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Abstract

Stochastic hybrid systems (SHS) have attracted a lot of research interests in recent years. In this paper, we review
some of the recent applications of SHS to biological systems modeling and analysis. Due to the nature of molecular
interactions, many biological processes can be conveniently described as a mixture of continuous and discrete
phenomena employing SHS models. With the advancement of SHS theory, it is expected that insights can be
obtained about biological processes such as drug effects on gene regulation. Furthermore, combining with advanced
experimental methods, in silico simulations using SHS modeling techniques can be carried out for massive and rapid
verification or falsification of biological hypotheses. The hope is to substitute costly and time-consuming in vitro or in
vivo experiments or provide guidance for those experiments and generate better hypotheses.
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1 Introduction
In the last decade, one major transformation in molecular
biology has been the massive scaling up of its experimen-
tal methods. Huge amounts of data on different aspects
of the development and functioning of cells are generated
from sequencing of the entire genome of organisms, the
determination of the expression level of genes in a cell by
means of DNAmicro-arrays, and the identification of pro-
teins and their interactions by high-throughput proteomic
methods [1, 2].
Tomake good use of these data to its full potential, there

is need for enhancement of experimental results with for-
mal models of biochemical networks. An accurate and
clear mathematical model that describe gene and protein
interactions is essential in advancing the understanding
in biology. With mathematical models, computer-based
or in silico simulation and analysis of biochemical net-
works is possible. These in silico experiments can be used
for massive and rapid verification or falsification of bio-
logical hypotheses, which can substitute in certain cases,
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costly and time-consuming in vitro or in vivo experiments.
In addition, in silico experiments can provide guidance
and predictions for in vitro and in vivo experiments, and
together they can be used in a feedback arrangement
[2, 3].
The possibility of combining new experimental meth-

ods, sophisticated mathematical techniques, and increas-
ingly powerful computers has given a new lease of life to
an idea as appealing as it is difficult to realize: understand-
ing how the global behavior of an organism emerges from
the interactions between components at the molecular
level.
Many approaches have been proposed for modeling

molecular interaction networks. One way to group the
models available in the literature [4] is based on the
classification of (1) continuous dynamics, for example,
models that describe the evolution of concentrations of
proteins, mRNAs, etc., in terms of ordinary or partial dif-
ferential equations; (2) discrete dynamics, such as graph
models of the interdependencies in a regulatory network,
Boolean networks and their extensions, Bayesian net-
works, or Markov chain models. Experimental evidence
suggest that neither of these classes alone is adequate
for developing realistic models of molecular interaction
networks [5]. Other approaches such as the interval
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model [6] that describing complexity and uncertainty
would not be able to address hybrid discrete-continuous
dynamics.
Timescale hierarchies cause biological processes to be

more conveniently described as a mixture of continu-
ous and discrete phenomena. For instance, continuous
changes in chemical concentrations or the environment
of a cell often trigger discrete transitions (such as the
onset of mitosis or cell differentiation) that in turn influ-
ence the concentration dynamics [7]. At the level of
molecular interactions, the co-occurrence of discrete and
continuous dynamics is exemplified by the switch-like
activation or inhibition of gene expression by regulatory
proteins [8].
Hybrid discrete-continuous dynamics can play an

important role in biochemical systems, realization of this
fact has led to investigation on how methods devel-
oped for hybrid systems in other areas (such as air traf-
fic management and communication networks) can be
extended to biological systems [9–13]. It is fair to say
that the realization of the potential of hybrid systems
theory in the context of biochemical system modeling is
still under investigation. In addition, the observation that
many biological processes involve considerable levels of
uncertainty has been gaining momentum [14, 15]. For
instance, experimental observations suggest that stochas-
tic uncertainty may play an important role in enhancing
the robustness of biochemical processes [16] or may be
behind the variability observed in the behavior of cer-
tain organisms [17, 18]. Stochasticity is even observed in
fundamental processes such as the DNA replication itself
[19, 20]. This has led researchers to attempt the devel-
opment of stochastic hybrid systems (SHS) models for
certain biochemical processes that aim to couple the
advantages of stochastic analysis with the generality of
hybrid systems.
In this review, some of the recent applications of

SHS to biological and chemical systems modeling and
analysis are covered. With the advancement of SHS
theory, it is expected that insights can be obtained
about biological processes such as drug effects on
gene regulation. Furthermore, combining with advanced
experimental methods, in silico simulations using SHS
modeling techniques can be carried out for mas-
sive and rapid verification or falsification of biologi-
cal hypotheses. The hope is to substitute costly and
time-consuming in vitro or in vivo experiments or pro-
vide guidance for those experiments and generate better
hypotheses.
The rest of the paper is organized as follows: In

Section 2, background and basics of Stochastic Hybrid
Systems (SHS) are provided. Section 3 presented the
review on SHS applications to biological systems.
Section 4 gives the concluding remarks.

