Skip to main content

The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data


A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.



  1. 1.

    Kalir S, McClure J, Pabbaraju K, et al.: Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 2001, 292(5524):2080-2083. 10.1126/science.1058758

    Article  Google Scholar 

  2. 2.

    Weeraratna AT: Serial analysis of gene expression (SAGE): advances, analysis and applications to pigment cell research. Pigment Cell Research 2003, 16(3):183-189. 10.1034/j.1600-0749.2003.00042.x

    Article  Google Scholar 

  3. 3.

    Schulze A, Downward J: Navigating gene expression using microarrays—a technology review. Nature Cell Biology 2001, 3(8):E190-E195. 10.1038/35087138

    Article  Google Scholar 

  4. 4.

    Heller MJ: DNA microarray technology: devices, systems, and applications. Annual Review of Biomedical Engineering 2002, 4: 129-153. 10.1146/annurev.bioeng.4.020702.153438

    Article  Google Scholar 

  5. 5.

    Southern EM: DNA microarrays: history and overview. Methods in Molecular Biology 2001, 170: 1-15.

    Google Scholar 

  6. 6.

    Tong AHY, Lesage G, Bader GD, et al.: Global mapping of the yeast genetic interaction network. Science 2004, 303(5659):808-813. 10.1126/science.1091317

    Article  Google Scholar 

  7. 7.

    Fedoroff N, Fontana W: Genetic networks: small numbers of big molecules. Science 2002, 297(5584):1129-1131. 10.1126/science.1075988

    Article  Google Scholar 

  8. 8.

    Bundschuh R, Hayot F, Jayaprakash C: Fluctuations and slow variables in genetic networks. Biophysical Journal 2003, 84(3):1606-1615. 10.1016/S0006-3495(03)74970-4

    Article  Google Scholar 

  9. 9.

    Spellman PT, Sherlock G, Zhang MQ, et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998, 9(12):3273-3297.

    Article  Google Scholar 

  10. 10.

    DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278(5338):680-686. 10.1126/science.278.5338.680

    Article  Google Scholar 

  11. 11.

    Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(25):14863-14868. 10.1073/pnas.95.25.14863

    Article  Google Scholar 

  12. 12.

    Banerjee N, Zhang MQ: Functional genomics as applied to mapping transcription regulatory networks. Current Opinion in Microbiology 2002, 5(3):313-317. 10.1016/S1369-5274(02)00322-3

    Article  Google Scholar 

  13. 13.

    Törönen P, Kolehmainen M, Wong G, Castrén E: Analysis of gene expression data using self-organizing maps. FEBS Letters 1999, 451(2):142-146. 10.1016/S0014-5793(99)00524-4

    Article  Google Scholar 

  14. 14.

    Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7(3-4):601-620. 10.1089/106652700750050961

    Article  Google Scholar 

  15. 15.

    Aach J, Church GM: Aligning gene expression time series with time warping algorithms. Bioinformatics 2001, 17(6):495-508. 10.1093/bioinformatics/17.6.495

    Article  Google Scholar 

  16. 16.

    Schliep A, Schönhuth A, Steinhoff C: Using hidden Markov models to analyze gene expression time course data. Bioinformatics 2003, 19(1):i255-i263. 10.1093/bioinformatics/btg1036

    Article  Google Scholar 

  17. 17.

    Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M: Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. Journal of Molecular Biology 2001, 314(5):1053-1066. 10.1006/jmbi.2000.5219

    Article  Google Scholar 

  18. 18.

    Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS: Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(18):10146-10151. 10.1073/pnas.1732547100

    Article  MathSciNet  MATH  Google Scholar 

  19. 19.

    Bar-Joseph Z: Analyzing time series gene expression data. Bioinformatics 2004, 20(16):2493-2503. 10.1093/bioinformatics/bth283

    Article  Google Scholar 

  20. 20.

    Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I: Continuous representations of time-series gene expression data. Journal of Computational Biology 2003, 10(3-4):341-356. 10.1089/10665270360688057

    Article  Google Scholar 

  21. 21.

    Hampson S, Kibler D, Baldi P:Distribution patterns of over-represented -mers in non-coding yeast DNA. Bioinformatics 2002, 18(4):513-528. 10.1093/bioinformatics/18.4.513

    Article  Google Scholar 

  22. 22.

    Futcher B: Transcriptional regulatory networks and the yeast cell cycle. Current Opinion in Cell Biology 2002, 14(6):676-683. 10.1016/S0955-0674(02)00391-5

    Article  Google Scholar 

  23. 23.

    Cho RJ, Campbell MJ, Winzeler EA, et al.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 1998, 2(1):65-73. 10.1016/S1097-2765(00)80114-8

    Article  Google Scholar 

  24. 24.

    Liò P: Wavelets in bioinformatics and computational biology: state of art and perspectives. Bioinformatics 2003, 19(1):2-9. 10.1093/bioinformatics/19.1.2

    Article  Google Scholar 

  25. 25.

    Song JZ, Ware T, Liu S-L, Surette M: Comparative genomics via wavelet analysis for closely related bacteria. EURASIP Journal on Applied Signal Processing 2004, 2004(1):5-12. 10.1155/S1110865704309170

    Article  MATH  Google Scholar 

  26. 26.

    Song JZ, Ware A, Liu S-L: Wavelet to predict bacterial ori and ter : a tendency towards a physical balance. BMC Genomics 2003, 4(1):17. 10.1186/1471-2164-4-17

    Article  Google Scholar 

  27. 27.

    Liò P, Vannucci M: Finding pathogenicity islands and gene transfer events in genome data. Bioinformatics 2000, 16(10):932-940. 10.1093/bioinformatics/16.10.932

    Article  Google Scholar 

  28. 28.

    Duan KM, Dammel C, Stein J, Rabin H, Surette M: Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular Microbiology 2003, 50(5):1477-1491. 10.1046/j.1365-2958.2003.03803.x

    Article  Google Scholar 

  29. 29.

    Sokal RR, Michener CD: A statistical method for evaluating systematic relationships. University of Kansaa Science Bulletin 1958, 38: 1409-1438.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to JZ Song.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Song, J., Duan, K., Ware, T. et al. The Wavelet-Based Cluster Analysis for Temporal Gene Expression Data. J Bioinform Sys Biology 2007, 39382 (2007).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Gene Expression
  • Cluster Analysis
  • Growth Condition
  • Expression Data
  • Single Gene