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Abstract

The reductionist approach of dissecting biological systems into their constituents has been successful in the first
stage of the molecular biology to elucidate the chemical basis of several biological processes. This knowledge helped
biologists to understand the complexity of the biological systems evidencing that most biological functions do not
arise from individual molecules; thus, realizing that the emergent properties of the biological systems cannot be
explained or be predicted by investigating individual molecules without taking into consideration their relations.
Thanks to the improvement of the current -omics technologies and the increasing understanding of the molecular
relationships, even more studies are evaluating the biological systems through approaches based on graph theory.
Genomic and proteomic data are often combined with protein-protein interaction (PPI) networks whose structure is
routinely analyzed by algorithms and tools to characterize hubs/bottlenecks and topological, functional, and disease
modules. On the other hand, co-expression networks represent a complementary procedure that give the
opportunity to evaluate at system level including organisms that lack information on PPIs. Based on these premises,
we introduce the reader to the PPI and to the co-expression networks, including aspects of reconstruction and
analysis. In particular, the new idea to evaluate large-scale proteomic data by means of co-expression networks will be
discussed presenting some examples of application. Their use to infer biological knowledge will be shown, and a
special attention will be devoted to the topological and module analysis.

Keywords: Co-expression network, -Omics data, PPI network, Systems biology, Topological analysis, WGCNA,
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1 Introduction
The development of systems biology approaches based
on graph theory [1–3] is receiving a great boost by the
improvement of the -omics technologies that allow more
and more big amount of accurate qualitative and quanti-
tative measures [4, 5]. New methodologies have also been
developed to increase knowledge about protein-protein
interactions (PPIs) [6]. As a result, the PPI networks com-
bined with protein and with gene expression levels are
today widespread to investigate biological systems [7–10].
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The magnitude of -omics data provides the opportunity
to decode in alternative way the role of biological
molecules and processes characterizing the emergent
phenotypes. In this scenario, a common procedure to
evaluate gene expression levels is based on statistics
that measure the dependence between variables, and the
resulting co-expression networks are used to identify
genes functionally related or controlled by the same
transcriptional regulatory program [11–13]. Unlike gene
expression levels, the use of proteomic data to infer
co-expression networks has been explored through few
studies [14–20]. Similar to PPI and gene co-expression
networks, these networks have been evaluated at topo-
logical level in terms of edge rearrangement, as well as
of modules associated with common cellular functions.
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Although different aspects including data collection and
network reconstruction need to be improved, the prelim-
inary results are proving this approach promising as alter-
native to evaluate large-scale proteomic data. This could
have important effects into clinical applications favoring
the way toward the use of multiple biomarkers and their
relationships [17, 21–24]. Thus, in addition to improve
basic research, these elements may contribute to develop
most efficient diagnosis and prognosis methods to a
more preventive, predictive, and personalized medicine
[25–27].
Based on these premises, in this review we introduce

the reader to PPI and co-expression networks. The recent
idea to describe and to evaluate proteomic data by means
of co-expression networks will be discussed presenting
some example of application. Their use will be shown to
infer biological knowledge, and a special attention will be
devoted to the topological and module analysis.

2 Protein interaction networks
Graph theory is a powerful abstracting machinery that
allows to model several types of system, both natural and
human-made, ranging from biology to sociology science
[28]. A graph, also called network, provides a system rep-
resentation in terms of relationships among the elements

that make it up; a set of nodes V, stands for the elements
of the system, while a set of edges E, stands for their rela-
tions. Mathematically, we refer to a graph as G = (V ,E)

(Fig. 1a).
Concerning biological networks, the nodes may be cor-

related of attributes representing characteristics of inter-
est, such as expression levels or GO terms. In the same
way, the edges may possess attributes describing the rela-
tion between nodes, for example indicating the strength of
the interaction or its reliability; edges may also be directed
or undirected, and here we shall mainly deal with undi-
rected edges. Using the framework described in Fig. 1, a
protein interaction network is defined as a complex graph,
where the nodes are proteins and the edges represent their
relation, generally physical or functional, like proposed by
Vidal et al. [25].

2.1 PPI: physical and functional protein links
A protein interaction network usually refers to physical
PPIs [29], but several meanings have been attributed to
this term. In fact, a group of proteins working together
to perform a biological function not necessarily are in
direct contact, but their relation may be of regulation
or influence, for example, making use of intermediary
molecules. For this reason, the term PPI has not only been

Fig. 1 a Biological networks. Nodes may represent several types of biological elements, while the edges describe the nature of their relationship. If A
and B are two nodes connected by an edge, (A, B) ∈ E, B is a neighbor of A or A and B are adjacent. b Protein network classification proposed by
Vidal et al. [25]
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exclusively used to indicate a physical contact between
proteins, but also proteins connected by functional links.
It is important to bear in mind that proteins participate to
physical-chemical connection depending on the biological
context where they are [30]. Thus, the interactions com-
posing a given network could not occur in any cell or at
any time. However, if two interacting proteins are experi-
mentally identified in a given sample, we assume they also
interact in the system we are studying, thus their rela-
tion is reported in the reconstructed PPI network to be
analyzed.

2.2 PPI: detection, storage, and analysis tools
The main approaches to demonstrate physical interac-
tion between proteins are the yeast two-hybrid (Y2H)
method and the tandem affinity purification coupled with
mass-spectrometry (TAP-MS) [6]. To reduce the identi-
fication of false interactions, these experimental data are
complemented with computational methods of prediction
[31–33]. Other methods are used to identify functional
relationships, and most of them rely on protein expres-
sion data [20], analysis of gene co-expression patterns [34],
and analysis of sequences or phylogenetic properties, as
Rosetta Stone or Sequence co-evolution methods [35].
Both physical and functional PPIs are stored in pub-

lic repositories. The most popular include MINT [36],
IntAct [37], STRING [38], and HPRD [39]. The latter
specifically collects interactions related to Homo sapiens,
while other databases like STRING collect different kinds
of interactions (from experiments/biochemistry, anno-
tated pathways, gene neighborhood, gene fusion, gene
co-occurrence, gene co-expression, and text-mining) and
different organisms. A useful list of repositories presented
by De Las Rivas et al. [29] provides a classification in cat-
egories (primary, meta, and prediction database) accord-
ing to method used to detect interactions. Moreover,

an exhaustive collection of more than 500 databases is
available in the Pathguide website (Fig. 2) [40].
The development of computational tools to retrieve,

visualize, and analyze biological networks is a key aspect
of the systems biology studies, like the production of accu-
rate -omics data and the collection of reliable molecular
interactions. The most broadly adopted softwares include
Cytoscape and its plugins [41], VisANT [42], atBioNet
[43], PINA [44], and Ingenuity [45] which represents a
commercial solution. On the contrary, Cytoscape is a soft-
ware now developed by an international consortium of
open-source developers. Figure 3 shows a possible use of
the ReactomeFIViz Cytoscape’s plugin to obtain networks
(both functional and physical) associated with a given
biological function. ReactomeFIViz is focused to path-
ways and patterns related to cancer and other pathologies
[46]. This is of importance in the context of biomedi-
cal research, and detailed reviews about network models
to investigate complex diseases have been published by
Cho et al. [47] and by Vidal et al. [25]. Both works
show how functional and physical links can be used to
investigate diseasemechanisms, and PPI networks emerge
as effective model to evaluate different biomolecules
acting in complex biological systems, thus providing an
insight on phenomenons involved in a given physio-
pathological context.