2 Brief overview of stochastic hybrid system
theory

In this section, we briefly cover the basics of stochastic
hybrid system theory.Many previous works on hybrid sys-
tems have focused on deterministic models. In practice, it
is often desirable to introduce some levels of uncertainty
in the models, this has led to the introduction of what are
known as non-deterministic models in discrete event and
hybrid systems.

2.1 Hybrid systems
Hybrid systems are dynamical systems that involve the
interaction of different types of dynamics. Hybrid dynam-
ics arise out of the interaction of continuous state dynam-
ics and discrete state dynamics [21, 22]. A state variable
is called discrete if it takes on a finite (or countable)
number of values and continuous if it takes values in
Euclidean space R

n for some n ≥ 1. By their nature,
discrete states can change value only through a discrete
“jump,” while continuous states can change values either
through a jump or by flowing in continuous time accord-
ing to a differential equation. Hybrid systems involve
both these types of dynamics: discrete jumps and con-
tinuous flows [23–25]. The contribution to hybrid system
mainly comes from the computer science community
and the systems and control community, each coming
with their own approaches. The computer science com-
munity looks at a hybrid system primarily as a discrete
(computer) program interacting with an analog environ-
ment. Different reasons motivated the study of hybrid
system from the systems and control community; these
include hierarchical systems with a discrete decision layer
and a continuous implementation layer, switching con-
trol schemes and relay control, nonlinear control systems,
and discrete event systems [23, 24]. As an example, hybrid
automaton model could provide a framework and termi-
nology to discuss a range of typical features of hybrid
systems [26, 27]:

Definition 1 A hybrid automaton H is a collection H =
(Q,X, Init, f , I,E,G,R) where

• Q is a set of discrete variables and Q is countable;
• X is the continuous variables;
• Init ⊆ Q × X is a set of initial states;
• f : Q × X → TX is a vector field;
• Inv : Q → P((X)2X assigns to each q ∈ Q an

invariant set;
• E ⊂ Q × Q is a collection of discrete transitions;
• G : E → P((X) assigns to each e = (q, q′

) ∈ E a
guard; and

• R : E × X → P((X) assigns to each e = (q, q′
) ∈ E

and x ∈ X a reset relation.
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Interested readers of hybrid systems should refer to
[23–25] and proceedings of Hybrid Systems: Computation
and Control (HSCC).

2.2 Hybrid systems with randomness
The need for finer probabilistic analysis of uncertain sys-
tems has led to the study of an even wider class of hybrid
systems that allow things such as random failures causing
unexpected transitions from one discrete state to another,
or random task execution times which affect how long the
system spends in different modes [28]. For example, the
events in a hybrid system may be controllable (e.g., decid-
ing to switch gears when driving a car) or uncontrollable
(e.g., some equipment failure). Uncontrollable events may
occur at random points in time, in which case the hybrid
system becomes stochastic. Randomness may also enter
the picture through noise in one or more time-driven
components of the system, in which case we must resort
to stochastic differential equations [29]. In this case, if a
mode switch is the result of a continuous variable reach-
ing a certain level (e.g., a tank containing fluid whose
level exceeds a specific value), then the random fashion in
which this variable evolves in time affects the associated
switching event.
Randomness is inherent in biochemical and biomedi-

cal systems [30, 31]. There is evidence in stochasticity or
noisy process found in gene expression, introduced either
through biochemical processes such as transcription and
translation or fluctuations in the amounts or states of
other cellular components. This stochasticity in transcrip-
tional regulation is due partly to the randomwaiting times
among synthesis and degradation reactions involving a
finite collection of transcripts and random transitions
among the discrete operator states controlling the rate of
transcription [32].
The great interest of the research community in

Stochastic Hybrid Systems (SHS) has produced a number
of different types of stochastic hybrid models. The main
difference between these classes of stochastic hybridmod-
els lies in the way the stochasticity enters the process [33].
Some models allow diffusions to model continuous evolu-
tion [28, 34], while others do not [35, 36]. Similarly, some
models force transitions to take place from certain states
[28], others only allow transitions to take place at ran-
dom times (e.g. using a generalized Poisson process) [34],
while others allow both [36]. Examples of several types of
stochastic hybrid processes are given below.

2.2.1 Piecewise deterministic Markov process
PiecewiseDeterministicMarkov Processes (PDMP) [36, 37]
is a stochastic hybrid model with deterministic continu-
ous dynamics in each mode, while randomness appears
only in the discrete transitions. Let Q be a countable set
of discrete states, and let d : Q → N and X : Q → R

d(.)

be two maps assigning to each discrete state i ∈ Q a sub-
set of Rd(i). We call the setD = ⋃

i∈Q{i} ×X(i) the hybrid
state space of the PDMP and α = (i, x) ∈ D the hybrid
state. The boundary of the hybrid state space is define as
∂D = ⋃

i∈Q{i} × ∂X(i). A vector field f on the hybrid
state space D is a function f : D → R

d(.) assigning to
each hybrid state α = (i, x) a direction f (α) ∈ R

d(i). The
flow of f is a function � : D × R → D with �(α, t) =[

�(α, t)Q
�(α, t)X

, where �(α, t) ∈ Q and �(α, t) ∈ X(i), such

that for α = (i, x), �(α, 0) = α and for all t ∈ R,
�Q(α, t) = i and d

dt�(α, t) = f�(α, t)). Let � = {α ∈
D | ∃(α′, t) ∈ D × R

+,α = �(α′, t}; D∗ = D ∪ �. Define
B(D∞) = σ(

⋃
i∈Q{i} × B(X(i))) where D∞ = Q × R

∞.
The space (D∞,B(D∞)) is a Borel Space and B(D∞) is a
sub-σ -algebra of its Borel σ -algebra.

