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Abstract

Methods based on correlation and partial correlation are today employed in the reconstruction of a statistical
interaction graph from high-throughput omics data. These dedicated methods work well even for the case when the
number of variables exceeds the number of samples. In this study, we investigate how the graphs extracted from
covariance and concentration matrix estimates are related by using Neumann series and transitive closure and
through discussing concrete small examples. Considering the ideal case where the true graph is available, we also
compare correlation and partial correlation methods for large realistic graphs. In particular, we perform the
comparisons with optimally selected parameters based on the true underlying graph and with data-driven
approaches where the parameters are directly estimated from the data.
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1 Introduction
Inference of biological networks including gene regula-
tory, metabolic, and protein-protein interaction networks
has received much attention recently. With the develop-
ment of high-throughput technologies, it became possible
to measure a large number of genes and proteins at once
and this led to a challenge to infer a large-scale gene
regulatory and protein-protein interaction networks from
high-dimensional data [1, 2]. In order to address this chal-
lenge, a wide range of network inference methods have
been developed such as methods based on correlation
or concentration matrices, mutual information, Bayesian
networks, ordinary differential equations (ODEs), and
Boolean logic [3, 4]. In addition, high-throughput exper-
iments still remain to be costly, and therefore, experi-
ments are usually carried out for a setting with many
more genes or proteins than samples. Traditional statis-
tical methods are usually ill-posed in this small n large
p scenario, and novel methods from high-dimensional
statistics that assume further structure, such as sparsity,
are a good choice for graph reconstruction in this scenario
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[5]. Correlation methods that are based on the covari-
ance matrix estimation are widely used in reconstruct-
ing gene co-expression and module graphs, especially in
large-scale biomedical applications [6–8]. However, the
edges of the interaction graph resulting from correlation
methods include indirect dependencies due to transitive
nature of interactions. Accordingly, the effect of indirect
edges is getting more dramatic as the graph size grows,
and this leads to an inaccurate graph reconstruction. In
contrast, methods based on the concentration or partial
correlation matrix allow to infer only direct dependencies
between variables. In this respect, one can differentiate
two graph types resulting from correlation and partial
correlation-based methods which we will call covariance
and concentration graphs on the following, respectively.
Despite the fact that the covariance graph includes indi-
rect dependencies, it is widely used in applications to
represent sparse biological graphs by performing simple
hard-thresholding [6] or through estimating the covari-
ance matrix with shrinkage methods [9].
The aim of the paper is to shed light on the relation

between covariance and concentration graphs and how
this relation can be exploited to study the performance of
correlation and partial correlation-based methods. In this
manuscript, we provide a practical guide for researchers
when using correlation and partial correlation methods
and we believe that understanding these two concepts
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allows for a better selection of methods for graph recon-
struction problems from high-throughput biological data.
In particular, we discuss different scenarios using simple

examples when it is possible to eliminate indirect depen-
dencies in the covariance graph by hard-thresholding and
when it is not. Furthermore, we review recent methods
that address the problem of direct and indirect depen-
dencies in reconstructed graphs [10, 11] and provide new
insights into those methods, both analytically and numer-
ically. Moreover, we perform in silico comparison of two
correlation-based and three partial correlation methods
on different graph topologies in the high-dimensional
case under the setting when the number of variables p
exceeds the sample size n. The selected methods are pop-
ular approaches that are widely used in reconstructing
large-scale gene regulatory and protein-protein interac-
tion graphs. The first correlation method is based on the
sample covariance matrix estimation where one applies
hard-thresholding on the entries of sample covariance
matrix to eliminate indirect edges in the covariance graph
[12]. The second method estimates a sparse version of
the covariance matrix via a shrinkage approach [9]. The
partial correlationmethods that we consider are the node-
wise regression method [13], where partial correlations
are computed via linear regression, the graphical Lasso
method [14] which reconstructs a concentration graph by
directly solving for the sparse version of the concentration
matrix and an adaptive version of nodewise regression
which determines the concentration graph in a two-stage
procedure.

2 Notation and preliminaries
In the following, we define general notations and symbols
which will be used throughout the manuscript. Consider
the p-dimensional multivariate normally distributed ran-
dom vector

X = (X1, . . . ,Xp)
T ∼ Np(0,�) (1)

with mean zero and covariance �. We assume n i.i.d.
observations of X which are given in terms of the n × p
matrix X = (X1, . . . ,Xp), where Xi is n × 1 vector with
i = 1, . . . , p. Then, the sample covariance matrix reads

S = 1
n
XTX. (2)

Reconstructed and true graphs are written in terms of
a undirected graph G = (�,E), with � = {1, . . . , p} the
set of variables or nodes and E ⊆ � × � is a set of edges.
Sometimes, we will also deal with weighted graphs where
we extend G to contain a weight function w : E → R,
such that wij denotes the weight of the edge (i, j) ∈ E. In
this paper, we will consider two types of graphs.
1. Covariance graph. The graph in this case is based

on the covariance matrix �, and the zero entries of the

covariance matrix �ij = 0 indicate that the nodes i
and j are independent [15]. More generally, in terms of
probability distributions, we have

Xi |=Xj ⇔ p(Xi,Xj) = p(Xi)p(Xj).

We denote the covariance graph as G̃ = (�, Ẽ), accord-
ingly. There is an edge between any two nodes i and j if
�ij �= 0 and no edge if �ij = 0. This type of graphs is
popular in genomics (for more information, see [16]).
2. Concentration graph. The graph is based on the con-

centration matrix or inverse covariance matrix � ≡ �−1,
and zero entries of the concentration matrix �ij = 0
indicate that any nodes i and j are conditionally inde-
pendent given the other nodes. In terms of probability
distributions, for arbitrary k ∈ N , k �= i, j it means

Xi |=Xj|Xk ⇔ p(Xi|Xj,Xk) = p(Xi|Xk) or
Xi |=Xj|Xk ⇔ p(Xi,Xj|Xk) = p(Xi|Xk)p(Xj|Xk)

Non-zero entries of the concentration matrix corre-
spond to partial correlations ρij through the relation

ρij = − �ij√
�ii�jj

, (3)

for i �= j and ρij = 1 for i = j. There is an edge in
the concentration graph between nodes i and j if ρij �= 0
and no edge if ρij = 0 (equivalently for �ij). Hence,
the concentration graph is equivalent in topology to the
graph defining the probabilistic graphical model for the
Gaussian case and coincides with the graph defining the
associated Gaussian Markov random field. Throughout
this paper, we will assume that the true interaction graph
corresponds to the concentration graph and therefore
refer to it as G = (�,E).
In the following, we give a definition of direct and

indirect edges in the covariance graph which will be con-
venient throughout the paper.

Definition 1 Let’s denote the sets of direct and indirect
edges in the covariance graph G̃ as Ẽ′ and Ẽ′′, respectively,
with Ẽ = Ẽ′ ∪ Ẽ′′. The set of direct edges is then defined
as Ẽ′ = E whereas the set of indirect edges is defined as
Ẽ′′ = Ẽ \ E.

3 How are covariance and concentration graphs
related?

In this section, we will discuss the relationship between
covariance and concentration graphs. In particular, we
will discuss how to estimate the covariance graph, when
the concentration graph is known. We first start by giving
some facts about graphical Gaussian models [17].
Let Xd, d = 1, . . . , n be independent samples of

N (μ,�). The log-likelihood function of the observation
Xd is given by
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L(μ,�) = − n
2
log det� − 1

2

n∑

d=1
(Xd − μ)T�−1(Xd − μ)

= n
2
(− log det� − tr(�−1S)−

− (X̄ − μ)T�−1(X̄ − μ)),

where X̄ represents the sample mean and S represents the
sample covariance matrix. It is then possible to uniquely
estimate the mean μ and the covariance matrix � using
�ij = 0 as a constraint. Let C ⊂ � be a clique of the
graph G that represents a maximal subset of nodes in the
graph, such that every node of the set is connected to
every other node. Denote SC as the submatrix of S corre-
sponding to that clique. Then, we can recall the following
theorem [17].