3 Co-expression networks
The great amount of data produced by microarray and
RNA-seq technologies has driven the need of methods to
objectively extractmeaningful informations, such as genes
differentially expressed or sharing a similar expression
pattern. A widely adopted approach to evaluate transcript
levels is based on statistics that measure the dependence
between variables [48]. Co-expression represents the first
step of inference that defines a relation between pairs

Fig. 2 Pathguide website [40]. A repository containing information about 547 resources of molecular interactions and pathways
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Fig. 3 ReactomeFIViz: from disease pathway to PPI network. Main steps to obtain a protein functional and a physical protein network, starting from a
specific pathway (oncogene induced senescence). Using ReactomeFIViz, pathways can be visualized in relation with others (a), can be detailed as a
diagram showing all intermolecular relationships (b), and as a protein functional interaction network (c) showing just the relation among proteins
that cooperate to perform a given molecular function. Finally, starting from a group of protein of interest, it is possible to obtain a network of
protein-protein interactions by STRING; in the reported example, the interactions shown are limited to physical type, in particular binding, activation
and inhibition (d)

of transcripts. It is based on the concept that transcript
profiles of time series, or result of specific perturbations,
may be indicative of dynamics and differences between
transcripts, implying their regulation. Following the pro-
cessing of transcript levels, the result is a co-expression
network defined as an undirected graphs where the nodes
correspond to genes, and the edges indicate significant
co-expression relationships, but not causality. This aspect
is faced in the context of transcriptional regulatory net-
works [49], where pairs of genes are considered in a sys-
temic perspective of cooperation, including co-regulation,
activation/suppression, and indirect control through the
action of siRNA, miRNA, proteins, metabolites, and epi-
genetic mechanisms. This complexity make difficult the
inference of transcriptional regulatory networks by using
exclusively transcriptional profiles. In fact, in addition
to co-expression, next levels of inference require more
information and different modeling techniques, includ-
ing Boolean networks, Bayesian networks, or differential
equations (ODEs), which are revised in more detail in
studies addressing reverse engineering approaches [49].

Gene co-expression networks are topologically ana-
lyzed to identify hubs/bottlenecks and node communities
sharing high co-expression score; communities are the
starting point to identify topological, functional, and/or
disease modules related to specific biological phenotypes
[50, 51]. Different studies have shown that genes func-
tionally related, and sharing Gene Ontology (GO) terms,
usually present higher co-expression score [52]. More-
over, variations of the co-expression score are evaluated
to select topological relevant nodes whose number of
interactions changes under specific conditions or pertur-
bations [18] (Fig. 4).
In the last 10 years, the improvement of the liquid chro-

matography and the mass spectrometry has given a great
boost to large-scale proteomics analysis, making available
the expression profiles of thousands of proteins per sam-
ple [53]. Due to the similarity between gene and protein
matrices, the use of proteomic data to infer protein co-
expression networks has been recently explored to inves-
tigate the role of proteins in specific physio-pathological
contexts. Although different aspects need to be improved,
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Fig. 4 The figure shows the ACSL1 protein and its neighbors in two co-expression networks obtained by processing the protein expression profiles
of a control group and a group of patients affected by amyloidosis disease. In the considered groups of samples, ACSL1 shows a different degree. It
suggests that this protein may have a key role in the emergent phanotypes. Green edges represent a positive correlation between the expression
profiles, while black edges indicate negative correlations. The thick edges indicate known interactions present in public repositories as PPI

this approach takes into account protein relationships,
and, with respect to conventional methods, it represents
an alternative to gain a deeper insight of the protein char-
acterizing a given system. This issue will be discussed with
greater detail in the paragraph 5.

3.1 Aspects of construction
To build a co-expression network, an important aspect
concerns the computation of a co-expression score, which
weigh the correlation of two genes/proteins in response to
the considered conditions (Fig. 5). To address this issue,
metrics to measure gene/protein co-expression have to be
considered (Table 1); the most used metrics include Pear-
son’s correlation (PC), Spearman’s correlation, Kendall’s
correlation, and mutual information [48, 54]. Various
methods have been also proposed to define proper thresh-
olds to select significant relations. Some of them are based
on statistical analysis [55] and on network properties [56],
while other interesting approaches aim to minimize the
false positive links [57]. Finally, not less important is the

selection of appropriate experimental samples/conditions
to be processed. A condition-independent analysis is used
to find relations of co-expression actual in different bio-
logical contexts; on the contrary, a condition-dependent
analysis aims to find relations associated with specific
phenotypes.
The co-expression score computation may be faced by

using any statistical or computational tool that allows to
evaluate the dependence between variables. Some tools
have been specifically designed to construct, visualize,
and analyze co-expression networks. For example, the
ExpressionCorrelation Cytoscape’s plugin allows to pro-
cess microarray data and provides a similarity matrix
computed by PC [58]. In addition to being user-friendly,
the main advantage of this tool is that the reconstructed
networks are directly imported in Cytoscape where it may
be evaluated by other plugins.
WGCNA is one of themost used approaches to build and

to analyze gene co-expression networks [59], and it has
been recently adapted for proteomics use also [14–20].

Fig. 5 Possible cases of correlation between two variables. a Positive correlation. b No correlation. c Negative correlation
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Table 1 Measures of dependence between two variables

Co-expression measures What measures? Input/Output Features

Pearson’s correlation (PC) Tendency to respond in oppo-
site/same direction across different
samples

Input: gene expressions value
Output:

• [ 0, 1] both genes increase
• [−1, 0] one increase and other

decrease

• Sensitivity to outliers
• Bad array of expression level

can determine positive PC
value

• Measure linear relations

Spearman’s correlation (SC) Tendency to respond in oppo-
site/same direction across different
samples

Input: ranking values from expression levels
in samples
Output:

• [ 0, 1] Both genes increase
• [−1, 0] One increase and the other

decrease

• Robust to outliers
• Detect non-linear associations

Mutual information Reduction of uncertainty of a gene
given the knowledge about other
gene

Input: gene expression values
Output:

• 0 there is no interdependence
• >0 there is interdependence

• Measure complex non-linear
type relations (rarely present
in biological data)