Definition 2 A Piecewise Deterministic Markov Process
(PDMP) is a collection H = ((Q, d,X), f , Init, λ,R) where

• Q is a countable set of discrete variables;
• d : Q → N is a map giving the dimensions of the

continuous state spaces;
• X : Q → R

d(.) maps each i ∈ Q into a subset X(i) of
R
d(i) ;

• f : D → R
d(.) is a vector field;

• Init : B(D∞) →[ 0, 1] is an initial probability
measure on (D∞,B(D∞)), with Init(Dc) = 0;

• λ : D∗ → R
+ is a transition rate function;

• R : B(D∞) × D∗ → [0,1] is atransition measure, with
R(Dc, .) = 0.

PDMP is a non-diffusion stochastic model that finds
application in optimization problems arising in resource
allocation, queueing systems etc. and biochemical
processes [37].

2.2.2 Switching diffusion process
Switching diffusion process (SDP) [34, 38] is a stochastic
hybrid model with both continuous and discrete states.

Definition 3 A switching diffusion process (SDP) is a
collection H = (Q, d,X, f , Init, σ , λij) where

• Q = {1, 2, ...,N} is a finite set of discrete variables,
N ∈ N;

• X = R
n is the continuous state space;

• f : Q × X → R
n is a vector field;

• Init : B(Q × X) →[0, 1] is an initial probability
measure on (Q × X,B(Q × X));

• σ : Q × X → R
n×n is a state dependent real valued

matrix;
• λij : X → R, i, j ∈ Q are a set of x-dependent

transition rates, with (.) ≥ 0 if i �= j and
∑

i∈Q λij(x)
= 0 for all i ∈ Q, x ∈ X.
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SDP has the ability to depict random environments
via the switching process. The continuous state evolves
according to a stochastic differential equation (SDE),
while the discrete state is a controlled Markov chain. The
dynamics of the SDE and the transition matrix of the
Markov chain depend on the hybrid state. The continuous
hybrid state evolves without jumps [33].

2.2.3 Stochastic hybrid system
Stochastic hybrid systems (SHS), involve a hybrid state
space, with both continuous and discrete states.

Definition 4 A stochastic hybrid system (SHS) is a col-
lection H = (Q,X,Dom, f , g, Init,G,R) where

• Q is a countable set of discrete variables;
• X = R

n is the continuous state space;
• Dom : Q → 2X assigns to each i ∈ Q an open subset

of X;
• f , g : Q × X → R

n are a vector field;
• Init : B(Q × X) →[0, 1] is an initial probability

measure on (Q × X,B(Q × X)) concentrated on⋃
i{i} × Dom(i;

• G : Q × Q → 2X assigns to each (i, j) ∈ Q × Q a
guard G(i, j) ⊂ X such that

– For each (i, j ∈ Q × Q, G(i, j) is a measurable
subset of ∂Dom(i) (possibly empty);

– For each i ∈ Q, the family {G(i, j)|j ∈ Q} is a
disjoint partition of ∂Dom(i);

• K : Q × Q × X → P assigns to each (i, j) ∈ Q × Q
and x ∈ G(i, j) a reset probability kernel on X
concentrated on Dom(j).

The continuous state obeys an SDE that depends on the
hybrid state. Transitions occur when the continuous state
hits the boundary of the state space. Whenever a tran-
sition occurs, the hybrid state is reset instantly to a new
value. The value of the discrete state after the transition
is determined deterministically by the hybrid state before
the transition. The new value of the continuous state, on
the other hand, is governed by a probability law which
depends on the last hybrid state [28, 33].

3 SHS applications to biological systems
In this section, sample works that employed SHS in the
modeling of biological and chemical systems are reviewed.
We categorized them according to their respective appli-
cations. A summary is given in Table 1.

