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Abstract

on traditional reference pathway maps.

Soybean (Glycine max) is a major source of vegetable oil and protein for both animal and human consumption. The
completion of soybean genome sequence led to a number of transcriptomic studies (RNA-seq), which provide a
resource for gene discovery and functional analysis. Several data-driven (e.g.,, based on gene expression data) and
knowledge-based (e.g., predictions of molecular interactions) methods have been proposed and implemented. In
order to better understand gene relationships and protein interactions, we applied probabilistic graphical methods,
based on Bayesian network and knowledgebase constraints using gene expression data to reconstruct soybean
metabolic pathways. The results show that this method can predict new relationships between genes, improving
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1 Introduction

Soybean (Glycine max L. Merr.) is recognized as an im-
portant food source for humans and animals because of
its relatively high protein and oil ingredients. As one
major species of the legume family, soybean contains
high-quality protein which is a fundamental require-
ment, providing complete protein that contains all the
essential amino acids that people need. Soybean is also
considered “heart healthy” since soybean protein intake
can significantly decrease serum (blood) cholesterol and
low-density lipoprotein (LDL) levels, contributing to a
reduced risk of coronary heart disease [1, 2].

A remarkable achievement in soybean research was the
completion of the genome sequence (http://www.phytozo-
me.net/soybean), which provided the basis for a variety of
detailed, genome-wide studies, including completion of a
transcriptome atlas based on RNA-seq analysis of different
tissues [3, 4]. The availability of this transcriptome data fa-
cilitates more detailed studies of soybean gene function
(e.g, [5]).
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In order to visualize and analyze large-scale experi-
mental gene expression data, especially to elucidate
gene—gene and protein—protein interactions, gene and
protein expression data are commonly mapped to refer-
ence metabolic pathways, which provides a context for
understanding the functional response of the plant to a
given treatment. Metabolic pathways are designed to
represent the chemical reactions among a set of small
molecules in a cell within one organism. Therefore, re-
construction of metabolic pathways from protein and
gene expression data can help researchers discover new,
fundamental biological functions for a particular net-
work. Although more and more plant genome sequences
are becoming available, there is still need for improved
methods for metabolic pathway reconstruction to sup-
port functional studies.

In order to reconstruct a traditional metabolic pathway
for a given species (e.g., those provided by the KEGG
database [6, 7]), the annotated genes and their encoded
protein products are integrated with the reference meta-
bolic pathways in the KEGG database. The gene product
sequences are mapped to the reference pathway using
the KEGG Automatic Annotation Server (IKAAS) [8]
based on sequence homology to similarly mapped se-
quences from well-annotated reference genomes. Each
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gene is assigned one KEGG orthology number (KO
number) with the highest ranking based on the func-
tional annotation in KAAS and scoring orthology groups
by probability and heuristics. The association between
KO numbers leads to placement of the gene products into
curated pathways. In order to improve on these methods,
providing more potential and valuable interactions be-
tween genes and proteins, we applied the Bayesian net-
work to construct probabilistic graphical networks. By way
of example, we used knowledgebase constraints to im-
prove the prediction efficiency and accuracy to reconstruct
metabolic pathways for soybean [9].

2 Method

2.1 Pathway construction workflow

The metabolic pathways were constructed by integrating
the available soybean gene expression data, KEGG refer-
ence pathways, and the probabilistic network modeling
method with knowledgebase constraints. The data- and
knowledge-driven methods are shown in Fig. 1. The first
step is to preprocess the gene expression data, such as
removing genes showing no apparent expression, protein
sequence prediction, gene data clustering, and knowl-
edgebase generation. After a translated protein sequence
is generated for each gene, these proteins can be mapped
to the KEGG reference pathways using the KAAS map-
ping tool for initial pathway construction. This mapping
information is then integrated with newly sampled genes
from gene clustering, and knowledge constraints for KO
relations in KEGG. The gene expression data is fed into
the Bayesian network model to predict gene—gene inter-
action networks. Finally, related chemical compounds
are added to the network to better represent the meta-
bolic pathway. The detailed introduction for each step is
shown in the following sections.

2.2 Data preprocessing

2.2.1 Removal of non-expressed genes

The published RNA-seq gene expression data, represent-
ing 14 soybean tissue-specific conditions, were normal-
ized to counts per million reads (CPM) [3]. The CPM
normalization was implemented using the Bioconductor
package edgeR [10] within the R statistical programming
language. The genes with a retrieved CPM value above
one in at least one condition were kept for further ana-
lysis, while those genes showing no apparent expression in
any of the 14 conditions were removed from the dataset.