Theorem 1 If p < n, then the maximum-likelihood esti-
mator (μ̂, �̂) exists and is determined by
(i) μ̂ = X̄
(ii) (i, j) /∈ E ⇒ �ij = 0,∀i, j ∈ �, i �= j
(iii) �̂C = SC for all cliques C in G
The solution to (i) − (iii) is unique if S is nonsingular.

Where μ̂ and �̂ represent the estimated mean and the
covariance matrix, respectively. The theorem states that
there is a unique �̂ which shares the same elements with S
for the index pairs (i, j) which are non-zero and satisfy the
constraint �ij = 0. For example, let us consider a simple
graph with three nodes, p = 3, X = (X1,X2,X3)T , where
X1 |=X3|X2 which implies �13 = 0. In matrix form, this
gives

� =
⎛

⎝
× × 0
× × ×
0 × ×

⎞

⎠

where (×) represents non-zero entries. According to
Theorem 1, the maximum likelihood estimator is given as
μ̂ = μ̄ and

�̂ =
⎛

⎝
s11 s12 ×
s21 s22 s23
× s32 s33

⎞

⎠ ,

where (×) for this case computes to s12s23/s22.
From this result, one can see that all elements of �̂

are determined by entries of sample covariance matrix S.
Except �̂13 and �̂31, all elements are the same as in S.
This is a nice result from maximum likelihood estimation
but it works only in the regime p < n, where the sample
covariance matrix S is non-singular.
The relationship between the concentration and covari-

ance graphs can be understood by the transitive closure
operation [18] which we define in the following way. First,
we give a definition for a path.

Definition 2 For a weighted graph G = (�,E,w) with
weight function w : E → R, a path σ between nodes i
and j is an ordered sequence of 2-tuples of the form σ =
((i, k1), (k1, k2), . . . , (km, j)) ∈ Pm ⊆ Em. We call m the
length of the path and define wσ

ij = wik1wk1k2 · · ·wkmj as
the path weight.

With that, we define the transitive closure as follows.

Definition 3 The transitive closure of a weighted graph
G = (�,E,w) is a weighted graph G∗ = (�,E∗,w∗), with
(i, j) ∈ E∗ iff there exists a path σ ∈ Pm from i to j in G
for some m ∈ N and with edge weights w∗

ij = ∑
σ∈P(i,j) wσ

ij ,
where P(i, j) is the set of all distinct paths connecting (i, j)
in G of any length m ∈ N.

We associate to G and G∗ their weighted adjacency
matrices denoted A and A∗, respectively. Observe that
G∗ contains self-loops or cycles (e.g., for a node i with
at least one edge, i is connected to i by a path of length
two through i → j → i), and hence, A∗ will have non-
zero diagonal entries. The transitive closure of the graph
is depicted in Fig. 1a for illustration.
Subsequently, we use the example graph depicted in

Fig. 1b.
It is a simple graph with three nodes, � = {X1,X2,X3}

and with the edge set E = {
(X1,X2), (X1,X3)

}
. We assume

that this graph is weighted and edge weights are given by
A12 andA13 (Fig. 1b (left)). The adjacencymatrix ofG then
reads

A =
⎛

⎝
0 A12 A13
A12 0 0
A13 0 0

⎞

⎠ . (4)

We remark that the adjacencymatrix (4) is not invertible
and generally sparse.
Observing (3), we can construct, without loss of gen-

erality, from A a partial correlation matrix of the form

ρ = I + A and hence � = D(I − A)D, (5)

where D is a diagonal scaling matrix to be chosen to
determine the diagonal elements of �, i.e., �ii = D2

ii or
Dii = √

�ii. Naturally, under the performed column and
row scaling, � inherits the zero patterns of A determined
by G. Moreover, we have

� = D−1(I − A)−1D−1 (6)

that can be cast into

� = D−1(I + A + A2 + A3 + · · · )D−1 (7)

using the Neumann series, which is convergent for
||A|| < 1. Denoting by σ(A), the spectral radius of A, then
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Fig. 1 a Transitive closure of a graph with four nodes. Solid edges indicate existing or direct edges in the graph, whereas dashed edges indicate
indirect edges which are added to the graph as the result of the transitive closure effect. b Three-dimensional true graph (left), the transitive closure
of the true graph (middle), and the corresponding covariance graph constructed from the covariance matrix (right). c The illustration of a star graph.
d (left) The true example graph which corresponds to the concentration graph, G, and (right) the covariance graph, G̃ constructed from the
covariance matrix. The true graph is sparse, and the covariance graph is fully connected. e The covariance graph, G̃ with edge weights given by the
correlation matrix C (the graph is predicted by thresholding the correlation matrix). (left) The graph structure when the condition (A.11) holds (see
Additional file 1). (right) The graph structure when (A.12) holds (see Additional file 1). Distribution of direct and indirect edges of the covariance
graph (p = 500), when f Ai(i+1) ∼ N (0.4, 0.0005), i = 1, . . . , p − 1 and g Ai(i+1) ∼ N (0.4, 0.5), i = 1, . . . , p − 1. Vertical line (blue) indicates the
optimal threshold that separates two distributions (For more information about e, f, and g, see the text in the Additional file 1)

through Gelfand’s theorem by which there exists a k > 0
such that ||Ak|| < 1 if σ(A) < 1, the series more generally
converges for σ(A) < 1. We now recall from graph the-
ory that A2 can be seen as an adjacency matrix of a new
graph constructed from G by connecting nodes that can
be reached by a path of length two in G. Generally, entry
(i, j) in Am will be non-zero if there is a path of length m
in G connecting (i, j), where we observe that the diagonal
elements ofAm need not be zero anymore, due to the pres-
ence of possible cycles of lengthm inG. The value at entry
(i, j) of Am or the weight of edge (i, j) is then the prod-
uct of weights along one path in G and then summed over
all the paths connecting (i, j). Accordingly, the convergent
infinite sum

∞∑

m=1
Am = (I − A)−1 − I = A(I − A)−1 (8)

yields an adjacencymatrix of a graph that contains an edge
between (i, j) if there exists a path of any length (i, j) in G.
The graph associated with this infinite sum coincides with
G∗, the transitive closure of G, i.e., A∗ = ∑∞

m=1 Am and
hence

� = D−1(I + A∗)D−1. (9)

The following observations are then immediate. Not-
connected subgraphs (disjoint) in the concentration graph
G transform to not-connected components in the covari-
ance graph. Moreover, taking aside potential cancelation
of weights, the subgraphs in G∗ are dense, i.e., are fully
connected. Using this infinite sum, we show that for spe-
cial graphs, it is easy to compute single entries of � from
the adjacency matrix A without complete matrix inver-
sion. Generally, the diagonal entries of the concentration
matrix � are distinct, and therefore, we assume D in the
example to be

D =
⎛

⎝
d1 0 0
0 d2 0
0 0 d3

⎞

⎠ .