3.1 Gene regulatory networks modeling and control
Gene regulatory network is a collection of genes that reg-
ulate the transcriptional activity of each other through
their expressed proteins. The expressions of genes are

intrinsically non-deterministic. One of the main reasons
is the random fluctuations (noise) in the concentrations
of protein species in the cell population [39]. The stochas-
ticity in gene expressions may result from the small copy
number of interacting molecular species (e.g. regulatory
proteins and genes) in the relatively large cell volume
[40, 41], since in a chemical system with extremely low
concentrations of reacting species, a reaction occurs in a
short time interval and is best viewed as a probabilistic
event [42].
There are numerous models proposed for gene regu-

latory networks, such as those discussed in [4, 43, 44].
However, hybrid systems modeling of gene regulatory
networks is still under investigation with just a few pre-
liminary work [45–47, 53–59]
Hybrid Systems model has been applied to model inter-

actions betweenGRNandperiodic drug inputs [45–47, 53].
Liu et al. [47] used a nonlinear hybrid automaton to
model the population dynamics of heterogenous prostate
cancer cells in response to androgen suppression. The
model takes into account two distinct subpopulations of
prostate cancer cells: hormone sensitive cells (HSCs) and
castration resistant cells (CRCs), as well as the serum
androgen concentration respectively. The model has two
modes: on-treatment mode and off-treatment mode. In
the off-treatment mode, the androgen concentration is
maintained at the normal level by homeostasis. In the on-
treatment mode, the androgen is cleared at a specified
rate.
Xiangfang et al. [53] proposed a model that combines

cell population and genetic regulation within a single cell
by using stochastic hybrid systems model that combining
cell population and genetic regulation within a single cell
by using SHS. They studied the response of a population
of cancer cells to various drugs that targeting the prolifera-
tion and survival pathways. Their model captures both the
dynamics of the cell population and the dynamics of gene
regulations within each individual cell. The SHS theory
was used to link the cell proliferation at the cell population
level to the drug effect on the proliferation pathway at the
molecular level.
A SHS approach to analyze the dynamics of the spa

genes in the subtilin production was proposed by Hu
et al. [54]. Subtilin is an antibiotic produced by Bacillus
subtilis as a regulating measure to changes in the envi-
ronment, this ensure the cell benefit optimally from the
available resources. The interactions between the pop-
ulation growth model and single-cell model of subtilin
production is highlighted in Fig. 1. D represent the size
of B. subtilis population, and X the total amount of nutri-
ent available in the environment. The spa genes com-
prises of SpaR, SpaK, SpaS, SpaBTC, and SpaIFEG. The
biosynthesis of subtilin is regulated by a positive feed-
back mechanism in which extracellular subtilin activates
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Table 1 Stochastic hybrid systems applications to biological systems

Application area Papers Modeling mechanism Main goal

Gene regulation [53] Ordinary Differential Equation and Markov Chain con-
trolled switching

Response of a population of cancer
cells to various drugs

[54] Ordinary Differential Equation and Markov Chain con-
trolled switching

Subtilin Production modeling in
Bacillus subtilis

[55–57] Ordinary Differential Equation and Markov Chain con-
trolled switching

Parameter Identification

[58] Ordinary Differential Equation and Markov Chain Lactose Regulation System of
Escherichia Coli modeling

[59] Ordinary Differential Equation and Probabilistic Tran-
sitions

Estimation of low order statistics

DNA replication [60] Ordinary Differential Equation, Guarded Transition
and Probabilistic Firing Time

Simulation of full genome DNA
replication

[61] Ordinary Differential Equation, Guarded Transition
and Probabilistic Firing Time

Verification of SHS

Sugar cataract development
[62, 63] Stochastic Differential Equation, Guarded and Proba-

bilistic Transitions
Performance of simulation
techniques

[64] Stochastic Differential Equation, Guarded and Proba-
bilistic Transitions

Probabilistic verification for
reachability analysis

Biodiesel production system [65] Stochastic Differential Equation and Guarded Transi-
tion

Probabilistic verification for
reachability analysis

Glycolysis [66] Stochastic Differential Equation, Guarded and Proba-
bilistic Transitions

Reachability analysis of a SHSmodel

Population biology [67] Ordinary Differential Equation and Markov Processes Moment Closure Techniques
Comparison

Others [68–77] misc misc

the two components regulatory system SpaR and SpaK
that binds to a DNA motif promoting the expression of
genes for subtilin biosynthesis (spaS and spaBTC) and
immunity (spaIFEG). SpaR and SpaK react to form the
complex SpaRK that was use in the modeling of subtilin
production. SpaRK expression is controlled by a switch S1
with two states 1 (on) and 0 (off ), corresponding to the
cases where SigH is bound and unbound to the promoter
region of the gene spaRK, respectively. The composition

of SigH is turned on whenever the nutrient concentra-
tion X falls below a certain threshold. The switch S1 is
modeled as evolving randomly at constant time interval
� > 0 according to a Markov chain with a probability
transition matrix dependent on the concentration level of
SigH. Switch S2 with two states 1 (on) and 0 (off ), corre-
sponding to the cases where activated SpaR is bound and
unbound to the promoter region of the gene spaS, respec-
tively. Moreover, S2 switches randomly at constant time

Fig. 1 Subtilin production model
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interval � > 0 according to a Markov chain with a prob-
ability transition matrix dependent on SpaRK. Each of B.
subtilis cells was modeled as stochastic hybrid system. Its
discrete state is (S1, S2) ∈ {0, 1} × {0, 1}, where (S1, S2) =
(0, 1) corresponds to the case when the switch S1 is off and
the switch S2 is on, etc. So there are four possible discrete
states in total. Its continuous state is ([SigH], [SpaRK],
[SpaS]) ∈ R

