Skip to content


  • Research Article
  • Open Access

Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization

  • Isabel Tienda Luna1Email author,
  • Yufei Huang2,
  • Yufang Yin2,
  • Diego P Ruiz Padillo1 and
  • M Carmen Carrion Perez1
EURASIP Journal on Bioinformatics and Systems Biology20072007:71312

Received: 1 July 2006

Accepted: 11 May 2007

Published: 27 June 2007


We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs) for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP) of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.


Gene Regulatory NetworkExpectation Maximization AlgorithmDynamic Bayesian NetworkYeast Cell CycleBlock Bootstrap


Authors’ Affiliations

Department of Applied Physics, University of Granada, Granada, Spain
Department of Electrical and Computer Engineering, University of Texas at San Antonio (UTSA), San Antonio, USA


  1. Kitano H: Looking beyond that details: a rise in system-oriented approaches in genetics and molecular biology. Current Genetics 2002, 41(1):1-10. 10.1007/s00294-002-0285-zView ArticleMathSciNetGoogle Scholar
  2. D'haeseleer P, Liang S, Somogyi R: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000, 16(8):707-726. 10.1093/bioinformatics/16.8.707View ArticleGoogle Scholar
  3. Brazhnik P, de la Fuente A, Mendes P: Gene networks: how to put the function in genomics. Trends in Biotechnology 2002, 20(11):467-472. 10.1016/S0167-7799(02)02053-XView ArticleGoogle Scholar
  4. Friedman N: Inferring cellular networks using probabilistic graphical models. Science 2004, 303(5659):799-805. 10.1126/science.1094068View ArticleGoogle Scholar
  5. Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18(2):261-274. 10.1093/bioinformatics/18.2.261View ArticleGoogle Scholar
  6. Zhou X, Wang X, Dougherty ER: Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design. Signal Processing 2003, 83(4):745-761. 10.1016/S0165-1684(02)00469-3View ArticleMATHGoogle Scholar
  7. Hartemink AJ, Gifford DK, Jaakkola TS, Young RA: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Proceedings of the 6th Pacific Symposium on Biocomputing (PSB '01), The Big Island of Hawaii, Hawaii, USA, January 2001 422-433.Google Scholar
  8. Moler EJ, Radisky DC, Mian IS: Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae. Physiol Genomics 2000, 4(2):127-135.Google Scholar
  9. Segal E: Rich probabilistic models for genomic data, Ph.D. thesis. Stanford University, Stanford, Calif, USA; 2004.Google Scholar
  10. de Jong H: Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 2002, 9(1):67-103. 10.1089/10665270252833208View ArticleGoogle Scholar
  11. Bar-Joseph Z: Analyzing time series gene expression data. Bioinformatics 2004, 20(16):2493-2503. 10.1093/bioinformatics/bth283View ArticleGoogle Scholar
  12. Simonis N, Wodak SJ, Cohen GN, van Helden J: Combining pattern discovery and discriminant analysis to predict gene co-regulation. Bioinformatics 2004, 20(15):2370-2379. 10.1093/bioinformatics/bth252View ArticleGoogle Scholar
  13. Murphy K, Mian S: Modelling gene expression data using dynamic Bayesian networks. Computer Science Division, University of California, Berkeley, Calif, USA; 1999.Google Scholar
  14. Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7(3-4):601-620. 10.1089/106652700750050961View ArticleGoogle Scholar
  15. van Berlo RJP, van Someren EP, Reinders MJT: Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks. Simulation 2003, 79(12):689-702.Google Scholar
  16. Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 2005, 21(3):349-356. 10.1093/bioinformatics/bti014View ArticleGoogle Scholar
  17. Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, d'Alché-Buc F: Gene networks inference using dynamic Bayesian networks. Bioinformatics 2003, 19(2):ii138-ii148. 10.1093/bioinformatics/btg1071Google Scholar
  18. Kim SY, Imoto S, Miyano S: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 2003, 4(3):228-235. 10.1093/bib/4.3.228View ArticleGoogle Scholar
  19. Ferrazzi F, Amici R, Sebastiani P, Kohane IS, Ramoni MF, Bellazzi R: Can we use linear Gaussian networks to model dynamic interactions among genes? Results from a simulation study. Proceedings of IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS '06), College Station, Tex, USA, May 2006 13-14.Google Scholar
  20. Wang X, Poor HV: Wireless Communication Systems: Advanced Techniques for Signal Reception. Prentice Hall PTR, Englewood Cliffs, NJ, USA; 2004.Google Scholar
  21. Wang J, Huang Y, Sanchez M, Wang Y, Zhang J: Reverse engineering yeast gene regulatory networks using graphical models. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '06), Toulouse, France, May 2006 2: 1088-1091.Google Scholar
  22. Husmeier D: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271-2282. 10.1093/bioinformatics/btg313View ArticleGoogle Scholar
  23. Murphy KP: Dynamic Bayesian networks: representation, inference and learning, Ph.D. thesis. University of California, Berkeley, Calif, USA; 2004.Google Scholar
  24. Kay SM: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Englewood Cliffs, NJ, USA; 1997.Google Scholar
  25. Beal MJ: Variational algorithms for approximate Bayesian inference, Ph.D. thesis. The Gatsby Computational Neuroscience Unit, University College London, London, UK; 2003.Google Scholar
  26. Brooks SP: Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society: Series D, The Statistician 1998, 47(1):69-100. 10.1111/1467-9884.00117Google Scholar
  27. Spellman PT, Sherlock G, Zhang MQ, et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998, 9(12):3273-3297.View ArticleGoogle Scholar
  28. Cho RJ, Campbell MJ, Winzeler EA, et al.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 1998, 2(1):65-73. 10.1016/S1097-2765(00)80114-8View ArticleGoogle Scholar
  29. Efron B, Tibshirani R: An Introduction to Bootstrap, Monographs on Statistics and Applied Probability, no. 57. Chapman & Hall, New York, NY, USA; 1993.View ArticleGoogle Scholar
  30. Lahiri SN: Resampling Methods for Dependent Data. Springer, New York, NY, USA; 2003.View ArticleMATHGoogle Scholar
  31. Kegg: Kyoto encyclopedia of genes and genomes


© Isabel Tienda Luna et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.