• More samples are needed
than PC, SC

• Time-consuming
computation

Kendall Correspondence/compatibility
among two rankings

Input: gene expression value
Output:

• 1 perfect correspondence
• -1 rankings exactly inverted

• Similar to SC
• Robust to outliers
• Assumes fewer values than

SC in the range [−1, 1]

It provides a weighted network model by converting a
co-expression measure to a connection weight. The net-
work is fully specified by an adjacency matrix, where the
component aij defines the strength of connection between
nodes i and j. The value of aij is computed through the co-
expression similarity sij (1), defined as the absolute value
of correlation among the profiles of nodes i and j. It can
be defined in two ways: to obtain an unweighted net-
work, the sij is filtered by a threshold τ such that aij takes
on value [0,1] (hard-thresholding) (2), while to obtain a
weighted network aij is defined by a power adjacency
function (soft-thresholding) (3):

sij = |cor(i, j)| (1)

aij =
{
1 sij ≥ τ

0 sij < τ
(2)

aij = sβij (3)
The R WGCNA package provides the possibility to use

different types of metrics, including Spearman’, Pearson’,
Kendall’s correlation (see function cor), and the biweight
midcorrelation (see function bicor) [60]. Spearman’s cor-
relation is a non-parametric measure of correlation. Pear-
son’s correlation can be used when data are normally
distributed, but it is quite susceptible to the presence

of outliers. In this case, the biweight midcorrelation is
recommended because it is more robust to outliers. The
package allows to compute both the correlation and the
Student p value for multiple correlations in case of missing
data (see function corAndPvalue and bicorAndPvalue),
while the function qvalue computes the q value to mea-
sure the significance of each feature in terms of false
discovery rate rather than false positive rate [61]. The
unweighted network displays sensitivity to the choice of
the correlation values cut-off, thus, it is important to use
a proper criterion to select the edges to include in the
network. It is important to take into account the corre-
lations are computed among each pairs of genes/proteins
leading to a high rate of false positive values. Thus, to
build an unweighted network and to reduce the inclu-
sion of not significant correlations, it is recommended
to set a cut-off also for p and q values. Concerning the
weighted networks, the choice of the β parameter is based
on the scale-free topology criterion [62]. Thismethod rep-
resents an improvement over unweighted networks based
on dichotomizing the correlation matrix; the continuous
nature of the gene co-expression information is preserved,
and the results of weighted network analyses are highly
robust with respect to the choice of the parameter β (soft-
thresholding power). However, this thresholding method
is based on the assumption that the network follows a



Vella et al. EURASIP Journal on Bioinformatics and Systems Biology  (2017) 2017:6 Page 7 of 16

scale-free topology, a hypothesis weak in some cases, as
discussed in Section 4.1.

3.2 WGCNA and proteomic issues
When the WGCNA is applied to proteomic or to
metabolomic data, the choice of the optimal cutting
parameters should be evaluated in relation to the nature
of the data analyzed. In fact, due to the low coverage of the
current analytical technologies, the produced dataset are
often incomplete, and the methods need to be properly
modified [63]. A major concern is the high rate of missing
values that introduce loss of information and significant
bias. To address this issue, several approaches including
K nearest neighbor, least square methods, or local least
square methods have been proposed for proteomic and
metabolomic datasets too [64]. In other cases, a very sim-
ple approach has been adopted, such as the removal of
all species with a number of missing data bigger than a
given threshold [65]. However, to implement a more accu-
rate analysis, it is recommended to process data by using
an imputation method taking into account the nature of
missing data. Three types of missing value have been iden-
tified: MCAR (missing completely at random), i.e., due
to stochastic fluctuations in a proteomic dataset, MAR
(missing at a random), i.e., due to multiple minor errors,
and MNAR (missing not at a random), i.e., due to lim-
its of abundance of peptides/proteins that instruments are
able to detect. In general, methods work fine when a low
percentage of missing value (≤10%) is present, but this
threshold could be different in relation to the missingness
mechanisms and imputation approach used [63, 64].
In addition to missing value, another important step

of proteomic data preprocessing concerns their normal-
ization [66]. Batch effects may occur in datasets run
in different days or by different technicians. This phe-
nomenon may increase by using isotope reagents which
allow the quantitation of a limited number of sam-
ples, thus, preventing a simultaneous analysis of multiple
samples which could reduce data heterogeneity. For
these reasons, an appropriate data transformation is a
prerequisite to capture true correlations. Also in the
case of protein co-expression, valid correlations have to
be selected by applying proper thresholds. To date, the
most applications of WGCNA method on proteomic
datasets used a the soft-thresholding, which defines the
β value according the scale-free criterion [15, 16, 65].
However, since the application of WGCNA to proteomic
dataset is a recent issue, and literature reports, few
examples, the future evaluation of hard-thresholding
approach might be useful.

4 Network topological analysis
The structure of biological networks is closely related to
the biological functions performed by a system (cell or

tissue) under a given condition. Starting from this point,
many studies aim to face biological questions by investi-
gating the network models in terms of topology [67] and
modular properties [68]. As for theoretical mathemati-
cal models proposed to describe the biological networks,
the most claimed are Erdös–Rényi random graphs [69]
and scale-free [70] (see Fig. 6). Other models, such as
the geometric random graph (GEO) [71] and the small-
world [72], have recently been proposed. In the context
of biology, the random graph, proposed in 1950, has been
overtaken by the scale-free model; in fact, the degree dis-
tribution of the scale-free model is a power-law curve that
fits better than Poisson curve (typical of random graphs)
the degree distribution of the experimental networks [70]
(Fig. 7). Based on power law distribution, most nodes
have a degree value far from the mean; specifically, most
nodes have a low number of interactions while few nodes
have a high number of interactions. These features lead
a network structure less vulnerable and make the related
system biologically robust [73]. Of note, the degree dis-
tribution may reflect the different role of proteins/genes,
and those with a highest number of connections, so-called
hubs, have a higher probability to be more biologically
relevant than others. In other words, removal or modifica-
tion of hubs may induce stronger alteration of the system
equilibrium rather than removal or modification of nodes
with low degree [74].
Although some topological properties are well

described by a theoretical model, it may not be enough
to affirm that the model represents well the real-world
network considered [75]. For example, a study on PPI
network of Drosophila Melanogaster and Saccharomyces
Cerevisiae showed that the degree distribution was in
agreement with scale-free model, but diameter, clus-
ter coefficient, and graphlet frequency were closer to
GEO [76]. Of note, based on graphlet frequency, the
comparison among scale-free, random graph, and GEO
models has shown a higher agreement of GEO with PPI
network from eukaryotic organism [77, 78]. A possible
reason of these findings is that the scale-free model fits
networks that emerged from a stochastic growth, not
subjected to an optimization process; while, PPI networks
emerge from stochastic processes, and their structure is
influenced by the evolutionary optimization that living
systems have gone through [76].
Another model used to describe the PPI networks is

the small-world. Like the random graph model, it is char-
acterized by a Poisson curve. In a study focused on the
investigation of proteins regulating the fat storage, the cor-
responding PPI network had a degree-distribution close
to a Poisson curve rather than a power-law [79]. More-
over, the network showed a low average path length
and a high clustering coefficient typical of small-world
model. These parameters indicate a network organized
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Fig. 6 Shape and degree distribution of random, small-world, and scale-free model with respect to a biological network. Models were calculated by
ELIXIR web tool [131]