3. The discrete state changes mode randomly
every � > 0 time according to a Markov chain with prob-
ability transitionmatrix and depends on the values of SigH
and SpaRK at the moment of transition.
The authors in [55–57] carried out subsequent works

on methods for the parameter identification of the SHS
model of subtilin production by B. subtilis discussed
above. The authors decoupled the parameter identifica-
tion problem into two sub-problems, namely the estima-
tion of the genetic network regulating subtilin production
from gene expression data and the estimation of popu-
lation dynamics based on nutrient and population level
data, treating the switchingmechanism as aMarkov chain.
The algorithm and methodologies they proposed effi-
ciently identified the various parameters of interest based
on both experimental data and simulation data.
The lactose regulation system of Escherichia Coli mod-

eling using SHS and its finite state abstraction was pre-
sented by Julius et al. [58]; this is summarized in the
block diagram shown in Fig. 2. The mRNA (M) tran-
scribed from the lactose operon is translated into three
different gene products, among them permease (P) and
β-galactosidase (B). Permease facilitates the influx of
inducer thio-methyl galactosidase TMG (T) an external
lactose from the exterior and also an opposing process,
equilibrating the concentration of lactose inside the cell
with the external lactose. The intrinsic noise generated
by low copy numbers of molecules made SHS a suitable
model for the lactose operon. The model is based on the
idea that the mRNA (M) and the β-galactosidase (B), the
two species with the lowest steady-state concentrations,

were discretized and expressed as molecule counts that
evolve following some Poisson processes. The other
substances, internal TMG (T) and permease (P), are
expressed as chemical concentrations that evolve follow-
ing deterministic ODE. A finite state abstraction of the
stochastic model was constructed in the form of a two-
state continuous-time Markov chain, to allow for fast
computation. The states of the Markov chain correspond
to the low and high stable equilibria of the systems. The
rates of switching between the two states are given as a
function of the external TMG concentration (T).
Singh et al. [59] used moment closure techniques to

estimate these low-order statistical moments and quan-
tify stochastic fluctuations in different gene regulatory
networks. They demonstrate that the more sophisticated
form of negative feedback (using multimerization) result-
ing from a protein inhibiting its own transcription is more
effective in suppressing noise. In addition, a two-gene cas-
cade activation network in which the protein expressed
by one gene activates another gene to express a second
protein was considered. Analysis shows that the stochas-
tic fluctuations in the population of the activated protein
increases with the degree of multimerization in the acti-
vating protein.

3.2 DNA replication
DNA replication is the process of producing duplicates of
cells’ genetic information [48]. Onemajor characteristic of
eukaryotic DNA replication is its higher degree of uncer-
tainty; hundreds to thousands of potential origins exist
along the genome that fire with varying efficiencies and at
different times during S-phase [49–51]
Lygeros et al. [60] developed a stochastic hybrid model

that reproduces DNA replication throughout a complete
genome. The need for new analytical tools to capture
spatial and temporal patterns of DNA replication genome-
wide becomes essential due to the large number of
potential origins, coupled with system uncertainty. The

Fig. 2 Block diagram summarizing lactose regulation system of Escherichia Coli and its finite-state abstraction
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various modes of DNA replication are captured by this
model.
The discrete dynamics modeled the instantaneous

changes in the state of the origin, i, this is captured by a
variable, Si, that takes one of six values,

Si ∈ {PreR,RB,RR, LR,PostR,PassR}
The origins start at the pre-replicative state (PreR) and

end either in the passively replicated (PassR) or the post-
replicating (PostR) states. The remaining states discrim-
inate origins from which active forks emanate on both
directions (RB), only to the left (LR) or only to the right
(RR). Transitions between states are governed by “guards”
(G), the guards are logical statements involving the vari-
ables of the model.

GPreR→PassR = [XLN(i) + RLN(i) ≥ Xi]
∨ [XRN(i) − RRN(i) ≤ Xi]

GRB→RR = [XLN(i) + RLN(i) ≥ Xi − Li]
GPreR→RB = [t ≥ Ti]
GRB→LR = [XRN(i) − LRN(i) ≤ Xi + Ri]
GRR→PostR = GRB→LR

GLR→PostR = GRB→RR

When origin i fires, it gives rise to two replication forks
moving away from the origin to the left and to the right.
We denote by Li and Ri the number of bases that these
forks have replicated respectively. RLN(i) and LRN(i) denote
the progress of the right and left replication forks of these
neighboring origins. LN(i) and RN(i) represent origin to
the left and to the right that are actively replicating at the
instant under study. Xi, XLN(i), and XRN(i) represents the
position reached by any of the origins.

