Skip to main content
  • Research Article
  • Open access
  • Published:

Computational Methods for Estimation of Cell Cycle Phase Distributions of Yeast Cells

Abstract

Two computational methods for estimating the cell cycle phase distribution of a budding yeast (Saccharomyces cerevisiae) cell population are presented. The first one is a nonparametric method that is based on the analysis of DNA content in the individual cells of the population. The DNA content is measured with a fluorescence-activated cell sorter (FACS). The second method is based on budding index analysis. An automated image analysis method is presented for the task of detecting the cells and buds. The proposed methods can be used to obtain quantitative information on the cell cycle phase distribution of a budding yeast S. cerevisiae population. They therefore provide a solid basis for obtaining the complementary information needed in deconvolution of gene expression data. As a case study, both methods are tested with data that were obtained in a time series experiment with S. cerevisiae. The details of the time series experiment as well as the image and FACS data obtained in the experiment can be found in the online additional material at http://www.cs.tut.fi/sgn/csb/yeastdistrib/.

[1234567891011121314151617]

References

  1. Bornholdt S: Systems biology: less is more in modeling large genetic networks. Science 2005, 310(5747):449-451. 10.1126/science.1119959

    Article  Google Scholar 

  2. Lähdesmäki H, Shmulevich I, Yli-Harja O: On learning gene regulatory networks under the Boolean network model. Machine Learning 2003, 52(1-2):147-167.

    Article  MATH  Google Scholar 

  3. Nachman I, Regev A, Friedman N: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004, 20(1):i248-i256. 10.1093/bioinformatics/bth941

    Article  Google Scholar 

  4. Tegnér J, Yeung MKS, Hasty J, Collins JJ: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(10):5944-5949. 10.1073/pnas.0933416100

    Article  Google Scholar 

  5. Spellman PT, Sherlock G, Zhang MQ, et al.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998, 9(12):3273-3297.

    Article  Google Scholar 

  6. Lähdesmäki H, Huttunen H, Aho T, et al.: Estimation and inversion of the effects of cell population asynchrony in gene expression time-series. Signal Processing 2003, 83(4):835-858. 10.1016/S0165-1684(02)00471-1

    Article  MATH  Google Scholar 

  7. Bar-Joseph Z, Farkash S, Gifford DK, Simon I, Rosenfeld R: Deconvolving cell cycle expression data with complementary information. Bioinformatics 2004, 20(1):i23-i30. 10.1093/bioinformatics/bth915

    Article  Google Scholar 

  8. Whitfield ML, Sherlock G, Saldanha AJ, et al.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell 2002, 13(6):1977-2000. 10.1091/mbc.02-02-0030.

    Article  Google Scholar 

  9. Lengronne A, Pasero P, Bensimon A, Schwob E:Monitoring S phase progression globally and locally using BrdU incorporation in yeast strains. Nucleic Acids Research 2001, 29(7):1433-1442. 10.1093/nar/29.7.1433

    Article  Google Scholar 

  10. Saito TL, Ohtani M, Sawai H, et al.: SCMD: saccharomyces cerevisiae morphological database. Nucleic Acids Research 2004, 32(Database):D319-D322.

    Article  Google Scholar 

  11. Niemistö A, Aho T, Thesleff H, et al.: Estimation of population effects in synchronized budding yeast experiments. Image Processing: Algorithms and Systems II, Proceedings of SPIE, Santa Clara, Calif, USA, January 2003 5014: 448-459.

    Google Scholar 

  12. Niemistö A, Nykter M, Aho T, et al.: Distribution estimation of synchronized budding yeast population. Proceedings of the Winter International Synposium on Information and Communication Technologies (WISICT '04), Cancun, Mexico, January 2004 243-248.

    Google Scholar 

  13. Ohtani M, Saka A, Sano F, Ohya Y, Morishita S: Development of image processing program for yeast cell morphology. Journal of Bioinformatics and Computational Biology 2004, 1(4):695-709. 10.1142/S0219720004000363

    Article  Google Scholar 

  14. Cooper S: Bacterial growth and division. In Encyclopedia of Molecular Cell Biology and Molecular Medicine. Volume 1. 2nd edition. Edited by: Meyers RA. John Wiley & Sons, New York, NY, USA; 2004.

    Google Scholar 

  15. Niemistö A, Nykter M, Aho T, et al.: Computational methods for estimation of cell cycle phase distributions of yeast cells: online supplement. 2007.http://www.cs.tut.fi/sgn/csb/yeastdistrib/

    Google Scholar 

  16. Balthasar D, Erdmann T, Pellenz J, Rehrmann V, Zeppen J, Priese L: Real-time detection of arbitrary objects in alternating industrial environments. Proccedings of the 12th Scandinavian Conference on Image Analysis, Bergen, Norway, June 2001 321-328.

    Google Scholar 

  17. Futcher B: Cell cycle synchronization. Methods in Cell Science 1999, 21(2-3):79-86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Niemistö.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Niemistö, A., Nykter, M., Aho, T. et al. Computational Methods for Estimation of Cell Cycle Phase Distributions of Yeast Cells. J Bioinform Sys Biology 2007, 46150 (2007). https://doi.org/10.1155/2007/46150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/46150

Keywords