Fig. 7 Functions used to describe the degree distribution of biological networks. Poisson curve a and power-law b shown for different parameters.
c Example of graphlet of three nodes with frequency equal to 5
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into communities, like observed in PPI networks [80]. The
small-world model preserves a modularity structure, and
it is not characterized by hub nodes making the small-
world networks more robust in the case of removal or
modification of any node [73].
The topological evaluation of gene co-expression net-

works has shown that they are characterized by small-
world and by scale-free properties, similar to many other
real-world networks [81]. A study showed that the co-
expression networks generated from large datasets are
scale-free, but with an average clustering coefficient of
several orders of magnitude higher than expected for
similarly sized scale-free networks [82]. These opposite
findings could be explained by the evidence that the topo-
logical properties of the co-expression networks may be
influenced by different parameters, including the expres-
sion data or the similarity measures to evaluate the depen-
dency between variables.

4.1 Topological analysis
A key point of topological studies is the definition of
mathematical models and metrics to describe the net-
work’s properties and to select the most relevant nodes
and substructures that may be of biological significance.

Generally called centralities, metrics can be subdivided
into measures related to nodes, edges, or whole network.
Table 2 lists themain basic centralities used in the network
topological analysis [83].
In the context of network organization, these centrali-

ties facilitate the answer to question about which proteins
are most important and why. To give an idea of such anal-
ysis, we say that a vertex (i.e., a protein) is important
(or central) if it is close to many other vertexes. There
are many number of different centrality measures that
have been proposed in literature but probably the most
applied, and simple, is called vertex degree. The degree
d(v) of a vertex v, in a network G = (V ,E), counts
the number of edges in E incident upon v. Given G,
define f (d) to be the fraction of vertexes v ∈ V with
degree d(v) = d. For different d1, d2, . . . , dn, the collection
{f (d1), f (d2), . . . , f (dn)} is called the degree distribution
of G.
A useful generalization of degree is the notion of ver-

tex strength, which is obtained simply by summing up the
weights of edges incident to a given vertex. The distribu-
tion of strength is sometimes called the weighted degree
distributions defined in analogy to the ordinary degree
distribution.

Table 2 Centralities calculated by the CentiScaPe Cytoscape’s plugin

Centrality Description Biological meaning

Diametera Defines the longest shortest path in the network

Average distancea Defines the mean length of all the shortest paths in the net-
work

Degreeb Describes the number of neighbors a node has Highlights the number of nodes that regulated/regulate the
node v

Eccentricityb Describes the longest shortest paths a node develop, giving us
a proximity information

Highlights the easiness of a protein to reach/to be reached by
all the other proteins in the network

Closenessb Describes, for the node v, the minimal sum of all the distances
in the network

Highlights the probability of a protein to be functionally rele-
vant for several proteins, but irrelevant for a few others

Radialityb Describes the integration of a node into the network Highlights the ability of a protein to be functionally relevant for
several proteins, but irrelevant for a few others

Centroidb Describes the neighborhood of nodes by highlighting nodes
that have the highest number of neighbors separated by the
minimal shortest path

Highlights a protein that tends to be functionally capable of
organizing discrete protein clusters or modules

Stressb Describes the number of shortest paths that pass through a
node

Highlights the relevance of a protein as functionally capable of
holding together communicating nodes

Betweennessb Describes, for each couple of nodes, the number of shortest
paths that pass through a specific node

Highlights the relevance of a protein as functionally capable of
holding together communicating nodes

Bridgingb Describes the neighborhood of nodes by highlighting nodes
with a high number of high-degree neighbors

Highlights a protein possibly bringing in communication sets
of regulatory protein

Eigenvectorb Describes a sort of weighted degree, where not only the num-
ber of the neighbors is important but also the Eigenvector of
the neighbors itself

Highlights a protein interacting with several important pro-
teins, suggesting a central super-regulatory role or a critical
target of a regulatory pathways

Edge betweennessc Describes, for each couple of nodes, the shortest paths that
pass through a specific edge

Highlights the relevance of the interaction as capable of orga-
nizing regulatory process

For each centrality, it is described the topological and biological meaning. The a indicates network’s properties. The b indicates node’s properties. The c indicates edge’s
property
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Another centrality measure widely used is known as
betweenness [84]. It can be defined as follows: this mea-
sure summarizes the extent to which a vertex is located
“between” other pairs of vertexes. In this case, central-
ity is based upon the perspective that importance relates
to where a vertex is located with respect to the paths in
the network graph. In other terms, betweenness central-
ity is based on communication flow. Nodes with a high
betweenness centrality are interesting because they lie on
communication paths and control information flow. Also
called hubs/bottlenecks [85], they can represent impor-
tant proteins in signaling pathways and can form targets
for drug discovery. For example, by combining this data
with interference analysis, targeted attacks on protein-
protein interaction networks have been simulated to pre-
dict which proteins were better drug candidates [86].
Formally, betweenness can be defined as

Cl(v) = σ(s, t|v)∑
s�=t �=v∈V σ(s, t)

(4)

where σ(s, t|v) is the total number of shortest paths
between s and t that pass through v, and σ(s, t) is the total
number of shortest paths between s and t (regardless of
whether or not they pass through v).
Other centralities used to globally evaluate the structure

of a network include:

• Degree distribution: a function describing the
proportion of nodes related to each observed degree

• Modularity: evaluates the presence of modules, such
as a group of nodes characterized by the tendency to
form more connections within the group than
outside [87]

• Cluster coefficient: the ratio of the number of edges
among a node and its neighbors and the maximum
possible number of edges among all of them [72]

• Motif/graphlet frequency: evaluates the presence of
small subgraphs with a specific pattern that appear in
a real-world network more frequently than in the
relative random network [88]

• Edge clustering coefficient: the ratio between the
number of triangles (three nodes connected by three
edges) including an edge, and the maximum number
of possible triangles may include the edge [89]

• Maximal Clique centrality: a property of a node taking
into account the cliques (i.e, a subgraph in which each
pair of nodes is connected) including the node [90]

The simplest way to perform a network topologi-
cal analysis by evaluating these centralities is through
Cytoscape’s plugins, such as CentiScaPe [83] and Net-
workAnalyzer [91], that provide the main basic methods
to compute the topological properties of nodes, edges,
and networks, both directed and undirected. Moreover,

new plugins implementing recent developed topological
centralities are CytoNCA [92] and CytoHubba [90].