We start first with the entry �12 = �21 representing the
direct edge in the covariance graph. It is possible to repre-
sent the corresponding entry in terms of infinite sums by
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�12 = 1
d1d2

(A12 + A3
12 + A12A2

13 + A5
12 + 2A3

12A
2
13

+ A12A4
13 + A7

12 + 3A5
12A

2
13

+ 3A3
12A

4
13 + A12A6

13 + . . .).
(10)

This infinite sum represents geometric series and is con-
vergent. We then multiply this infinite sum with (A2

12 +
A2
13) and compute the following difference which simpli-

fies to

�12 − (A2
12 + A2

13)�12 = A12
d1d2

. (11)

Dividing both sides of the equality by (1 − A2
12 − A2

13)
gives

�12 = A12

d1d2(1 − A2
12 − A2

13)
. (12)

The right hand side of (12) can be expressed with the
corresponding entry of the adjacency matrix of the transi-
tive closure graph

�12 = A∗
12

d1d2
. (13)

Using the same approach for the entry �23 = �32 yields

�23 = A12A13

d2d3(1 − A2
12 − A2

13)
= A∗

23
d2d3

. (14)

The same approach holds for diagonal elements as all
entries of the covariance matrix have the same denomina-
tor (1 − A2

12 − A2
13).

The covariance matrix is then given by

� = 1
Z

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1
d21

A12
d1d2

A13
d1d3

A12
d1d2

1 − A2
13

d22

A12A13
d2d3

A13
d1d3

A12A13
d2d3

1 − A2
12

d23

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (15)

where Z = 1 − A2
12 − A2

13.
Equivalently,

� =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 + A∗
11

d21

A∗
12

d1d2
A∗
13

d1d3
A∗
12

d1d2
1 + A∗

22
d22

A∗
23

d2d3
A∗
13

d1d3
A∗
23

d2d3
1 + A∗

33
d23

⎞

⎟⎟⎟⎟⎟⎟
⎠

(16)

= D−1(I + A∗)D−1.

To sum up, the entries of the covariance matrix can
be obtained by applying the transitive closure from
Definition 3 on the concentration graph in addition
to a general scaling through D. Interestingly, for par-
ticular graphs, as the example above, more structure
of the concentration graph can be exploited for com-
puting the transitive closure and hence the covariance
matrix.
For instance, the following result provides the expres-

sions of the transitive closure for a star graph Fig. 1c.

Proposition 1 Consider a star graph with |�| = p, |E| =
p− 1 and adjacency matrix A. Denote the index of the hub
node of the star by k and define c = 1 − ∑p

l=1 AklAlk, then
∀i �= k and ∀j �= k we have A∗

ij = AikAkj/c, A∗
ik = Aik/c,

and A∗
kk = 1/c − 1.

The proof of Proposition 1 is given in Additional file 1.
The result moreover indicates that the entries of the tran-
sitive closure matrix A∗ could be related to each other.
A simple relation can be obtained by considering the
correlation matrix, i.e., the normalized version of the
covariance matrix
C = �−1��−1

with diagonal scaling matrix � with elements �ii =√
�ii. In order to formalize the relation, we introduce the

following variant of transitive closure.

Definition 4 The minimal transitive closure T of a
weighted graph G = (�,E,w), G �→ T(G) is the weighted
graph G̃ = (�, Ẽ, w̃) with (i, j) ∈ Ẽ iff there exists a path
between (i, j) with edge weights w̃ij = ∑

σ∈P̃(i,j) w
σ
ij where

P̃(i, j) is the set of distinct paths σij that are of minimal
length.

With that, we have the following.

Proposition 2 Consider a concentration graph that is
a star graph G = (�,E,w) and denote its associated
covariance graph as G′ = (�′,E′,w′), with weights w′
corresponding to the correlation coefficients. Defining the
graph Ĝ = (�,E, ŵ) with ŵij = w′

ij for all (i, j) ∈ E, then it
holds that T(Ĝ) = G′.

The proof of Proposition 2 is given in Additional file 1.
This proposition indicates that the covariance graph with
weights from the correlation matrix is the minimal transi-
tive closure of the concentration graph with weights given
by the correlationmatrix, i.e., indirect edge weights can be
obtained by closure on the direct edges.
In the following, we demonstrate an application of

Proposition 2 for our running example. A diagonal scaling
matrix for this example � computes to
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� = 1√
Z

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
d1

0 0

0

√
1 − A2

13

d2
0

0 0

√
1 − A2

12

d3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Z = 1 − A2
12 − A2

13. Then, we calculate the
correlation matrix

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
A12√
1 − A2

13

A13√
1 − A2

12
A12√
1 − A2

13

1
A12A13√
f (A12,A13)

A13√
1 − A2

12

A12A13√
f (A12,A13)

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where f (A12,A13) = (1 − A2
12)(1 − A2

13).
Here, the edge weights of the covariance graph are

defined in terms of the edge weights of the concentration
graph

Ã1 = A12√
1 − A2

13

, Ã2 = A13√
1 − A2

12

Ã3 = A12A13√
(1 − A2

12)(1 − A2
13)

.
(17)

We observe that the exact relation holds Ã3 = Ã1Ã2,
and the covariance graph can be regarded as the transitive
closure of the concentration graph with edge weights Ã1
and Ã2.
Further examples of the set of graph for which this rela-

tion holds are chain graphs and tree graphs, which are
numerically shown in our study.

3.1 Estimating sparse covariance graph via
hard-thresholding the covariance matrix

After establishing a link between concentration and
covariance graphs, we discuss how to obtain a sparse
covariance graph by performing hard-thresholding on the
entries of the covariance matrix with concrete exam-
ples that are given in Fig. 1d, e. Here, our goal is to
examine when it is possible to get the covariance graph
which is similar to the concentration graph in terms of
non-zero edges after hard-thresholding is applied. In par-
ticular, we give simple conditions on the entries of an
adjacency matrix that allow the covariance graph to pre-
serve a corresponding set of edges as in the concentration
graph. A detailed description of this section is given in
Additional file 1.

3.2 Graph reconstruction via network deconvolution
As we stated earlier, the concentration and covariance
graphs can be related via the Neumann series. In the
following, we briefly review a network deconvolution
approach by Feizi et al. [10], which is based on a similar
idea. A closely related method, called network silencing, is
proposed in [11]. Strictly speaking, both methods are only
applicable in the setting p < n.
For an unknown adjacency matrix A, [10] assume to

be given a so-called observation matrix �M related to A
through

�M = A(I − A)−1 = A + A2 + A3 + . . .+, (18)

which coincides with our definition of a transitive clo-
sure of A in (8). For many applications considered in
[10], the observation matrix is taken to be the covariance
or correlation matrix computed from experimental data.
Comparing (18) with (6) indicates that the assumed form
of the observation matrix does not cover the general form
for covariance or correlation matrices.
The authors then solve for A in (18) to obtain

A = �M(I + �M)−1, (19)

which was coined network deconvolution and aims to
recover the graph of direct edges. Observing (9) indicates
that the rank deficiency of a covariance matrix obtained
from n < p samples also implies a rank deficiency of (I +
A∗) which is the matrix to be inverted in network decon-
volution according to (19). Hence, deconvolution cannot
be applied directly for p > n unless one applies regu-
larization, for instance, through hard-thresholding [19].
Contrasting the definition (18) of �M given in [10], the
authors finally use a modified version where the diagonal
elements are set to zero leading to an inconsistency in the
definition of the deconvolution (19). As discussed earlier,
the transitive closure (18) has indeed non-zero diagonal
entries due to cyclic paths made possible through higher
order terms. Consequently, redefining �M = A∗ − V ,
with a diagonal matrix V = diag(A∗), the exact network
deconvolution for the adapted transitive closure would
read

A = �M(I + V + �M)−1 + V (I + V + �M)−1. (20)

However, resorting to the Neumann series again, we see
that the zero patterns of (20) and (19) coincide, and hence,
this adaptation does not affect the obtained the graph
structure. Subsequently, we consider the scaled version of
network deconvolution which is mainly used in [10]

Ã = α�M(I + α�M)−1, (21)

where α is a scaling parameter that should control the
convergence of the matrix inversion in (19).
Although the expression (19) is general, [10] state that

a necessary assumption of network deconvolution is that
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indirect edge weights encoded in �M can be expressed as
a product of direct edge weights along the path according
to A. However, it is not clear which type of graphs A give
rise to such a weight relation in the observation matrix
(e.g., see Proposition 2 and its discussion). In the follow-
ing, we demonstrate that such a relation holds for chain
graphs for any α.