LN(i) = max{j < i|Sj /∈ {PreR,PostR,PassR}}
RN(i) = max{j > i|Sj /∈ {PreR,PostR,PassR}}

The continuous dynamics of the model capture evolu-
tions that are slow compared to the discrete transitions,
the only such evolution in the model is the movement
of the replication forks represented by two differential
equations for each active origin.

dRi(t)
dt

=
{
v(Xi + Ri(t)) if Si(t) ∈ {RB,RR}
0 otherwise

dLi(t)
dt

=
{
v(Xi + Li(t)) if Si(t) ∈ {RB, LR}
0 otherwise

The forks move (i.e., Li and Ri increase) at a velocity v(x)
which depends on the position, x, of the genome currently
being replicated by the fork.
The initiation events are characterized by uncertainty in

time and space. Origin firing is characterized by a degree

of uncertainty in both the location and time of firing of
different origins, captured by the stochastic dynamics of
the model. The firing time Ti of origin is governed by an
exponential distribution.
The authors in [61] carried out subsequent works on

method for themodeling and verification of SHS using the
Hybrid Input Output Automaton (HIOA), a mathematical
framework proposed for modeling and analysis of hybrid
systems. A HIOA is an automaton that evolves discretely
(transitions) and continuously (trajectories) and commu-
nicates discretely (actions) and continuously (shared vari-
ables) with its environment, e.g., other automata. This
external behavior of HIOA can be used to decompose
hybrid systems description and analysis, facilitating the
description of complex hybrid systems. The authors built
on earlier work in [60] where a model to capture the
mechanics of the DNA replication process was developed
in the stochastic hybrid systems framework. They provide
theoretical support for these results by verifying that the
proposed model using HIOA captures the mechanisms
of DNA replication process by induction proofs. They
showed how the SHS can be modeled using HIOA and the
following being the required data for the model: (1) the
length of the genome, (2) the positions of the putative ori-
gins of replication along the genome, (3) the firing times,
and (4) the fork velocity.

3.3 Other biochemical systems modeling and control
Riley et al. [62, 63] used SHS to model the biochemical
process of sugar cataract development (SCD). Chemi-
cal reactions are inherently probabilistic because of the
unpredictability of molecular motion; SHS is an ideal
modeling tool that captures the complex dynamics of
biochemical reactions. Discrete stochastic models effi-
ciently capture the slow reactions which occur when
reaction rates and concentrations are small enough. They
become inefficient when there are large concentrations of
molecules and/or fast reaction rates. Continuous stochas-
tic models are ideal for modeling large concentrations
of molecules and/or fast reaction rates. The continuous
state x(t) evolves according to the stochastic differential
equation (SDE),

dx = b(q, x)dt + σ(q, x)dw.

The discrete transition occurs either because the con-
tinuous state x(t) experiences a guarded transition or
probabilistic transition. A guarded transition fires the
instant when the guard becomes true. The firing of a
probabilistic rate transition is governed by an exponential
distribution characterized by the state-dependent transi-
tion rate λ(q, x) which is assumed to be a bounded and
measurable function that is integrable for every sample
path. Sugar cataract attracts water to the lens of an eye
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when excess of sorbitol is present, distorting light pass-
ing through the lens. Accumulation of sorbitol is affected
by several factors including the amount of the enzyme
sorbitol dehydrogenase (SDH). There are eight chemi-
cal species involved in the reaction involving sorbitol
and SDH: NADH(x1), E − NADH(x2), NAD+(x3), E −
NAD+(x4), SDH(x5), Fructose(x6), Sorbitol(x7), and the
inactive form of SDH(Z). The rate of change of the con-
centrations of each chemical species are modeled using
the SDE. Three SHS models of the biochemical process
of sugar cataract development (SCD) was described. The
first model describes the biochemical process of SCD.
The second medicated model assumes that the effect of
the drug on the system is instantaneous. The final model
is designed to incorporate probabilistic delay to model
absorption and metabolization. The authors showed that
the probabilistically delayed medication is an ideal model
for the SCD because the effect of the drug will not be
immediate because of variable drug metabolism rates.
Subsequent work in [64] focused on a probabilistic

verification method for computing the probability of
sugar cataract formation for different chemical concen-
trations. The verification problem is the probability that
the system execution from an arbitrary (safe) initial state
will exit the safe set indicating the beginning stages
of sugar cataract development. The verification method
employs dynamic programming based on a discretization
of the state space and therefore suffers from the curse of
dimensionality.
In [65], a biodiesel production systemmodeled as a SHS

was described and the probabilistic verification method
for its reachability analysis was presented. The concen-
tration of each of the six chemical species making up
the biodiesel was modeled as a continuous variable, each
of the six reactions were modeled using the SDE. The
addition of more heat to the system will increase the reac-
tion rates, the warmer the reacting chemicals can be, the
faster biodiesel will be produced. However, the energy
required to heat the system is a major cost of producing
biodiesel, so it is important to know if a heating control
system will produce biodiesel successfully under realis-
tic conditions. The change in heating is modeled using
two discrete states, which are the heating and cooling
states. Between transitions, the continuous state evolves
according to the corresponding SDE where the solution is
understood using the Itô stochastic integral. The goal of
the authors was to determine the probability that the reac-
tion will fully complete with a small excess of methanol,
and to determine this, they define the set of reachable
states as the set of all concentrations that satisfy required
temperature for the biodiesel production. Since the sys-
tem must not run out of its reactants before it runs out
of methanol, the authors also define the unsafe states.
The problem is to determine what is the probability that

the SHS will enter the reachable set without entering the
unsafe set.
The authors in [66] presented a multilevel splitting

