Skip to main content

Fixed Points in Discrete Models for Regulatory Genetic Networks

Abstract

It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields) are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field) is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

[12345678910111213141516171819202122232425262728293031]

References

  1. 1.

    Lynch JF: On the threshold of chaos in random Boolean cellular automata. Random Structures & Algorithms 1995, 6(2-3):239-260. 10.1002/rsa.3240060212

    Article  MathSciNet  MATH  Google Scholar 

  2. 2.

    Elspas B: The theory of autonomous linear sequential networks. IRE Transactions on Circuit Theory 1959, 6(1):45-60.

    Article  Google Scholar 

  3. 3.

    Plantin J, Gunnarsson J, Germundsson R: Symbolic algebraic discrete systems theory—applied to a fighter aircraft. Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, La, USA, December 1995 2: 1863-1864.

    Google Scholar 

  4. 4.

    Bollman D, Orozco E, Moreno O: A parallel solution to reverse engineering genetic networks. In Computational Science and Its Applications—ICCSA 2004—Part 3, Lecture Notes in Computer Science, Springer, Berlin, Germany Edited by: Laganà A, Gavrilova ML, Kumar V et al.. 2004, 3045: 490-497.

    MathSciNet  Google Scholar 

  5. 5.

    Jarrah AS, Vastani H, Duca K, Laubenbacher R: An optimal control problem for in vitro virus competition. Proceedings of the 43rd IEEE Conference on Decision and Control (CDC '), Nassau, Bahamas, December 2004 1: 579-584.

    Google Scholar 

  6. 6.

    Laubenbacher R, Stigler B: A computational algebra approach to the reverse engineering of gene regulatory networks. Journal of Theoretical Biology 2004, 229(4):523-537. 10.1016/j.jtbi.2004.04.037

    Article  MathSciNet  Google Scholar 

  7. 7.

    Fuller GN, Rhee CH, Hess KR, et al.: Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme. Cancer Research 1999, 59(17):4228-4232.

    Google Scholar 

  8. 8.

    Shmulevich I, Dougherty ER, Zhang W: Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 2002, 18(10):1319-1331. 10.1093/bioinformatics/18.10.1319

    Article  Google Scholar 

  9. 9.

    Hernández Toledo RA: Linear finite dynamical systems. Communications in Algebra 2005, 33(9):2977-2989. 10.1081/AGB-200066211

    Article  MathSciNet  MATH  Google Scholar 

  10. 10.

    Bähler J, Svetina S: A logical circuit for the regulation of fission yeast growth modes. Journal of Theoretical Biology 2005, 237(2):210-218. 10.1016/j.jtbi.2005.04.008

    Article  MathSciNet  Google Scholar 

  11. 11.

    Moreno O, Bollman D, Aviño M: Finite dynamical systems, linear automata, and finite fields. Proceedings of the WSEAS International Conference on System Science, Applied Mathematics and Computer Science, and Power Engineering Systems, Copacabana, Rio de Janeiro, Brazil, October 2002 1481-1483.

    Google Scholar 

  12. 12.

    Sunar B, Cyganski D: Comparison of bit and word level algorithms for evaluating unstructured functions over finite rings. In Proceedings of the 7th International Workshop Cryptographic Hardware and Embedded Systems (CHES '05), Lecture Notes in Computer Science, Edinburgh, UK, August-September 2005 Edited by: Rao JR, Sunar B. 3659: 237-249.

    Google Scholar 

  13. 13.

    Zivkovic M: A table of primitive binary polynomials. Mathematics of Computation 1994, 62(205):385-386.

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    Blahut RE: Algebraic Methods for Signal Processing and Communications Coding. Springer, New York, NY, USA; 1991.

    Google Scholar 

  15. 15.

    Yildirim N, Mackey MC: Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. Biophysical Journal 2003, 84(5):2841-2851. 10.1016/S0006-3495(03)70013-7

    Article  Google Scholar 

  16. 16.

    Laubenbacher R: Network Inference, with an application to yeast system biology. Presentation at the Center for Genomics Science, Cuernavaca, Mexico, September 2006 [http://mitla.lcg.unam.mx/]

    Google Scholar 

  17. 17.

    Laubenbacher R, Stigler B: Mathematical Tools for Systems Biology. http://people.mbi.ohio-state.edu/bstigler/sb-workshop.pdf

  18. 18.

    Just W: The steady state system problem is NP-hard even for monotone quadratic Boolean dynamical systems. Annals of Combinatorics, in press.

  19. 19.

    Macdonald BR: Finite Rings with Identity. Marcel Dekker, New York, NY, USA; 1974.

    Google Scholar 

  20. 20.

    Colón-Reyes O: Monomial dynamical systems, Ph.D. thesis. Virginia Polytechnic Institute and State University, Blacksburg, Va, USA; 2005.

    Google Scholar 

  21. 21.

    Colón-Reyes O: Monomial Dynamical Systems over Finite Fields. ProQuest, Ann Arbor, Mich, USA; 2005.

    Google Scholar 

  22. 22.

    Storjohann A:An algorithm for the Frobenius normal form. Proceedings of the 23rd International Symposium on Symbolic and Algebraic Computation (ISSAC '98), Rostock, Germany, August 1998 101-104.

    Google Scholar 

  23. 23.

    Kaltofen E, Shoup V: Subquadratic-time factoring of polynomials over finite fields. Mathematics of Computation 1998, 67(223):1179-1197. 10.1090/S0025-5718-98-00944-2

    Article  MathSciNet  MATH  Google Scholar 

  24. 24.

    Colón-Reyes O, Laubenbacher R, Pareigis B: Boolean monomial dynamical systems. Annals of Combinatorics 2004, 8(4):425-439.

    Article  MathSciNet  MATH  Google Scholar 

  25. 25.

    Colón-Reyes O, Jarrah AS, Laubenbacher R, Sturmfels B: Monomial dynamical systems over finite fields. Journal of Complex Systems 2006, 16(4):333-342.

    Google Scholar 

  26. 26.

    Aho AV, Hopcroft JE, Ullman JD: The Design and Analysis of Computer Algorithms. Addison Wesley, Boston, Mass, USA; 1974.

    Google Scholar 

  27. 27.

    von zur Gathen J, Gerhard J: Modern Computer Algebra. 2nd edition. Cambridge University Press, Cambridge, UK; 2003.

    Google Scholar 

  28. 28.

    Ferrer E: A co-design approach to the reverse engineering problem, CISE Ph.D. thesis proposal.

  29. 29.

    Savas E, Koc CK: Efficient method for composite field arithmetic. Electrical and Computer Engineering, Oregon State University, Corvallis, Ore, USA; 1999.

    Google Scholar 

  30. 30.

    Ferrer E, Bollman D, Moreno O: Toward a solution of the reverse engineering problem usings FPGAs. In Proceedings of the International Euro-Par Workshops, Lecture Notes in Computer Science, Springer, Dresden, Germany, September 2006 Edited by: Lehner et al.. 4375: 301-309.

    Article  Google Scholar 

  31. 31.

    Thomas R: Laws for the dynamics of regulatory networks. International Journal of Developmental Biology 1998, 42(3):479-485.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dorothy Bollman.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Bollman, D., Colón-Reyes, O. & Orozco, E. Fixed Points in Discrete Models for Regulatory Genetic Networks. J Bioinform Sys Biology 2007, 97356 (2007). https://doi.org/10.1155/2007/97356

Download citation

Keywords

  • Linear System
  • Polynomial Time
  • Regulatory Iteration
  • Discrete Fourier Transform
  • Univariate Model