4.2 Module analysis
Regardless of the approaches used to obtain a network,
the detection of protein/gene modules is of great interest
because they represent the functional units at the base of
the mechanisms responsible of the cellular life. In biolog-
ical networks, the term module has acquired three mean-
ings: topological, functional, and pathological/disease.
The analysis of the network structure allows to detect
the topological modules defined as group of nodes highly
interconnected [68]. These nodes are often related to well-
defined molecular functions, thus, their detection PPI
networks can help to identify functional modules [93],
defined as a group of functionally related proteins/genes
highly connected by genetic/physical interactions, co-
expression, as well as membership of the same molecu-
lar complex or biological pathway [94]. The comparison
between pathological and physiological conditions has
finally led to the definition of disease modules, such
as a set of nodes with a putative key role concerning
mechanisms impaired due to disease [26, 51]. Topological,
functional, and disease modules are generally not fully
overlapped and often a single topological module can
be linked to different functional or disease modules or
vice-versa (Fig. 8).
Due to the complex connectivity of the biological net-

works, the identification of modules is a challenging
task. Various methods have been proposed, and most
of them are exclusively based on network topology.
Some representative examples include the betweenness-
based method [95], the modularity optimization method
[96], the spectral partitioning method [97], the core-
attachment based method [98], and the graph-theoretic
approach relying on cliques [99] and other topological
properties [100]. To improve the accuracy of module
detection, the integration of functional information is
more and more used [101–104]. These methods exploit
the GO terms which in some cases are used to compute a
similarity score that measures the edge weight and drives
the module detection [105, 106].
The GO term enrichment analysis is routinely used

also after the module detection to assess their bio-
logical relevance [107, 108]. Making use of statistical
tests, these approaches evaluate if genes/proteins of a
module are enriched in common functional properties
(Fig. 9). During this process, standard methods treat each
gene/protein as an isolated objects. However, in the last
few years some network-based enrichment approaches
have emerged taking into consideration also the interac-
tions among molecules [109–111].
The commonly used methods for module detection

have been extended to co-expression networks to evaluate
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Fig. 8 Example of topological, functional and disease modules not fully overlapped. The green nodes indicate a topological module, the blue nodes
indicate a functional module, while the yellow nodes indicate a disease module

the conditional patterns of co-expression and to provide
insight into the cellular processes underlying the emer-
gent phenotypes. Since genes could be co-regulated only
across a subset of phenotypes, a biologically-motivated
clustering method should be able to detect these patterns.
This issue is faced by biclustering algorithms which clus-
terize both genes and experimental conditions. They are
widely studied, and many different approaches have been
published and applied to identify genes regulated in a
state-specific manner [112].
In the context of module detection, the WGCNA pack-

age also provides a procedure consisting of a hierarchical
clustering algorithm based on a distance matrix calcu-
lated by similarity measure between gene/protein pairs
[59]. After assigning nodes to modules, an aggregate mod-
ule signature, called eigenvector, is computed; it can be
considered as an object representing the expression pro-
files of the molecules belonging to the module, thus, it
simplifies the comparison of different modules [113]. A
wide range of tools to perform module analysis are avail-
able. They include several Cytoscape’s plugins, such as
ClusterOne [114] and MCODE [100] and the Markov

Cluster Algorithm (MCL) [115] or CFinder [99]. For a
detailed view of these tools, the review by J.Ji et al. [116] is
recommended.

5 Studies related to the use of protein
co-expression networks

The investigation of proteomic data by co-expression-
based approaches has been first addressed by Gibbs et al.
to infer the protein abundance and to overcome issues
linked to peptide-protein mapping [14]. Starting from
experimental datasets obtained by LC-MS, and by using
a method derived from WGCNA, the authors proposed
a protein co-expression network approach (ProCoNa)
where the nodes are peptides and the edges are calcu-
lated by processing their intensity. Themodules computed
by co-expression analysis were strictly correlated with the
investigated phenotypes and showed a significant enrich-
ment of some GO terms. Following these findings, the
authors explored the relationship between co-expression
networks reconstructed from transcriptomic and pro-
teomic data [15]. In this study, concerning SARS-CoV
infection, they used a bipartite graph analysis to evaluate

Fig. 9 Procedure used to identify/predict modules in biological networks. The network structure is used to identify groups of highly connected
nodes by graph clustering algorithm, while the GO annotations are used to improve the accuracy of the cluster prediction. The final result are
clusters of nodes highly connected and related to functions/processes significantly enriched, thus acting at the basis of the emergent phenotypes
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phenotype associations, overlaps, and module correla-
tion, thus, providing a foundation of a true multi-omics
signatures.
The idea to use the WGCNA method on proteomic

data was followed also by MacDonald et al. [18] to clar-
ify the role of the glutamate signaling in schizophrenia
(SCZ). The topological evaluation of the co-expression
networks from SCZ affected subjects and healthy con-
trols led to observe in SCZ affected group a lower average
node degree. This result was probably due to the loss of
coordination of the biological functions, as well as disease
heterogeneity. However, in SCZ network, it was found
the exclusive presence of a module enriched in GO terms
related to glutamate signaling and whose proteins had a
significant increased degree.
The application of the WGCNA on protein expression

profiles was also faced by Chang Guo et al. to characterize
the role of different protein isoforms in E. Coli resistance
to serum killing [13]. Like in other cases, the authors
evaluated the topological variations of the co-expression
networks between control- and serum-treated groups. By
considering the connectivity of modules identified in both
networks, a protein, IleS, was found with a differential
number of connections in control and treated groups.
Of note, its involvement in the response to serum killing
was confirmed by independent functional test based on a
gene-deletion mutant, thus, confirming the utility to use
protein co-expression networks also to identify putative
drug targets.
To find phenotype-related biomarkers in the context

of renal dysfunction, D. Wu et al. followed an approach
based on the combination of differentially expressed pro-
teins and PPI networks. For each pair of connected nodes
they calculated the PC score, and the topological anal-
ysis of the reconstructed co-expression networks led to
identify twelve proteins involved in the pathology [44].
Likewise, Yu et al. investigated the molecular mechanisms
underlying the glioblastoma multiforme (GBM)[20]. They
analyzed samples of macaque rhesus brain by both iTRAQ
and RNA-seq approaches. The proteins identified were
combined with STRING database and, for each experi-
mentally validated PPI, the PC score was calculated using
both protein and transcript levels. Since the PC score from
proteomic data resulted significantly higher than score
calculated using transcript levels, the authors focused on
WGCNA to identify protein modules involved in the dis-
ease. Finally, a more detailed evaluation of these modules
allowed the selection of eight genes of interest, and two of
them were already known drug targets of GBM.

