.1007/978-3-540-78929-1_31.
Riley, D, Koutsoukos, X, Riley, K (2009). Modelling and analysis of the sugar cataract development process using stochastic hybrid systems. IET Syst. Biol, 3(3), 137–154. [doi: http://dx.doi.org/10.1049/iet-syb.2008.0101] [PubMed http://www.ncbi.nlm.nih.gov/pubmed/19449975].
Article
MATH
Google Scholar
Riley, D, Koutsoukos, X, Riley, K (2007). Verification of biochemical processes using stochastic hybrid systems. In Intelligent Control, 2007. ISIC 2007. IEEE 22nd International Symposium on, Singapore, (pp. 100–105).
Riley, D, Koutsoukos, X, Riley, K (2007). Reachability analysis of a biodiesel production system using stochastic hybrid systems. In Control Automation, 2007. MED ’07. Mediterranean Conference on, Athens, (pp. 1–6).
Riley, D, Koutsoukos, X, Riley, K (2010). Multilevel splitting for reachability analysis of stochastic hybrid systems. In Proceedings of the 2010 Conference on Grand Challenges in Modeling & Simulation, ser. GCMS ’10. http://dl.acm.org/citation.cfm?id=2.020619.2020627.
Google Scholar
Singh, A, & Hespanha, J (2006). Moment closure techniques for stochastic models in population biology. In American Control Conference, 2006, Minneapolis, (p. 6).
Hespanha, JP, & Singh, A (2005). Stochastic models for chemically reacting systems using polynomial stochastic hybrid systems. Int. J. Robust Nonlinear Control, 15(15), 669–689. http://dx.doi.org/10.1002/rnc.1017.
Article
MathSciNet
MATH
Google Scholar
Singh, A, & Hespanha, J (2005). Models for multi-specie chemical reactions using polynomial stochastic hybrid systems. In Decision and Control, 2005 and 2005 European Control, Conference. CDC-ECC ’05. 44th IEEE Conference on, Seville, (pp. 2969–2974).
Mikeev, L, & Wolf, V (2012). Parameter estimation for stochastic hybrid models of biochemical reaction networks. In Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, ser. HSCC ’12. http://doi.acm.org/10.1145/2185632.2185657.
Google Scholar
Kumar, GP, Buffin, A, Pavlic, TP, Pratt, SC, Berman, SM (2013). A stochastic hybrid system model of collective transport in the desert ant aphaenogaster cockerelli. In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, ser. HSCC ’13. http://doi.acm.org/10.1145/2461328.2461349.
Google Scholar
Borowski, P, & Cytrynbaum, EN (2009). Predictions from a stochastic polymer model for the MinDE protein dynamics in Escherichia coli. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys, 80(4 Pt 1), 041916. [PubMed http://www.ncbi.nlm.nih.gov/pubmed/19905351].
Article
Google Scholar
Plotnik, A, & Rock, S (2011). Hybrid estimation using perceptional information: robotic tracking of deep ocean animals. Oceanic Eng. IEEE J, 36(2), 298–315.
Article
Google Scholar
Bressloff, PC, & Newby, JM (2014). Stochastic hybrid model of spontaneous dendritic NMDA spikes. Phys. Biol, 11(1), 016006. [doi: http://dx.doi.org/10.1088/1478-3975/11/1/016006] [PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24476677].
Article
Google Scholar
Bressloff, PC, & Lai, YM (2011). Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise. J. Math. Neurosci, 1(1), 2. [PubMed Central http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280892] [doihttp://dx.doi.org/10.1186/2190-8567-1-2].
Article
MathSciNet
MATH
Google Scholar
Farkas, JZ, Hinow, P, Engelstädter, J (2012). Pathogen evolution in switching environments: a hybrid dynamical system approach. Math. Biosci, 240(1), 70–75. http://www.sciencedirect.com/science/article/pii/S0025556412001411.
Article
MathSciNet
MATH
Google Scholar
Hofbaur, MW, & Williams, BC (2004). Hybrid estimation of complex systems. IEEE Trans. Syst. Man Cybern. B Cybern, 34(5), 2178–2191. [PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15503515].
Article
Google Scholar