3.2.1 Network deconvolution for chain graphs
We first start with a small case study and further general-
ize it to arbitrary dimensions. Consider a four-node graph
given in Fig. 1d (right) which contains six edges, out of
which three are indirect ones. For simplicity, we assume
that direct edges are given by θ = �12 = �13 = �24 and
that second-order and third-order edges are s1 = �14 =
�23 and s2 = �34, respectively. We then get the following
observation matrix representing the covariance graph

�M =

⎛

⎜⎜
⎝

0 θ s1 s2
θ 0 θ s1
s1 θ 0 θ

s2 s1 θ 0

⎞

⎟⎟
⎠ . (22)

Following the assumptions in [10], we investigate how
the indirect and direct edges have to be related for a given
α such that deconvolution is exact. Therefore, we compute
(21) and determine when indirect weights in Ã are zero. It
corresponds to solving a system of two equations for the
indirect edges s1 and s2

θ3α2 − s2θ2α2 + s21θα2 − 2s1α + s2 = 0
−θ2α − s2θα + s21α + s1 = 0.

Alternatively, one can see that for general s1 and s2,
there exists no single scaling parameter α that satifies
both equations. For s1 and s2, we then get the following
solutions

s1,1 = 2θ2α2 − 1
α

and s1,2 = αθ2 (23)

s2,1 = 4θ3α2 − 3θ and s2,2 = α2θ3. (24)

Considering the second solutions s1,2 = αθ2 and s2,2 =
α2θ3, one finds that indirect edge weights are indeed the
product of direct edges along the path.
One can intuitively extend this relation to higher-order

indirect edges as a network size grows as
(α3θ3,α4θ5, . . . ,αp−2θp−1) where p is the number of vari-
ables.
We rewrite this relation in a compact form

Sk = αk−1θk , k = 2, . . . , p − 1, (25)

where Sk represents indirect edges of k-th order.

In the following, we show what happens when the rela-
tion (25) holds. We therefore define the general observa-
tion matrix using (25) as

�M =

⎛

⎜⎜⎜⎜⎜
⎝

0 θ αθ2 . . . αp−2θp−1

θ 0 θ . . . αp−3θp−2

αθ2 θ 0 . . . αp−4θp−3

...
...

...
. . .

...
αp−2θp−1 αp−3θp−2 × . . . 0

⎞

⎟⎟⎟⎟⎟
⎠
.

For (21), we then calculate B = I + α�M, that is

B =

⎛

⎜⎜⎜⎜⎜
⎝

1 αθ α2θ2 . . . αp−1θp−1

αθ 1 αθ . . . αp−2θp−2

α2θ2 αθ 1 . . . αp−3θp−3

...
...

...
. . .

...
αp−1θp−1 αp−2θp−2 × . . . 1

⎞

⎟⎟⎟⎟⎟
⎠
,

which is known as the Kac-Murdock-Szëgo matrix, i.e., a
symmetric Toeplitz matrix [20, 21] with elements

Bij = (αθ)|i−j|, |θ | < 1, i, j = 1, . . . , p. (26)

This matrix has a simple tridiagonal inverse

B−1 = W

⎛

⎜⎜⎜⎜⎜
⎝

1 −αθ 0 · · · 0
−αθ 1 + α2θ2 −αθ · · · 0
...

. . . . . . . . .
...

0 · · · −αθ 1 + α2θ2 −αθ

0 · · · 0 −αθ 1

⎞

⎟⎟⎟⎟⎟
⎠
,

whereW = (1 − α2θ2)−1.
Finally, we calculate the deconvolved adjacency matrix

Ã = α�MB−1 from (21)

Ã = W

⎛

⎜⎜⎜⎜⎜
⎝

−α2θ2 αθ 0 . . . 0
αθ −2α2θ2 αθ . . . 0
...

. . . . . . . . .
...

0 . . . αθ −2α2θ2 αθ

0 . . . 0 αθ −α2θ2

⎞

⎟⎟⎟⎟⎟
⎠
,

which is again a tridiagonal matrix that represents a chain
graph. Observation matrices obtained from data will not
obey to this specific structure, hence the named product
rule does not apply in general.

3.2.2 Effect of scaling parameter on the output of network
deconvolution

The scaling parameter α is introduced in [10] to improve
network deconvolution. However, we show with sim-
ple examples that particular choices for α can lead to



Sulaimanov and Koeppl EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:19 Page 8 of 20

unwanted elimination of direct edges. We again consider
the four-node graph that contains three direct and three
indirect edges which are θ1, θ2, θ3 and s1, s2, s3, respec-
tively. The assignment of direct and indirect edges cor-
responds a chain graph. The observation matrix is given
by

�M =

⎛

⎜⎜
⎝

0 θ1 s1 s2
θ1 0 θ2 s3
s1 θ2 0 θ3
s2 s3 θ3 0

⎞

⎟⎟
⎠ (27)

We element-wise solve the network deconvolution
problem (21) and solve for α such that a particular direct
edge, i.e., θ1 in Ã will be zero. In particular,

α
θ1
1,2 = θ2s1 + s2s3 ± √


θ1

2Mθ1


θ1 = (θ2s1 + s2s3)2 − 4θ1Mθ1

Mθ1 = −θ1θ
2
3 + θ2θ3s2 + θ3s1s3.

(28)

It is easy to derive the same for other direct edges. If the
scaling parameter is chosen as in (28), then only the direct
edge θ1 will be zero, whereas other edges including indi-
rect edges will be non-zero. In applications, it is difficult to
choose the scaling parameter for which network deconvo-
lution discriminates correctly between direct and indirect
edges. The user needs to be aware of the fact that for some
choices of α network, deconvolution can negatively affect
the accuracy by removing direct edges instead of indirect
ones.
In the following, we investigate how this scaling param-

eter affects indirect edges of different order with numer-
ical simulations. For this purpose, we choose a six-node
chain graph, generate synthetic data using the workflow
illustrated in Fig. 4, and compute the correlation matrix.
The covariance graph reconstructed from the correlation
matrix is accordingly fully connected and has five direct
and ten indirect edges, where edges of the same order
were assigned the same weight.
To quantify the effect of network deconvolution with

different scaling parameters, we measure the discrimina-
tive ratio

r = log
〈Adir

ij 〉/〈Aindir
ij 〉

〈�dir
M,ij〉/〈�indir

M,ij 〉 , (29)

where 〈Adir
ij 〉 and 〈�dir

M,ij〉 are the average weights of direct
edges in Ã and �M, whereas 〈Aindir

ij 〉 and 〈�indir
M,ij 〉 repre-

sent the average weights of indirect edges in Ã and �M,
respectively. The average is taken over all edges of the
same order. We compute the discriminative ratio for each
order separately.

A positive log-ratio indicates that network deconvolu-
tion can better discriminate direct and indirect edges than
in the covariance graph, while a negative log-ratio shows
the opposite. For instance, for positive log-ratios, hard-
thresholding on the deconvolved matrix would yield more
accurate results. However, Fig. 2b shows that edges of dif-
ferent order are better discriminated at different values
of α. Thus, the effect of α is not uniform for all indi-
rect edges which means that any improved discrimination
after deconvolution is due to edges of some order. For
example, for α ∈ (0.5, 1.5) network, deconvolution bet-
ter discriminates the second, fourth, and fifth order edges,
whereas it fails to discriminate the third order edge. For
α ∈ (1.5, 2), the method fails to better discriminate any
edge. With simulations, we also show that both network
deconvolution and network silencing approaches can help
better discriminate direct and indirect edges if edges are
already separable in the covariance graph as it is shown
in Fig. 2c. If the absolute values of some indirect edges in
the covariance graph are larger than the absolute values of
direct edges, then both methods fail to discriminate them
(Fig. 2d).