6 Conclusions
The aim of this review was to provide an overview on
PPI and co-expression networks. In particular, present-
ing the recent idea of the protein co-expression networks

and their use to infer biological knowledge by topolog-
ical and module analysis. Although literature is yet too
weak, protein co-expression networks represent a valid
approach to obtain a novel overview of proteomic data
and to provide new hypotheses about key molecules act-
ing in pathophysiological states. Of course, its real value
has to be assessed by further studies, but preliminary
findings make it promising. The main limitation to per-
form the construction of protein co-expression networks
may be attributed to the difficulty in measuring a pro-
teome with enough coverage. A major consequence is the
high rate of missing values that introduce loss of infor-
mation and significant bias. In addition, batch effects may
occur in datasets run in different days or by different tech-
nicians. Thus, data normalization is another key point
in the context of proteomic data preprocessing. These
aspects will be surely improved by future advances of
the proteomic technologies which in recent years have
received a big boost from genome sequencing and from
the combination of liquid chromatography andmass spec-
trometry [117]. In any case, the availability of large-scale
proteomic data already offers a new range of opportunities
to improve the existing network models, and in partic-
ular PPI, in understanding the mechanisms behind the
emergent phenotypes [8, 10, 108, 118, 119].
The results shown through the reviewed studies have

evidenced a good relation between the topology of
protein co-expression network and the emergent phe-
notypes. Like PPI networks, the characterization of
hubs/bottlenecks and functional, topological and disease
modules has proved to select the most important
molecules. Despite these findings, statistical methods
to construct co-expression networks by processing
large-scale proteomic data still need to be improved
[63, 64, 66]. To date, the available applications are mainly
based on WGCNA framework, and studies evaluating
other approaches are expected. Gaussian graphical mod-
els [120], partial correlation [121], or Bayesian networks
[122] are more sophisticated approaches that are gain-
ing favor over simple correlations due to their ability to
separate direct from indirect variable associations. These
methods need to use prior knowledge to estimate proba-
bilistic interactions, and their implementation on typical
-omics data may be computationally challenging due to
the curse of dimensionality. However, they are widely
adopted to integrate different -omics data [123, 124] and
to infer transcriptional regulatory networks in the context
of reverse-engineering processing techniques [48, 49].
Collection and integration of different -omics data rep-

resent essential points to perform a global evaluation
of the biological systems and to improve the effective-
ness of the current systems biology approaches. For these
purposes, genomic and proteomic data are often used
in combination with PPI networks. Since many studies
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are reporting a low direct correlation between mRNA
and protein abundance [125, 126], their integration with
molecules acting in the post-transcriptional regulation
[127, 128] and metabolomic data [10] is necessary. In this
scenario, PPIs and co-expression networks provide the
possibility to apply a multi-omic strategy [15] that should
improve level of significance in understanding biological
mechanisms, including those related to diseases. More-
over, gene and protein co-expression networks give the
opportunity to represent and to evaluate at system level
including organisms that lack information about PPIs. In
fact, except for human and other few organisms, PPIs
are often inferred by homology making incomplete the
theoretical models to describe the real-world networks,
and with a connectivity affected by false positive interac-
tions [129].
It is evident that the reconstruction of more complete

and specific models is key to improve the current systems
biology approaches. Molecules and interactions so far
considered intracellularly should also be evaluated in
tissues, and a new network of relationships that keeps
in communication cells, tissues and organs will have to
be considered too. On the other hand, computational
tools are required to effectively integrate multi-omic
experiments [130]. In addition to basic research, these
improvements may have important effects into clinical
applications opening the way toward the use of multiple
biomarkers and their relationships [22–24]. They repre-
sent a chance to generate new mathematical models and
algorithms for advanced diagnosis and prognosis methods
which may lead toward a more preventive, predictive,
and personalized medicine [27, 51]. These objectives
are the major challenges to be addressed in the near
future, and their achievement rely on the synergistic
cooperation of biologists, physicists, mathematicians, and
bioinformaticians.
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78. V Janjić, N Pržulj, The topology of the growing human interactome
data. J. Integr. Bioinform. 11(2), 238 (2014). doi:10.2390/biecoll-jib-
2014-238

79. B Al-Anzi, P Arpp, S Gerges, C Ormerod, N Olsman, K Zinn, Experimental
and computational analysis of a large protein network that controls fat
storage reveals the design principles of a signaling network. PLoS
Comput. Biol. 11(5), 1004264 (2015). doi:10.1371/journal.pcbi.1004264

80. J-DJ Han, N Bertin, T Hao, DS Goldberg, GF Berriz, LV Zhang, D Dupuy,
AJM Walhout, ME Cusick, FP Roth, M Vidal, Evidence for dynamically
organized modularity in the yeast protein-protein interaction network.
Nature. 430(6995), 88–93 (2004). doi:10.1038/nature02555

81. P Tsaparas, L Mariño-Ramírez, O Bodenreider, EV Koonin, IK Jordan, Global
similarity and local divergence in human and mouse gene co-expression
networks. BMC Evol. Biol. 6, 70 (2006). doi:10.1186/1471-2148-6-70

82. SL Carter, CM Brechbühler, M Griffin, AT Bond, Gene co-expression
network topology provides a framework for molecular characterization
of cellular state. Bioinformatics. 20(14), 2242–2250 (2004).
doi:10.1093/bioinformatics/bth234

83. G Scardoni, M Petterlini, C Laudanna, Analyzing biological network
parameters with centiscape. Bioinformatics. 25(21), 2857–2859 (2009).
doi:10.1093/bioinformatics/btp517

84. H Wang, JM Hernandez, P Van Mieghem, Betweenness centrality in a
weighted network. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 77,
046105 (2008). doi:10.1103/PhysRevE.77.046105

85. X He, J Zhang, Why do hubs tend to be essential in protein networks?
PLoS Genet. 2, 88 (2006). doi:10.1371/journal.pgen.0020088

86. H Yu, PM Kim, E Sprecher, V Trifonov, M Gerstein, The importance of
bottlenecks in protein networks: correlation with gene essentiality and
expression dynamics. PLoS Comput. Biol. 3, 59 (2007).
doi:10.1371/journal.pcbi.0030059

87. MEJ Newman, Modularity and community structure in networks. Proc.
Natl. Acad. Sci. U. S. A. 103(23), 8577–8582 (2006).
doi:10.1073/pnas.0601602103

88. R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, U Alon, Network
motifs: simple building blocks of complex networks. Science. 298(5594),
824–827 (2002). doi:10.1126/science.298.5594.824

89. J Wang, M Li, H Wang, Y Pan, Identification of essential proteins based
on edge clustering coefficient. IEEE/ACM Trans. Comput. Biol.
Bioinforma. 9(4), 1070–1080 (2012). doi:10.1109/TCBB.2011.147