(MLS) variance reduction method for SHS. This method
improves the accuracy and efficiency of Monte Carlo
methods for rare events. Probabilistic analysis techniques
such as Monte Carlo methods are very useful in deter-
mining reachability or safety probabilities for systems with
inherent uncertainty such as SHS models. This approach
was applied to reachability analysis of a SHS model of gly-
colysis system, a biochemical energy conversion process
found in virtually every living cell. The safety probability
of the system was examined, based on the defined unsafe
condition for the system when the glucose drops below a
certain level.
Hespanha and Singh [68, 69] presented a procedure for

constructing approximate stochastic models for chemical
reactions. For the number of molecules of the different
species involved, one is often interested in only the first-
and second-order moments, therefore, much effort can be
saved by applying approximate methods to produce these
low-order moments, without actually having to solve for
the probability density function. A continuous state of
a polynomial stochastic hybrid system (pSHS) was used
to represent the population of various species involved
in a chemical reaction. Polynomial stochastic hybrid sys-
tems (pSHSs) arise when the continuous vector fields in
the stochastic differential equation (SDE), the reset maps,
and the transition intensities are all polynomial functions
of the continuous state. It was shown that for pSHSs,
the dynamics of the statistical moments of its continu-
ous states evolves according to infinite-dimensional lin-
ear ordinary differential equations (ODEs), which can be
approximated by finite-dimensional nonlinear ODEs with
arbitrary precision. Since the infinite-dimensional linear
ODEs that describe the moment dynamics for pSHSs are
still not easy to solve analytically, the finite-dimensional
ODE’s provide time evolution of lower order moments
for populations of species involved in a chemical reac-
tion. Apart from providing fast simulation times and lesser
computation burden compared to Monte Carlo simula-
tions, these approximate models also open the doors to
other types of analysis tools, for example, sensitivity anal-
ysis of chemical master equation. However, they provide
lesser information about the probability distribution as
compared to Monte Carlo simulations, for example, these
approximate models do not provide information about
time correlations.
A procedure for constructing approximate stochastic

models for continuous-time birth-death Markov pro-
cesses in population biology was proposed by Singh
et al. [67]. This is done by representing the population of a
species as the continuous state of a stochastic hybrid sys-
tem (SHS). This SHS is characterized by reset maps that
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account for births and deaths, transition intensities that
correspond to the birth-death rates, and trivial continuous
dynamics. It has been shown that for this type of SHS, the
statistical moments of the continuous state evolve accord-
ing to an infinite-dimensional linear ordinary differential
equation (ODE). However, for analysis purposes, it is con-
venient to approximate this infinite-dimensional linear
ODE by a finite-dimensional nonlinear one. This proce-
dure generally approximates some higher order moments
by a nonlinear function of lower order moments, and it is
called moment closure. In there work, a method for esti-
mating lower order moments is introduced for a Markov
process involving a single species, with birth and death
rates being polynomials of order s ∈ N≥2. This process is
modeled by a stochastic hybrid system (SHS) whose state
x is the population of the specie. This SHS has trivial con-
tinuous dynamics ẋ = 0 and is characterized by reset
maps that account for births and deaths and transition
intensities that correspond to the birth-death rates.
Borowski et al. [72] modeled the spatiotemporal oscil-

lations of the Min proteins in the bacterium Escherichia
coli using SHS. The oscillatory system plays an impor-
tant role in cell division. The stochastic model consists of
a set of four interacting linear polymers, a pair of MinD
and MinE polymers at either pole of the cell, each of
which can be in either a growing or a shrinking state.
For any fixed combination of states for the four polymers,
the dynamics are deterministic and described by a sys-
tem of ordinary differential equations for the lengths of
the polymers. The full state of the system is thus deter-
mined by four discrete state variables (growing/shrinking)
and four continuous variables (polymer lengths). Stochas-
tic transitions between the discrete states are dependent
on the cytoplasmic concentrations of the Min proteins
and so indirectly on the polymer lengths. The authors
then described a stochastic switching between the three
possible discrete states of the state variables where the
probability of switching depends on the cytosolic concen-
trations of MinD and MinE.
A stochastic hybrid system model is developed by