4 Methods
In this section, we give a brief overview of meth-
ods that are used in our comparison study. For a fair
comparison, we select two correlation and three par-
tial correlation-based methods (Table 1). Correlation-
based approaches are the thresholded covariance and
the covariance Lasso methods [9]. Partial correlation-
based approaches are the nodewise regression Lasso
[13], the graphical Lasso [14], and the adaptive Lasso.
The intuition behind a selection of these methods is
their simplicity in terms of free parameters, and all
considered methods contain only one free parameter.
These parameters are the element-wise thresholding for
the thresholded covariance matrix and sparsity inducing
penalty parameters for the covariance Lasso, the nodewise
regression Lasso, the graphical Lasso, and the adaptive
Lasso. Here, Lasso methods are L1-regularization-
based approaches, meaning that all include a penalty
term ||.||1.

4.1 Correlation-basedmethods
4.1.1 Hard-thresholding of sample covariancematrix
The simplest way to reconstruct the covariance graph is
based on the sample covariance matrix which is easy to
compute. However, the graph resulting from the sample
covariance matrix is fully connected. One way to recon-
struct a sparse covariance graph is to threshold the sample
covariance matrix. This method is popular in applica-
tions; for instance, it is at the core of WGCNA package
[6]. One study showed that the connected components of
the concentration graph can be completely described by
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ba

dc

Fig. 2 Simulation study for network deconvolution (ND). a Illustration of a graph with direct and indirect edges of different order; original graph is a
chain graph. b Simulations conducted on the graph depicted in (a) with different scaling parameters. Shown is the log discriminative ratio given in
(29). c Effect of network deconvolution on direct and indirect edges. If the indirect edges are clearly separable in the covariance matrix, then
network deconvolution can better separate them from direct edges. d If direct and indirect edges are not separable in the covariance matrix, then
network deconvolution cannot separate them too

the covariance graph obtained by thresholding the sample
covariance matrix [12] (Fig. 3).
However, a selection of the threshold is hard to tackle

analytically. Recently, some methods have been developed
to choose the threshold from the data [19, 23, 24]. How-
ever, these methods have been designed for the case p < n
and do not perform well in the p > n setting.
Graph reconstruction with thresholding the sample

covariance matrix based on the scale-free criteria of the
graph is widely used in practice, especially in biomedical
applications [7, 25], and often applied in case p > n. In
the following, we are going to briefly review this method.
Scale-free graphs are characterized by a power law degree
distribution

P(k) = bk−γ , (30)

Table 1 A list of graph reconstruction methods considered in
this study

Methods Category

Thresholded sample covariance [6] Correlation

Covariance Lasso [9] Correlation

Nodewise regression Lasso [13] Partial correlation

Graphical Lasso [14] Partial correlation

Adaptive Lasso [22] Partial correlation

where k is the node degree, γ is the degree exponent, and
b is the normalization constant [26, 27]. Some biological
graphs have been reported to exhibit a power law have
degree distributions with 2 < γ < 3 [27].
Assume a sample covariance matrix S defined as in

(2). We further define the thresholding operation Td(Sij)
yielding sample covariance matrix elements thresholded
at d. To choose the threshold d, we fit an affine func-
tion f (k) = −γ̂ k + b̂ to the empirical degree distri-
bution of a graph obtained by thresholding at d in the
log domain and compute the R2 value of the fit (0 <

R2 < 1) (Fig. 3 (left)). In addition, we also compute
mean degrees k̄ = p−1 ∑p

i=1 k̃i, where k̃i = ∑p
j=1 Td(Sij)

(Fig. 3 (right)). In particular, we are interested in high R2

values and, for sparsity, low mean degree values k̄. We
also require γ̂ > 0, so that the slope of the fitted linear
function is negative. High R2, low mean degree values, k̄
and γ̂ > 0 give rise to graphs with a few connections
and that a few nodes have more connections compared
to other nodes. This indicates that the graph obtained
from Td(S) is approximately scale-free. So far, we have
introduced a sparse covariance estimation using hard-
thresholding where hard-thresholding is performed after
the estimation of the sample covariance matrix. In the
following section, we discuss a direct estimation of the
sparse covariance matrix in which no hard-thresholding is
involved.
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Fig. 3 Selecting a hard-threshold based on the R2 and the mean degree values which are plotted versus hard-thresholding values. The
hard-thresholded values starting from 0.3 give rise to scale-free topology except 0.7 and higher. The correspondingmean degree values are relatively
low indicating a sparsity of the underlying graph. The numbers in the plot represent different thresholds which are plotted for illustration purposes

4.1.2 Covariance Lasso
In this section, we shortly review the sparse covari-
ance matrix estimation introduced in [9] which is called
Covariance Lasso. In contrast to hard-thresholding intro-
duced in the previous section, the sparsity in the covari-
ance matrix is achieved by minimizing a log-likelihood
function of the form

L(�|S) = log det� + tr(�S) + λcov||P ◦ �||1, (31)

where S is the sample covariance matrix as defined in (2)
and λcov is the penalty parameter which induces sparsity
in off diagonal elements of �, whereas P is a matrix with
nonnegative elements and ◦ denotes elementwise multi-
plication. The matrix P can be chosen as the matrix of
ones or zeros on the diagonal to avoid shrinking diago-
nal elements of �. The objective function given in (31) is
nonconvex which is due to the term log det� and has sev-
eral local minima, which makes the optimization problem
difficult. Since the objective function contains convex and
concave terms, a majorization-minimization approach is
used to solve the problem. This approach was successfully
applied earlier on similar problems [28, 29]. The concave
part of the objective function (31) is approximated by its
tangent at �0

log det� ≤ log det�0 + tr(�0(� − �0)). (32)

Then, the majorized function is convex and given by

f (�,�0|S) = log det�0 + tr(�0�)−
− tr(�0�0) + tr(�S)+
+ λcov||P ◦ �||1,

(33)

where �0 = S or �0 = diag(S) and �0 = �−1
0 . So one

needs to estimate the covariance matrix by

�̂ = argmin
��0

f (�,�0|S). (34)

In the case p > n, the sample covariance matrix S is not
full rank, and to avoid this, one needs to use S = S + sI,
for some small regularizing parameter s > 0.
In applications, the penalty parameter λcov should be

determined from the data and K-fold cross-validation is
used for this purpose. First, the samples (1, . . . , n) which
correspond to the rows of the design matrix X are par-
titioned into K subsets which are used as training and
validation sets. Initially, the covariancematrix is estimated
as in (34) using the training set. We denote it as �̂T . The
validation set is used to compute the sample covariance
matrix, which we denote as SV . The penalty parameter is
then computed via

λCVcov = argmax
λ>0

{
1
K

K∑

i=1
L(�̂T |SV )

}
, (35)

where L(�̂T |SV ) is defined in (31).