2.2.2 Protein sequence generation

Accurate gene translation is essential for developing the
initial reference pathway maps. Protein sequences available
for the annotated soybean genome were extracted from
the Soybean Knowledge Base (SoyKB) [11, 12]. The KEGG
pathway database utilizes Entrez IDs for each soybean gene
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Fig. 1 The workflow of Bayesian network pathway construction. The
procedure started with preprocessing of the gene expression data,
including removal of non-expressed genes, protein sequence
generation, gene ID conversion, gene data clustering, and
knowledgebase generation. The protein sequence for all genes was
then mapped to the KEGG database for initial pathway construction.
The Bayesian network method was used to predict new metabolic
pathways by integration of the gene-to-KO assignments, reference

pathways, gene sampling, and knowledge constraints

and, therefore, the SoyKB Glyma-format ID was converted
to EntrezGene ID (ex., GLYMAO01G00300.1 <> 100781438)
using BioMart [13]. The metabolic pathways were built by
combining all of the knowledge above (i.e., protein anno-
tation and associated gene expression values).

2.2.3 Gene clustering

Metabolic pathways are graphical representations of cel-
lular processes in the KEGG database. Each reference
pathway is composed of a network of enzymes and a set
of genes that are functionally related in terms of predicted
cellular and molecular functions based on experimental
knowledge [6, 7]. One assumption of our metabolic path-
way reconstruction method is that genes that share similar
gene expression patterns over a set of experiments are
more likely to be involved in the same reference meta-
bolic pathway. Therefore, we used the Expectation-
Maximization-based clustering algorithm on the data
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sets [14]. This clustering algorithm is Gaussian mixture
model based and the clustering number is determined
by cross validation to improve the consistency and ro-
bustness for gene selection.

2.2.4 Relation knowledgebase construction

Information on all the existing relationships among KO
identifiers (ortholog group) for all the mapped genes in
all pathways can be collected from the KEGG database
[6, 7]. Such a relational knowledgebase includes the rela-
tion and reaction among orthologous groups, such as
the directional relations, the relationship type within
protein—protein interactions and protein—compound in-
teractions, as well as related chemical reactions.

In order to generate the relation knowledgebase, based
on the gene-to-KO assignments and the list of pathway
maps with KGML format generated by the method de-
scribed above in the “Initial pathway construction” section,
we extracted all the sets of relations and reactions for
mapped KO numbers from the full set of KEGG reference
pathways [9]. The relationship between genes can also be
predicted based on the relationship between KO numbers.

In order to improve the space searching efficiency and
quality for Bayesian network construction, two knowl-
edgebase sets were generated [9]. A gene whitelist was
created for Bayesian network prediction consisting of all
the relationships between genes. A blacklist was also
constructed consisting of all possible gene relations not
supported by the knowledgebase and, therefore, ex-
cluded from the Bayesian network construction.

2.3 Initial pathway construction

The KEGG database [6, 7] provides 90 graphical diagrams
for soybean reference metabolic pathways, which were
computationally generated from manually curated path-
ways based on experimental knowledge of metabolism.
Each pathway represents the network structure of chemical
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compounds, enzyme molecules and enzymatic reactions,
where each enzyme is assigned one Enzyme Commission
(EC) number to specify enzyme-catalyzed reactions. Each
EC number is associated with a KEGG Orthology (KO)
number in the KEGG database. The KO number is a
unique identifier for matching the genomic information in
the GENES database and the gene products (enzyme—en-
zyme interaction) information in the PATHWAY database.
In each reference pathway, rectangle nodes are assigned
with the KO identifiers to denote specific enzymes. Once
the KO identifiers are assigned to genes in a specific gen-
ome, the related organized-specific pathways are gener-
ated automatically. A web-based server called KEGG
Automatic Annotation Server (KAAS) [8] can automatic-
ally assign KO identifiers to genes based on the protein se-
quence similarities, which enables the reconstruction of
initial organism-specific pathways and BRITE hierarchies.
However, since the complete metabolic pathway is sepa-
rated into a list of subpathways in terms of different cellu-
lar, molecular functions, genes mapped to a specific
pathway can only represent a small part of relationships in
the whole pathway. The traditional mapping method such
as KAAS can only predict a small subset of relationships
that exist in each reference pathway. In order to address
this weakness, we applied the Bayesian probabilistic net-
work method [9] to expand the initially mapped pathways
by adding more genes and relationships, taking into ac-
count all predicted KO relationships in KEGG. Based on
the gene-to-KO assignment and pathway network struc-
ture information, the initial pathway can be constructed by
matching the genes to the KO identifiers in each pathway.

