Kitano H: Looking beyond that details: a rise in system-oriented approaches in genetics and molecular biology. Current Genetics 2002, 41(1):1-10. 10.1007/s00294-002-0285-z
Article
MathSciNet
Google Scholar
D'haeseleer P, Liang S, Somogyi R: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000, 16(8):707-726. 10.1093/bioinformatics/16.8.707
Article
Google Scholar
Brazhnik P, de la Fuente A, Mendes P: Gene networks: how to put the function in genomics. Trends in Biotechnology 2002, 20(11):467-472. 10.1016/S0167-7799(02)02053-X
Article
Google Scholar
Friedman N: Inferring cellular networks using probabilistic graphical models. Science 2004, 303(5659):799-805. 10.1126/science.1094068
Article
Google Scholar
Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18(2):261-274. 10.1093/bioinformatics/18.2.261
Article
Google Scholar
Zhou X, Wang X, Dougherty ER: Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design. Signal Processing 2003, 83(4):745-761. 10.1016/S0165-1684(02)00469-3
Article
MATH
Google Scholar
Hartemink AJ, Gifford DK, Jaakkola TS, Young RA: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Proceedings of the 6th Pacific Symposium on Biocomputing (PSB '01), The Big Island of Hawaii, Hawaii, USA, January 2001 422-433.
Google Scholar
Moler EJ, Radisky DC, Mian IS: Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae. Physiol Genomics 2000, 4(2):127-135.
Google Scholar
Segal E: Rich probabilistic models for genomic data, Ph.D. thesis. Stanford University, Stanford, Calif, USA; 2004.
Google Scholar
de Jong H: Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 2002, 9(1):67-103. 10.1089/10665270252833208
Article
Google Scholar
Bar-Joseph Z: Analyzing time series gene expression data. Bioinformatics 2004, 20(16):2493-2503. 10.1093/bioinformatics/bth283
Article
Google Scholar
Simonis N, Wodak SJ, Cohen GN, van Helden J: Combining pattern discovery and discriminant analysis to predict gene co-regulation. Bioinformatics 2004, 20(15):2370-2379. 10.1093/bioinformatics/bth252
Article
Google Scholar
Murphy K, Mian S: Modelling gene expression data using dynamic Bayesian networks. Computer Science Division, University of California, Berkeley, Calif, USA; 1999.
Google Scholar
Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7(3-4):601-620. 10.1089/106652700750050961
Article
Google Scholar
van Berlo RJP, van Someren EP, Reinders MJT: Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks. Simulation 2003, 79(12):689-702.
Google Scholar
Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 2005, 21(3):349-356. 10.1093/bioinformatics/bti014
Article
Google Scholar
Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, d'Alché-Buc F: Gene networks inference using dynamic Bayesian networks. Bioinformatics 2003, 19(2):ii138-ii148. 10.1093/bioinformatics/btg1071
Google Scholar
Kim SY, Imoto S, Miyano S: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 2003, 4(3):228-235. 10.1093/bib/4.3.228
Article
Google Scholar
Ferrazzi F, Amici R, Sebastiani P, Kohane IS, Ramoni MF, Bellazzi R: Can we use linear Gaussian networks to model dynamic interactions among genes? Results from a simulation study. Proceedings of IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '06), College Station, Tex, USA, May 2006 13-14.
Google Scholar
Wang X, Poor HV: Wireless Communication Systems: Advanced Techniques for Signal Reception. Prentice Hall PTR, Englewood Cliffs, NJ, USA; 2004.
Google Scholar
Wang J, Huang Y, Sanchez M, Wang Y, Zhang J: Reverse engineering yeast gene regulatory networks using graphical models. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '06), Toulouse, France, May 2006 2: 1088-1091.
Google Scholar
Husmeier D: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271-2282. 10.1093/bioinformatics/btg313
Article
Google Scholar
Murphy KP: Dynamic Bayesian networks: representation, inference and learning, Ph.D. thesis. University of California, Berkeley, Calif, USA; 2004.
Google Scholar
Kay SM: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, USA; 1997.
Google Scholar
Beal MJ: Variational algorithms for approximate Bayesian inference, Ph.D. thesis. The Gatsby Computational Neuroscience Unit, University College London, London, UK; 2003.
Google Scholar
Brooks SP: Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society: Series D, The Statistician 1998, 47(1):69-100. 10.1111/1467-9884.00117
Google Scholar
Spellman PT, Sherlock G, Zhang MQ, et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998, 9(12):3273-3297.
Article
Google Scholar
Cho RJ, Campbell MJ, Winzeler EA, et al.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 1998, 2(1):65-73. 10.1016/S1097-2765(00)80114-8
Article
Google Scholar
Efron B, Tibshirani R: An Introduction to Bootstrap, Monographs on Statistics and Applied Probability, no. 57. Chapman & Hall, New York, NY, USA; 1993.
Book
Google Scholar
Lahiri SN: Resampling Methods for Dependent Data. Springer, New York, NY, USA; 2003.
Book
MATH
Google Scholar
Kegg: Kyoto encyclopedia of genes and genomes http://www.genome.jp/kegg/