4.2 Partial correlation-basedmethods
4.2.1 Nodewise regression Lasso
In this section, we discuss an efficent partial correlation-
based method that estimates the concentration graph
through independent shrinkage regressions [13]. Accord-
ingly, we assume Xi, i ∈ � to be a response variable and
X\i to be thematrix of predictor variables consisting of the
remaining p − 1 variables. In order to get an estimate for
the node i ∈ �, one regresses this node with the remaining
nodes j ∈ � \ {i} and get a linear model of the form

Xi = X\iβ i + εi, (36)

where vector β i is the set of p − 1 regression coefficients
associated to node i and E[ εi]= 0. Denoting an element
of vector β i as the regression coefficient β i

j , with j ∈ �\{i},
then this coefficient can be related to the concentration
matrix as

β i
j = �ij/�ii for j �= i. (37)
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Using (3), it is hence also possible to represent the
regression coefficients in terms of partial correlations

β i
j = −ρij

√
�jj

�ii
. (38)

From this relationship, one can notice that regression
coefficients correspond to normalized partial correla-
tions. The regression coefficients from the linear model
(36) are estimated via traditional Lasso [30]

β̂
i = argmin

β i

(
1
n

||Xi − X\iβ i||22 + λL||β i||1
)
, (39)

where λL > 0 denotes the penalty parameter. In order
to estimate a whole graph, this procedure is applied to
all nodes, by regressing each node by the remaining
nodes. Nodewise regression Lasso returns sparse esti-
mates which are not symmetric. In particular, there are
two different estimates for each edge between any two
nodes, which are estimated from two different regression
problems. To decide for the absence or presence of the
corresponding edge in the concentration graph, AND and
OR operations are proposed in [13], i.e., an edge (i, j) is
present if β̂ i

j and/or β̂
j
i are non-zero.

4.2.2 Graphical Lasso
One way to reconstruct the concentration graph is by
directly estimating the concentration matrix which ele-
ments correspond to normalized partial correlations
which can be seen from (37) and (38). One can estimate
the concentration matrix by maximizing the penalized
log-likelihood function of the form

L(�|S) = log det� − tr(S�) − λG||�||1, (40)

where λG is the parameter which controls the size of the
penalty. This log-likelihood function is convex and can be
solved by a block coordinate descent method proposed
in [31]. The estimated concentration matrix is symmet-
ric, and there are no additional AND or OR operations
needed.

4.2.3 Adaptive Lasso
In applications, the penalty parameters λL in (39) and λG
in (40) are chosen by cross-validation. However, a cross-
validated choice of these penalty parameters does not
lead to a consistent model selection and leads to overes-
timation [5, 13]. Therefore, it is suggested to apply cross-
validation using the adaptive Lasso (adaptive version of
nodewise regression) which gives a sparser solution com-
pared to cross-validation with nodewise regression and
graphical Lasso. Given the data where the underlying
graph is not known, it is challenging to determine a good
Lasso penalty from the data. One study showed that it
is possible to assign different weights to different coeffi-
cients thereby allowing the coefficients to be non-equally

penalized in the L1 penalty [22]. This is achieved by the
following estimator:

β̂
i = argmin

β i

⎛

⎝1
n

||Xi − X\iβ i||22 + λL

p∑

j �=i

|β i
j |

|β̃ i
j |

⎞

⎠ , (41)

where β̃
i are initial estimates from (39) and used as

weights. It is suggested to estimate β̃ i with the penalty
parameter computed through cross-validation. In the sec-
ond step, it is suggested to select the penalty parameter
again by cross-validation in the adaptive Lasso. The adap-
tive Lasso has the property that if the initial estimates
β̃ i
j = 0, then the final estimates resulting from the adap-

tive Lasso are also β̂ i
j = 0. If the initial estimates β̃ i

j
are large, then the adaptive Lasso applies a small penalty
for these estimates and vice versa. This way, the adaptive
Lasso allows to reduce the number of false positives from
the first step and yields a sparse solution.

5 Comparison of correlation- and partial
correlation-basedmethods

5.1 Generating synthetic data from different graph
topologies

In this section, we compare the correlation- and partial
correlation-based methods on different graph topologies
based on synthetic data. For this purpose, we have gen-
erated the synthetic data and a workflow of data gener-
ation is illustrated in Fig. 4. In the following, we shortly
describe several graphs used in the comparison which are
illustrated in Fig. 5:
All graphs used in the comparison have the same dimen-

sion p and are generated from the adjacency matrices with
the size p × p.

1. Chain graph. The graph corresponds to a tridiagonal
adjacency matrix where each row and column
consist of one or two non-zero entries which
correspond to the graph with the maximum degree
of 2. The graph consists of p − 1 number of edges.

2. Cluster graph. The rows/columns of the adjacency
matrix are evenly partitioned into l disjoint
submatrices. Here, we denote them as
Ui, i = 1, . . . , l. Since they are disjoint, we can write
U1 ∪ U2∪, . . . ,∪Ul = {1, . . . , p} and the
corresponding graph contains p(p/l − 1)P/2 number
of edges, where P is the probability of the edge
between any two nodes in a subgraph. If probability
P = 1, then disjoint subgraphs are fully connected.
Decreasing P allows to generate sparse subgraphs.

3. Scale-free graph (Barabasi-Albert model) ([26, 27]).
The degree of the graph follows a power law
distribution (30). The graph generation is based on a
preferential attachment and starts withm0 nodes.
The new nodes withm ≤ m0 edges are added tom0
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a b

Fig. 4Workflow for generating synthetic data from a given graph topology. Initially, we construct a graph of interest and then build the adjacency
matrix A which elements are ones and zeros. In the next step, we transform A to the positive definite matrix B. We then take an inverse of the
positive definite matrix B and calculate the correlation matrix C. In the next step, we factorize the correlation matrix using a Cholesky
decomposition and obtain an upper triangular matrixU . We then generate a randommatrix R, the columns of which are independent and
identically distributed fromN (0, 1). A row size of R is equal to a column size ofU , and a column size is equal to a sample size that we want to
generate. Finally, we multiply R withU to get a new data with the sample size of interest

existing nodes in the graph. A new node is added to
the existing node i depending on the degree ki with
the probability P(ki) = ki/

∑
j kj. The graph contains

p − 1 edges.
4. Hub graph. The rows/columns of the adjacency

matrix are evenly partitioned into l disjoint groups as
in the cluster graph, U1 ∪ U2∪, . . . ,∪Ul = {1, . . . , p}.

At each disjoint subgraph, a hub node has more
connections to other nodes, whereas the other nodes
have only one connection. Since a partitioning is
even, every subgraph contains the same number of
nodes and edges.

All graphs are generated using R package huge [32].

a b c d

Fig. 5 Illustration of the four different graphs that have been used in our study. Shown are the adjacency matrices of the graphs and their
corresponding graph topologies. a Chain graph with maximum degree of 2. b Cluster graph which consists of three disjoint subgraphs. c Scale-free
graph (Barabasi-Albert graph). d Hub graph, also known as a star graph
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5.2 Comparison of methods based on optimal predictions
First, we performed the comparison on an ideal case
where the underlying graph is known and one can opti-
mize predictions based on the given graph (Fig. 6). This

way, one can judge the performance of methods under
optimal conditions. Since the adaptive Lasso is an adap-
tive version of nodewise regression method, it is not
considered for comparison in this setting.