Kumar et al. [71] that describes the time evolution of load
position and the population counts of ants in three roles.
It can be used to derive the dynamics of their statisti-
cal moments. In their model, ants switch stochastically
between roles at constant, unknown probability rates, and
ants in one role pull on the load with a force that acts as a
proportional controller on the load velocity with unknown
gain and set point. This SHS is a cascade connection
of a chemical reaction network representing stochastic
ant behavioral transitions followed by the deterministic
dynamics of a load transported along a surface with fric-
tion. The stochastic switching of ants between behavioral
states in the form of a set of chemical reactions was pre-
sented. The load dynamics was considered in the paper,

they model the load as one dimensional and specified that
the load is initially located at the origin and then travels
only in the positive direction along the x axis toward the
nest. The models of the ant behavioral dynamics and the
load dynamics together constitute a polynomial stochastic
hybrid system (pSHS).
Plotnik et al. [73] presented an approach for hybrid sys-

tems estimation that utilizes uncertain perceptional infor-
mation about the system’s mode to improve tracking of
its mode and continuous states. State tracking is achieved
using a new form of Rao-Blackwellized particle filter
called the mode-observed Gaussian Particle Filter. This
new filter extends existing hybrid estimation algorithms to
admit uncertain but discrete mode-related observations
in addition to the information available from more tradi-
tional sensors. The framework for estimation using both
traditional and perceptional information is applicable to
any stochastic hybrid system with mode-related percep-
tional observations available. This is applicable to an auto-
matic underwater robotic observation system that follows
and films individual deep ocean animals. In order to
improve the tracking of agile animals, the mode-observed
Gaussian particle filter is presented to augment the mea-
surements of relative position and water-relative velocities
of the specimen with perception.
Bressloff et al. [74] consider a stochastic, conductance-

based model of dendritic NMDA spikes, in which the
noise originates from the stochastic opening and clos-
ing of a finite number of Na+ and N-methyl-D-aspartate
(NMDA) receptor ion channels. The resultingmodel takes
the form of a stochastic hybrid system, in which mem-
brane voltage evolves according to a piecewise deter-
ministic dynamics that is coupled to a jump Markov
process describing the opening and closing of the ion
channels.
In [75], Bressloff et al. extended the theory of noise-

induced phase synchronization to the case of a neural
master equation describing the stochastic dynamics of an
ensemble of uncoupled neuronal population oscillators
with intrinsic and extrinsic noise. They considered sim-
ple population model that exhibits limit cycle oscillations
in the deterministic limit, namely, a recurrent excitatory
network with synaptic depression; inclusion of synaptic
depression into the neural master equation now generates
a SHS.
Farkas et al. [76] proposed a hybrid dynamical sys-

tem approach to model the evolution of a pathogen that
experiences different selective pressures according to a
stochastic process. In every environment, the evolution
of the pathogen is described by a version of the Fisher-
Haldane-Wright equation while the switching between
environments follows aMarkov jump process. They inves-
tigated how the qualitative behavior of a simple single-
host deterministic system changes when the stochastic
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switching process is added. They also study the stability in
probability of monomorphic equilibria.
An algorithm for estimating the parameters of a given

biochemical reaction network based on a stochastic
hybrid model is proposed by Mikeev et al. [70]. Chemical
populations in living cell can be low, therefore, ordinary
differential equations (ODEs) as a modeling tool cannot
be efficient, a more detailed model is necessary, which
takes into account the inherently discrete and stochas-
tic nature of chemical reactions. The authors developed
efficient algorithm for the numerical approximation of
the likelihood and its derivatives w.r.t. the reaction rate
constants. This was an improvement toMonte Carlo sam-
pling techniques because direct numerical solutions of
stochastic hybrid systems require the solution of a sys-
tem of partial differential equations. Thus, the continuous
part of the state space has to be discretized, and if the
discrete part of the state space is large, appropriate trunca-
tions have to be developed. They showed that for the large
populations, it is often sufficient to know the expected
number of molecules conditioned on the mode of the sys-
tem. Therefore, the mode probabilities can be integrated
over time. This allows for a fast and accurate approxima-
tion of the probability distribution of the model and can
be used for the estimation of parameters based on the
maximum likelihood method.
Hofbaur et al. [77] proposed an hybrid estimation

scheme that can efficiently estimate complex systems with
large number of modes. This was modeled using SHS
that capture the large number of operational and failure
modes. The authors analyzed the shortcomings of multi-
ple model estimation schemes which track system evolu-
tions by applying a bank of filters, one for each discrete
system mode. These systems are often composed of many
interconnected components that exhibit rich behaviors,
due to complex, system-wide interactions.
The hybrid modeling in neuroendocrine systems is dis-

cussed in [52]. The control action of the hypothalamus
is discrete (impulsive) and controls essentially continuous
secretion of hormones elsewhere in the organism.

4 Conclusions
The coexistence of discrete and continuous dynamics in
many biological systems such as the switch-like activation
or inhibition of gene expression by regulatory proteins
makes hybrid systems an attractive candidate for mod-
eling such systems. Furthermore, the uncertainties and
noise in those systems demand a stochastic version of the
hybrid systems. In this paper, some recent applications
of stochastic hybrid systems to biological systems mod-
eling, analysis and control are reviewed. It is envisioned
that by adopting this powerful modeling and analysis
approach, many biological phenomena can be correctly
modeled and simulated, thus makes in silico simulations

using stochastic hybrid systems modeling techniques fea-
sible for massive and rapid verification or falsification of
biological hypotheses. This may help to substitute the
costly and time-consuming in vitro or in vivo experiments
or at least provide guidance for those experiments and
generate better hypotheses.
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