90. C-H Chin, S-H Chen, H-H Wu, C-W Ho, M-T Ko, C-Y Lin, cytohubba:
identifying hub objects and sub-networks from complex interactome.
BMC Syst. Biol. 8(Suppl 4), 11 (2014). doi:10.1186/1752-0509-8-S4-S11

91. NT Doncheva, Y Assenov, FS Domingues, M Albrecht, Topological
analysis and interactive visualization of biological networks and protein
structures. Nat. Protoc. 7, 670–685 (2012). doi:10.1038/nprot.2012.004

92. Y Tang, M Li, J Wang, Y Pan, F-X Wu, Cytonca: a cytoscape plugin for
centrality analysis and evaluation of protein interaction networks. Bio.
Syst. 127, 67–72 (2015). doi:10.1016/j.biosystems.2014.11.005

93. V Spirin, LA Mirny, Protein complexes and functional modules in
molecular networks. Proc. Natl. Acad. Sci. U. S. A. 100(21), 12123–12128
(2003). doi:10.1073/pnas.2032324100

94. LH Hartwell, JJ Hopfield, S Leibler, AW Murray, From molecular to
modular cell biology. Nature. 402(6761 Suppl), 47–52 (1999).
doi:10.1038/35011540

95. MEJ Newman, M Girvan, Finding and evaluating community structure in
networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 69(2 Pt 2), 026113
(2004). doi:10.1103/PhysRevE.69.026113

96. MEJ Newman, Fast algorithm for detecting community structure in
networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6 Pt 2), 066133
(2004). doi:10.1103/PhysRevE.69.066133

97. L Donetti, MA Muñoz, Detecting network communities: a new
systematic and efficient algorithm. J. Stat. Mech, P10012 (2004).
doi:10.1088/1742-5468/2004/10/P10012

98. M Wu, X Li, C-K Kwoh, S-K Ng, A core-attachment based method to
detect protein complexes in ppi networks. BMC Bioinforma. 10, 169
(2009). doi:10.1186/1471-2105-10-169

99. B Adamcsek, G Palla, IJ Farkas, I Deré, T Vicsek, Cfinder: locating cliques
and overlapping modules in biological networks. Bioinformatics. 22(8),
1021–1023 (2006). doi:10.1093/bioinformatics/btl039

100. GD Bader, CWV Hogue, An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinforma. 4, 2
(2003)

101. AL Hu, KCC Chan, Utilizing both topological and attribute information for
protein complex identification in ppi networks. IEEE/ACM Trans. Comput.
Biol. Bioinform. 10(3), 780–792 (2013). doi:10.1109/TCBB.2013.37

102. S Srihari, HW Leong, A survey of computational methods for protein
complex prediction from protein interaction networks. J. Bioinform.
Comput. Biol. 11(2), 1230002 (2013). doi:10.1142/S021972001230002X

103. X-F Zhang, D-Q Dai, L Ou-Yang, H Yan, Detecting overlapping protein
complexes based on a generative model with functional and
topological properties. BMC Bioinforma. 15, 186 (2014).
doi:10.1186/1471-2105-15-186

http://dx.doi.org/10.1093/bioinformatics/btm309
http://dx.doi.org/10.1371/journal.pone.0128115
http://www.baderlab.org/Software/ExpressionCorrelation
http://www.baderlab.org/Software/ExpressionCorrelation
http://dx.doi.org/10.1186/1471-2105-9-559
http://dx.doi.org/10.2202/1544-6115.1128
http://dx.doi.org/10.1021/acs.jproteome.5b00981
http://dx.doi.org/10.1080/07388550701334212
http://dx.doi.org/10.1002/pmic.201400233
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/nbt1116
http://dx.doi.org/10.1093/bioinformatics/bth436
http://dx.doi.org/10.1093/bioinformatics/btl301
http://dx.doi.org/10.2390/biecoll-jib-2014-238
http://dx.doi.org/10.2390/biecoll-jib-2014-238
http://dx.doi.org/10.1371/journal.pcbi.1004264
http://dx.doi.org/10.1038/nature02555
http://dx.doi.org/10.1186/1471-2148-6-70
http://dx.doi.org/10.1093/bioinformatics/bth234
http://dx.doi.org/10.1093/bioinformatics/btp517
http://dx.doi.org/10.1103/PhysRevE.77.046105
http://dx.doi.org/10.1371/journal.pgen.0020088
http://dx.doi.org/10.1371/journal.pcbi.0030059
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1109/TCBB.2011.147
http://dx.doi.org/10.1186/1752-0509-8-S4-S11
http://dx.doi.org/10.1038/nprot.2012.004
http://dx.doi.org/10.1016/j.biosystems.2014.11.005
http://dx.doi.org/10.1073/pnas.2032324100
http://dx.doi.org/10.1038/35011540
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://dx.doi.org/10.1088/1742-5468/2004/10/P10012
http://dx.doi.org/10.1186/1471-2105-10-169
http://dx.doi.org/10.1093/bioinformatics/btl039
http://dx.doi.org/10.1109/TCBB.2013.37
http://dx.doi.org/10.1142/S021972001230002X
http://dx.doi.org/10.1186/1471-2105-15-186


Vella et al. EURASIP Journal on Bioinformatics and Systems Biology  (2017) 2017:6 Page 16 of 16

104. L Hu, KCC Chan, A density-based clustering approach for identifying
overlapping protein complexes with functional preferences. BMC
Bioinforma. 16, 174 (2015). doi:10.1186/s12859-015-0583-3

105. J Wang, D Xie, H Lin, Z Yang, Y Zhang, Filtering gene ontology semantic
similarity for identifying protein complexes in large protein interaction
networks. Proteome Sci. 10(Suppl 1), 18 (2012).
doi:10.1186/1477-5956-10-S1-S18

106. M Kouhsar, F Zare-Mirakabad, Y Jamali, Wcoach: Protein complex
prediction in weighted ppi networks. Genes Genet. Syst. 90(5), 317–324
(2015). doi:10.1266/ggs.15-00032

107. A Subramanian, P Tamayo, VK Mootha, S Mukherjee, BL Ebert, MA
Gillette, A Paulovich, SL Pomeroy, TR Golub, ES Lander, JP Mesirov, Gene
set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. PNAS. 102(43), 15545–15550 (2005).
doi:10.1073/pnas.0506580102

108. F Brambilla, F Lavatelli, D Di Silvestre, V Valentini, G Palladini, G Merlini, P
Mauri, Shotgun protein profile of human adipose tissue and its changes
in relation to systemic amyloidoses. J Proteome Res. 12(12), 5642–5655
(2013). doi:10.1021/pr400583h

109. C Zhang, J Wang, K Hanspers, D Xu, L Chen, AR Pico, Noa: a cytoscape
plugin for network ontology analysis. Bioinformatics. 29(16), 2066–2067
(2013). doi:10.1093/bioinformatics/btt334