Fig. 6 Predictions by the nodewise regression Lasso (MB Lasso), the graphical Lasso (Glasso), the covariance Lasso, the thresholded sample
covariance matrix (Thresholded SCov), and the random guessing using the synthetic data generated from four graph types (chain, cluster, scale-free,
and hub graphs). Illustrated are predicted edges (resampled 100 times) and true edges (dark green circle) on correctly predicted vs total predicted
axes (left). The Euclidean distances from true edges to predicted edges are summarized in terms of cumulative distribution which indicates the
probability of the Euclidean distances (middle). Performances of methods are also assessed using traditional ROC curves (resampled 20 times)
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For all four graphs, we choose the graph size p = 50
and generate the dataset with the sample size n = 30. To
account uncertainty in the data generation, we resample
the data 100 times and perform the graph reconstruction
with 100 datasets each of size p = 50. This allows us
to assess the performance of methods in the presence of
noise. For better illustration purposes, we plot predicted
edges on the correctly predicted vs total predicted axis
(Fig. 6 (left)). In addition to methods, we perform pre-
dictions by random guessing, which is used for a quality
control in our study. To assess the quality of predictions
produced by different methods, we compute Euclidean
distances from individual edge predictions to true edges
as

dE =
√

(TR − Cpred)2 + (TR − Tpred)2, (42)

where TR denotes true edges in the true graph, Cpred and
Tpred represent correctly predicted and total predicted
edges, respectively. We then compute the cumulative dis-
tribution of dE (Fig. 6 (middle)).
To further compare four methods, we also compute the

receiver operating characteristics (ROC)

TPR = TP
TP + FN

, FPR = FP
FP + TN

,

where TPR is a true positive rate defined as a ratio of pre-
dicted true positives TP to total positives TP + FN. False
positive rate FPR is the ratio of predicted false positives FP
to total false positives FP + TN. The nodewise regression
Lasso performs well on the chain graph with E = 49 edges
which is regarded as simplest (Fig. 6 (first top panel)).
Other methods predict about 35 to 40 edges correctly,
whereas the nodewise regression Lasso produces almost
perfect predictions. On the scale-free graph, the node-
wise regression Lasso performs best among four methods.
The prediction accuracy is about more than half of true
edges for the nodewise regression Lasso and less than half
for three remaining methods. The three methods predict
almost a similar number of edges out of which 10 to 20 are
correct edges. From ROC curves, one can see that initially
all three methods perform similarly, but later, the graph-
ical Lasso starts outperforming the thresholded sample
covariance and the covariance Lasso. Since the scale-free
graph contains more highly connected nodes (maximum
degree kmax = 13) compared to other graphs, the predic-
tion accuracy of all methods reduces in comparison to
chain and cluster graphs thereby being close to predic-
tions by random guessing. For the cluster graph, we set the
probability of the edge between any two nodes to P = 0.3,
so that the resulting graph contains less hub nodes as pos-
sible (kmax = 4). The nodewise regression Lasso predicts
on average 40 true edges out of 70, whereas other meth-
ods predict 30. In case of the hub graph, where we have
10 disjoint subgraphs with 10 hub nodes, the predictions

of the nodewise regression Lasso are again best among
other methods by predicting about 40 true edges out of
50. In contrast, the remaining three methods only predict
a half of all true edges. We observe that the thresholded
covariance, the covariance Lasso, and the graphical Lasso
predict almost a similar number of true edges in all four
graphs. In contrast, the nodewise regression Lasso per-
forms best compared to other methods in all four graphs.
Our comparison metrics are based on the control of false
positive edges, and a similar observation was published
earlier in the work of Peng et al. [33], where the authors
showed that the nodewise regression Lasso performs bet-
ter than the graphical Lasso when controlling for false
discovery rate.

6 Comparison of methods when underlying
graph is not known

In this section, we are going to discuss how the methods
perform when the underlying graph is not given. This is
a typical case in applications where the underlying graph
is not known, and a challenge is to infer the graph based
on the data. We are therefore going to discuss available
methods that allow the selection of the optimal threshold
for the sample covariance matrix and optimal regulariza-
tions for covariance Lasso and adaptive Lasso methods.
Because, a cross-validated choice of the penalty parame-
ter in nodewise regression and graphical Lasso methods
leads to overestimation problem, we consider selecting the
penalty from the adaptive Lasso by cross-validation which
gives a sparser solutions compared to former methods.
We already introduced thesemethods in previous sections
and are going to discuss how they perform in practice. For
comparison, we choose the same settings: p = 50 and
n = 30.

6.1 Scale-free criteria-based thresholding of sample
covariance matrix

In this section, we discuss the application of scale-free
thresholding in comparison to the optimal thresholding
which is based on the true graph. We compute R2 values
andmean degree values k̄ for various thresholds uniformly
selected from [ 0, 1]. For a reference graph, we also com-
pute the R2 value (green line) and the mean degree value
k̄ (blue line) of the true graph. As illustrated in Fig. 7a,
higher R2 values are achieved for the threshold higher
than 0.5 which can be compared to that of the true graph
(green line). The corresponding mean degree value for
the threshold higher than 0.5 is also close to that of the
true graph (blue line). To compare how well the thresh-
old is selected, we further perform hard-thresholding
on the true covariance matrix and compute R2 and mean
degree values (Fig. 7b). Since the graph for the true covari-
ance matrix is fully connected, without thresholding, it
returns low R2 and high mean degree values. High R2
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a b c

Fig. 7 Selecting the optimal threshold value based on R2 and mean degree values when the underlying graph is scale-free. a Hard-thresholding on
the sample covariance matrix, S computed from data. b Hard-thresholding on the covariance matrix obtained from the true graph. Green and blue
lines indicate R2 values and mean degree values from the true graph, respectively. c Predictions with hard-thresholding of the sample covariance
matrix

values are achieved for the threshold higher than 0.5 as
it was observed in the scale-free selection case (Fig. 7a).
In particular, the mean degree values close to true mean
values are also attained approximately at the same thresh-
old. In practical applications, when inferring a gene co-
expression graph from microarray data, it is usually sug-
gested to select the threshold with high R2 values and low
mean degree values. In particular, for a high-dimensional
case with thousand genes, these two metrics show satura-
tion for high R2 and low mean degree values. Although in
our case there is no saturation effect, it is possible to select
the threshold to be 0.6, for which the R2 value is high and
the mean degree value is low. Furthermore, we perform
simulations with this threshold and compute the number
of true edges in the thresholded graph (Fig. 7c). As the plot
indicates, the selected threshold is nearly optimal giving
predictions close to optimal ones. Despite it gives results
close to the optimal ones, best threshold predictions are
almost as bad as the results of random guessing. It is note-
worthy that, in our simulations, this method was shown to
work well when the sample size is larger than the variable
size (p < n). Since we only consider the p > n case in our
study, the results are not shown.
Theoretically, high R2 values can be achieved only for

scale-free graphs and not applicable for other graph types.
We also show that it is not possible to attain high R2 values

with other graph types used in our study (results are not
shown here).

6.2 Cross-validation with covariance Lasso
To choose the penalty parameter λcov from the data, we
compute it by cross-validation procedure. We perform
fivefold cross-validation and select the penalty parame-
ter that maximizes the log-likelihood function in (31).
Figure 8 depicts computed likelihood values with the
penalty parameters selected from a range λcov ∈[ 0, 7]. The
results show that the maximum likelihood values for all
graphs exist almost in a close range of the penalty parame-
ter. For chain and cluster graphs, the maxima are attained
between λcov = 3 and λcov = 5, whereas for scale-free and
hub graphs, between λcov = 4 and λcov = 6. Therefore,
the penalty parameters for further simulations, we have
chosen from these ranges where themaximum for the log-
likelihood is attained. We then performed the covariance
graph estimation using these penalty parameters. Unfor-
tunately, we observe that in all cases, these penalty values
lead to the overestimation of the graph. In particular, a lot
of false positive edges are selected in the estimated graph.