2.4 Bayesian network pathway construction

After the initial pathways for soybean genes were con-
structed and the associated knowledgebase built, we ex-
panded the pathways by adding more genes with similar
gene expression patterns and new relationships and
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Fig. 2 The gene size distribution for 16 clusters. The genes were organized into 16 groups using the Expectation-Maximization clustering method.
Genes in the same cluster share a highly similar gene expression pattern, while genes from different clusters have low similarity to each other.
These 16 gene clusters were used for gene sampling to enlarge the initial, mapped pathways. X-axis denotes the index of clusters; Y-axis denotes
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Fig. 3 The statistics of nodes and the edges for 90 soybean target pathways. The statistics of nodes and the edge relationships (e.g., ECrel, PPrel, GErel)
for 90 soybean target pathways, along with the number of true soybean genes mapped to each target pathway. Among 90 target pathways, there
were 9 pathways with no edge relationships between KO-group nodes. Therefore, these were removed from further analysis, leaving 81 pathways for
prediction validation. The X-axis shows the index of 90 pathways, and the Y-axis shows the number of edges and nodes in each pathway
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reactions. The new genes were derived from predicted
gene clusters and metabolic pathways predicted through
the Bayesian network method taking advantage of all exist-
ing relationships between KO numbers in the knowledge-
base. The score-based heuristic approach was applied to
learn all the possible local structures to enlarge the whole
metabolic pathway step-by-step [15].

2.4.1 Gene sampling

In order to sample genes that are more likely to be in-
volved in the same pathway, the gene cluster containing
more genes than in the initial pathway was assigned the
highest probability for sampling. The sampling probabil-
ity for the remaining clusters was assigned automatically
based on the Euclidean distance between each cluster
and pivot cluster [9]. The probability assignment follows
the criteria that a shorter distance has higher weight for
sampling, which means the gene expression values are
more similar between genes in two clusters.

2.4.2 Bayesian network construction

The Bayesian network approach can be applied to discover
casual relationships from gene expression data, which
proposes a probabilistic model with joint probability

distribution to represent the gene expression patterns for
the target genes across the different experimental condi-
tions. Based on the predicted network structure, valuable
biological information can be extracted to understand the
regulation process among genes. Bayesian network is repre-
sented as a directed acyclic graph (DAG), with the gene/pro-
tein as nodes and the reactions/relation between genes as
directed edges in graphical representation of metabolic path-
ways. The score function, which is Bayesian Information
Criterion (BIC) based, is used to predict networks from gene
expression data [15]. The score can be evaluated by adding,
removing, and reversing a single edge at each local structure
updating step during the network learning process. The
greedy hill-climbing algorithm can help find the optimal
structure network with a local maximum. After determining
the local optimal structure, the new local network is consid-
ered as a new node to be used to repeat the sampling pro-
cedure to produce a larger pathway network.

Since network learning in a large searching space is
time-consuming, we used the knowledge constraints to
restrict the network search, resulting in a smaller search-
ing space instead of the overall search space. The con-
cepts of a whitelist and blacklist in Bayesian network
were applied. The edges existing in the initial pathways
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Fig. 6 Precision rate for two methods. Precision rate (i.e, the rate of edges in predicted pathways that were mapped to target pathways) using
two methods: 1. Traditional mapping method using KASS. 2. Probabilistic graphical model and knowledge-based method. The precision rate is
calculated by the division of the number of edges in predict pathways that exists in target pathways and the total number of edges in predicted
pathway. The experiment was repeated 50 times on each pathway and the average recall rate was calculated

were always present in the graph, serving as a whitelist
in the Bayesian network. Based on the sampled genes
and existing relationships of orthologous groups (KO
numbers) in KEGG, the gene relations that do not exist
in the knowledgebase will never be present in the graph,
which is served as the blacklist for the Bayesian network.

2.4.3 Parsing and editing pathway information
There are several problems that need closer attention
during the pathway processing for network construction.