110. A Alexeyenko, W Lee, M Pernemalm, J Guegan, P Dessen, V Lazar, J
Lehtiö, Y Pawitan, Network enrichment analysis: extension of gene-set
enrichment analysis to gene networks. BMC Bioinforma. 13, 226 (2012).
doi:10.1186/1471-2105-13-226

111. P Di Lena, PL Martelli, P Fariselli, R Casadio, Net-ge: a novel
network-based gene enrichment for detecting biological processes
associated to mendelian diseases. BMC Genomics. 16(Suppl 8), 6 (2015).
doi:10.1186/1471-2164-16-S8-S6

112. DJ Reiss, NS Baliga, R Bonneau, Integrated biclustering of heterogeneous
genome-wide datasets for the inference of global regulatory networks.
BMC Bioinforma. 7, 280 (2006). doi:10.1186/1471-2105-7-280

113. P Langfelder, S Horvath, Eigengene networks for studying the
relationships between co-expression modules. BMC Syst. Biol. 1, 54
(2007). doi:10.1186/1752-0509-1-54

114. T Nepusz, H Yu, A Paccanaro, Detecting overlapping protein complexes
in protein-protein interaction networks. Nat. Methods. 9(5), 471–472
(2012). doi:10.1038/nmeth.1938

115. S van Dongen, Graph clustering by flow simulation (2000). PhD thesis,
University of Utrecht

116. J Ji, A Zhang, C Liu, X Quan, Z Liu, Survey: Functional module detection
from protein-protein interaction networks. IEEE Trans. Knowl. Data Eng.
26(2), 261–277 (2016). doi:10.1109/TKDE.2012.225

117. CC Tsou, D Avtonomov, B Larsen, M Tucholska, H Choi, AC Gingras, AI
Nesvizhskii, Dia-umpire: comprehensive computational framework for
data-independent acquisition proteomics. Nat. Methods. 12(3), 258–64
(2015). doi:10.1038/nmeth.3255

118. M Gstaiger, R Aebersold, Applying mass spectrometry-based proteomics
to genetics, genomics and network biology. Nat. Rev. Genet. 10(9),
617–627 (2009). doi:10.1038/nrg2633

119. P Mauri, AM Riccio, R Rossi, D Di Silvestre, L Benazzi, L De Ferrari, RW
Dal Negro, ST Holgate, GW Canonica, Proteomics of bronchial biopsies:
galectin-3 as a predictive biomarker of airway remodelling modulation
in omalizumab-treated severe asthma patients. Immunol. Lett. 162(1)
(2014). doi:10.1016/j.imlet.2014.08.010

120. S Ma, Q Gong, HJ Bohnert, An arabidopsis gene network based on the
graphical gaussian model. Genome Res. 17, 1614–1625 (2007).
doi:10.1101/gr.6911207

121. L Han, J Zhu, Using matrix of thresholding partial correlation coefficients
to infer regulatory network. Bio. Syst. 91, 158–165 (2008).
doi:10.1016/j.biosystems.2007.08.008

122. D Pe’er, Bayesian network analysis of signaling networks: a primer.
Science’s STKE Signal Transduct. Knowl. Environ. 2005, 4 (2005).
doi:10.1126/stke.2812005pl4

123. AR Joyce, BØ Palsson, The model organism as a system: integrating
‘omics’ data sets. Nat. Rev. Mol. Cell. Biol. 7(3), 198–210 (2006).
doi:10.1038/nrm1857

124. R Van Assche, V Broeckx, K Boonen, E Maes, W De Haes, L Schoofs, L
Temmerman, Integrating -omics: Systems biology as explored through

c. elegans research. J. Mol. Biol. 427(21), 3441–3451 (2015).
doi:10.1016/j.jmb.2015.03.015

125. G-W Li, XS Xie, Central dogma at the single-molecule level in living cells.
Nature. 475(7356), 308–315 (2011). doi:10.1038/nature10315

126. T Maier, M Güell, L Serrano, Correlation of mrna and protein in complex
biological samples. FEBS Lett. 583(24), 3966–3973 (2009).
doi:10.1016/j.febslet.2009.10.036

127. R de Sousa Abreu, LO Penalva, EM Marcotte, C Vogel, Global signatures
of protein and mrna expression levels. Mol. Biosyst. 5(12), 1512–1526
(2009). doi:10.1039/b908315d

128. B Schwanhäusser, D Busse, N Li, G Dittmar, J Schuchhardt, J Wolf, W
Chen, M Selbach, Global quantification of mammalian gene expression
control. Nature. 473(7347), 337–342 (2011). doi:10.1038/nature10098

129. X Peng, J Wang, W Peng, FX Wu, Y Pan, Protein-protein interactions:
detection, reliability assessment and applications. Brief. Bioinform (2016).
doi:10.1093/bib/bbw066

130. K Wanichthanarak, JF Fahrmann, D Grapov, Genomic, proteomic, and
metabolomic data integration strategies. Biomark. Insights. 10, 1–6
(2015). doi:10.4137/BMI.S29511

131. ELIXIR A distributed infrastructure for life-science information. http://
160.80.34.9/elixir2015/

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1186/s12859-015-0583-3
http://dx.doi.org/10.1186/1477-5956-10-S1-S18
http://dx.doi.org/10.1266/ggs.15-00032
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1021/pr400583h
http://dx.doi.org/10.1093/bioinformatics/btt334
http://dx.doi.org/10.1186/1471-2105-13-226
http://dx.doi.org/10.1186/1471-2164-16-S8-S6
http://dx.doi.org/10.1186/1471-2105-7-280
http://dx.doi.org/10.1186/1752-0509-1-54
http://dx.doi.org/10.1038/nmeth.1938
http://dx.doi.org/10.1109/TKDE.2012.225
http://dx.doi.org/10.1038/nmeth.3255
http://dx.doi.org/10.1038/nrg2633
http://dx.doi.org/10.1016/j.imlet.2014.08.010
http://dx.doi.org/10.1101/gr.6911207
http://dx.doi.org/10.1016/j.biosystems.2007.08.008
http://dx.doi.org/10.1126/stke.2812005pl4
http://dx.doi.org/10.1038/nrm1857
http://dx.doi.org/10.1016/j.jmb.2015.03.015
http://dx.doi.org/10.1038/nature10315
http://dx.doi.org/10.1016/j.febslet.2009.10.036
http://dx.doi.org/10.1039/b908315d
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1093/bib/bbw066
http://dx.doi.org/10.4137/BMI.S29511
http://160.80.34.9/elixir2015/
http://160.80.34.9/elixir2015/

	Abstract
	Keywords

	Introduction
	Protein interaction networks
	PPI: physical and functional protein links
	PPI: detection, storage, and analysis tools

	Co-expression networks
	Aspects of construction
	WGCNA and proteomic issues

	Network topological analysis
	Topological analysis
	Module analysis

	Studies related to the use of protein co-expression networks
	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