6.3 Cross-validation with adaptive Lasso
In order to select a suitable penalty value, we perform
cross-validation with the adaptive Lasso (41). We observe
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Fig. 8 Selecting penalty parameters in the covariance Lasso by cross-validation approach for four graph types. The log-likelihood values are
computed for a range of penalty parameters. Cross-validation selects the penalty parameter for which the log-likelihood attains a maximum value

that cross-validation with the adaptive Lasso performs
very well on chain graphs (Fig. 9a), where the predictions
(blue) are in a close range to optimal predictions (red). For
cluster and hub graphs, the method performs poorly com-
pared to the optimal one, but still returns better results
in contrast to random guessing (Fig. 9b, d). However, in
the scale-free graph, the method performs poorly giving
predictions almost in the same range as random guessing
(Fig. 9c). But one can observe from the scatter plot that on
average, the method gives slightly more true positives but
at the same time predicts less false positive edges com-
pared to random guessing. One also has to be aware that
the scale-free graph used in our study contains far more
hub nodes which have more connected edges compared
to other nodes. This type of graphs is very difficult to infer
under the setting p > n. Other graphs used in the study
contain less number of hub nodes and the method per-
forms well on these graphs. For example, the maximum
degree of the chain graph is kmax = 2, for the cluster
graph kmax = 4, for the hub graph kmax = 9, and for the
scale-free graph kmax = 13. Therefore, we observe that the
penalty selection under cross-validation with the adaptive
Lasso is highly dependent on the number of hub nodes
in the graph. We also have to mention that the adaptive
Lasso method does not take any prior information about
the graph topology and applies the uniform penalty on all
edges in the graph, which is also a major drawback of the

method when applied to graphs which contain more hub
nodes. This observation was also reported earlier in the
other studies [34–36].

7 Effect of correlation strength on the
performance of methods

In this section, we are going to discuss the role of cor-
relation strength on the performance of methods. It has
been shown that a magnitude of correlations should
be bounded from below in order for the method to
give consistent predictions [13]. It is known that if data
variability is less, then large sample size is required to
increase an estimation accuracy. If the sample size is lim-
ited, which is often the case in biomedical applications,
then it is possible to increase the prediction accuracy
by increasing the variability in the data so that cor-
relation information between variables is high. In this
section, we examine how prediction accuracy of meth-
ods is affected with changes in data variability. For this
purpose, we generate several datasets from the correla-
tion matrices with different correlation magnitudes and
then perform the graph reconstruction with four methods
on these datasets. To generate datasets with a differ-
ent degree of correlation, we use the method introduced
in [32].
Let A be the p × p adjacency matrix which consists of

binary values and represents a certain graph. To induce
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a

b

c

d

Fig. 9 Predictions based on the adaptive Lasso with the penalty parameter chosen via cross-validation, the nodewise-regression with the optimal
penalty, and the random guessing. Depicted are predictions for a chain graph, b cluster graph, c scale-free graph, and d hub graph

different correlation strengths in the data, we first multi-
ply A with some scalar w > 0 and convert the resulting
matrix into the positive definite matrix

Â = wA + γ I, (43)

where γ = |min(λi)| + ε, i = 1, . . . , p and ε > 0. Here λi
are the eigenvalues of the matrix wA. Then, we compute
the correlation matrix by

C = �− 1
2 Â

−1
�− 1

2 = �− 1
2 (wA + γ I)−1�− 1

2 , (44)

where � is the matrix of diagonal elements of the covari-
ance matrix Â

−1
. As a measure of the correlation mag-

nitude, we define σ = (
√
var(Cij)), i, j = 1, . . . , p. Here,

the different values of w allow to generate the correla-
tion matrices with different magnitudes. The correlation
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matrix is then used to generate datasets using the proce-
dure described in Fig. 4.
Figure 10 depicts optimal predictions produced by four

methods in case of different correlation strengths on the
chain graph. Sensitivity of predictions by four methods
computed as the average ratio of correctly predicted to
total predicted edges is given in Table 2. In this case, we
choose the optimal threshold and the penalty based on
the shortest Euclidean distance from true edges. When
the magnitude of correlations is low (standard deviation,

σ ≈ 0.15, colored in blue), the performance of methods is
relatively poor. In this regime, all methods predict about
1/4 of correct edges. Increasing the magnitude of corre-
lation positively affects the performance of all methods
(II, III, and IV). For instance, at σ ≈ 0.19, the sensitivity
of the thresholded sample covariance matrix predictions
increases from 0.23 to 0.67. In this regime, the sensitiv-
ity of the covariance Lasso increases from 0.24 to 0.72 (12
to 30 edges), while the sensitivity for the nodewise regres-
sion Lasso and the graphical Lasso increases from 0.24

a

b

c

d

Fig. 10 Influence of correlation strength on predictions in case of the chain graph (p = 50, n = 30). a Thresholded sample covariance matrix.
b Covariance Lasso. c Nodewise regression Lasso. d Graphical Lasso Illustrated are predictions with the different correlation strength as indicated
with (I) low correlation, σ ≈ 0.15 (II) moderate correlation, σ ≈ 0.19 (III) moderate-high correlation, σ ≈ 0.22 and (IV) high correlation, σ ≈ 0.36
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Table 2 Sensitivity of predictions computed by four methods
calculated as the average ratio of correctly predicted to total
predicted edges

Correlation strength σ ≈ 0.15 (I) 0.19 (II) 0.22 (III) 0.36 (IV)

Thresholded sample covariance 0.23 0.67 0.73 0.73

Covariance Lasso 0.24 0.72 0.8 0.77

Nodewise regression Lasso 0.24 0.7 0.83 0.93

Graphical Lasso 0.25 0.7 0.75 0.82

to 0.7 (from 13 to 35 edges). The accuracy of covariance
Lasso predictions does not change so much from II to
IV, indicating a saturation effect of the method. The sat-
uration effect is also observed for the thresholded sample
covariance matrix from (III) to (IV). In contrast, the sen-
sitivity of the nodewise regression Lasso and the graphical
Lasso predictions increases with the increasing correla-
tion strength. In the regime (III), the sensitivity of the
nodewise regression Lasso is about 0.83, whereas at (IV),
it is almost 0.93. The sensitivity of the graphical Lasso
increases from 0.75 (III) to 0.82 (IV).

8 Conclusions
High-dimensional graph reconstruction methods have
attracted much scientific interest over the last years and
continue to be investigated further. In this work, we
analyze the relation between concentration and covari-
ance graphs and further conduct the detailed comparison
between various graph reconstruction methods designed
to infer concentration as well as covariance graphs. Our
analytical study shows that it is possible to establish a
link between these two graphs using Neumann series. In
particular, we show the entry-wise relation between the
entries of the covariance matrix and the transitive clo-
sure matrix associated to the concentration graph. We
analytically demonstrate this relation for a star graph.
Moreover, we analytically demonstrate a graph property
that the covariance graph associated to the correlation
matrix can be shown as the minimum transitive closure
of the concentration graph. We also show a small scale
demonstration for a three-node graph. Eventually, this
property can be exploited to infer edge weights of the
covariance graph directly from edge weights of the con-
centration graph. Currently, it has been shown for a star
graph, but can be extended to other graph types too.
Furthermore, we performed the analytical and numeri-

cal studies on recently published network deconvolution
and network silencing methods [10, 11]. In particular, we
derived the analytical solution to the network deconvo-
lution problem by exploiting facts from Kac-Murdock-
Szëgo matrix. We also give more insights about the role
of the scaling parameter which has been studied only

numerically in the original study. Moreover, we con-
ducted a detailed comparison of the methods designed
to reconstruct covariance and concentration graphs on
different graph topologies. In order to resemble the high-
throughput experiments, we designed our simulation
experiments with more variables than samples (p > n).
We showed that the nodewise regression Lasso allows to
select a consistent penalization which controls the num-
ber of false positives compared to the thresholded sample
covariance, the covariance Lasso methods, and the graph-
ical Lasso. The adaptive version of nodewise regression
Lasso also allows to control the rate of false positives
better than correlation-based methods when the penalty
parameter is chosen via cross-validation.
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