2.4.3.1 Cycle detection and processing in pathway
Metabolic pathway reflects a series of reactions between
enzymes, which is often feed-forward reactions with one
direction. However, reversible reaction will also exist in
the pathway that leads to feedback loops among sets of
enzymes. Before feeding the sampled genes from gene
cluster combined with initial mapping pathway into
Bayesian network reconstruction, the presence of cycles
should be conquered in advance since Bayesian network
could not handle loops or cycles in graph. During the
whitelist generation step for Bayesian network, the
gene—gene reactions with direction from the initial path-
way that exists in the KEGG knowledgebase were added

into whitelist sets iteratively with checking to see if the
cycle exists in the current network at each time. If the
gene pairs with directed reaction would cause a loop
among the current gene network in the whitelist, the
edge was not be added. This step generates the initial
gene network as a whitelist with no cycles occurring for
Bayesian network prediction. In order to incorporate the
reaction information from all species in the KEGG data-
base, if the reaction for a gene pair belongs only to soy-
bean, this edge was also excluded from the whitelist set
in order to make the initial mapping network more inde-
pendent. This also helped to validate the performance of
our network prediction. After the new network is pre-
dicted, the initial mapping network with cycles was
amended to the predicted pathway to complete the exist-
ing feedback reaction activity.

2.4.3.2 Multi-molecule nodes in a pathway In the
metabolic pathway, multiple proteins may catalyze the
same reactions and inhibit or activate the same substrate.
Such a set of molecules was grouped together and labeled
as one node in the pathway, sharing the same node identi-
fier. In the KGML file for the KEGG pathway, each node
is composed of multiple different KO numbers. During
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Fig. 7 Target pathway of the glyoxylate and dicarboxylate metabolism pathway (KO00630) in KEGG. Each node in the figure denotes the soybean
genes annotated in the glyoxylate and dicarboxylate metabolism pathway from KEGG. The edges between genes denote all the true edges that
exist in the target pathway in KEGG

the extraction of gene relationships from the initial map- 3 Results and discussion

ping pathways, the relationships between two nodes in the 3.1 Data description

pathway were assigned to each KO number pair from two  Our initial input data were RNA-seq gene expression
nodes to generate the gene—gene relationship. After the data, representing 14 soybean tissue-specific conditions,
gene network was generated by Bayesian network con-  including 9 different soybean tissues (root hair cells iso-
struction, genes belonging to same KO number were lated 84 and 120 h after sowing (HAS), root tip, root,

grouped together to simplify the network representation. mature nodules, leaves, shoot apical meristem (SAM),
flower and green pods [3], as well as 5 additional tissues
2.5 Functional enrichment analysis taken from Libault et al. [19]. This large scale of transcrip-

Protein function prediction software MULTICOM-PDCN  tomic analysis provided a comprehensive compendium of
[16, 17] was used for function prediction of gene sets from  soybean gene expression. We applied our pathway recon-
the Bayesian graphical network. A set of Gene Ontology  struction pipeline to this full set of transcriptome data,
(GO) [18] terms associated with three functional categories ~ which contains expression measurements on 69,077 puta-
(ie., biological process, molecular function, and cellular tive annotated soybean genes and 7314 unannotated genes
components) was predicted for each gene. A Fisher exact in which 53,175 putative annotated genes were expressed
test was conducted on each predicted pathway to identify  in at least one condition while 15,902 putative annotated
over-represented GO terms, which are significant GO terms  genes showed no apparent expression. Genes that were
associated with the group of genes in the pathway. The sig-  not expressed at all and unannotated were removed from
nificant GO terms identified in each Bayesian network further analysis. Each gene identifier was labeled using the
served as a reference to validate the predicted edges among  Glyma-format following the convention adopted by the
gene sets. Arabidopsis community [20].
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Since one gene can have multiple transcripts or protein
sequences due to alternative splicing, we extracted all the
transcript variant IDs for the 53,175 expressed genes. For
example, gene Glyma20g01000 had only one transcript vari-
ant Glyma20g01000.1, while Glyma01g00300 had two tran-
script variants, Glyma01g00300.1 and Glyma01g00300.2.
Protein sequence data were extracted from the Soybean
Knowledge Base (SoyKB) [11, 12] providing 35,505 protein
sequences; from the expressed 53,175 gene transcripts, pro-
tein sequence information for the remaining 17,670 genes
was not provided in SoyKB. When dealing with the gene ID

conversion process through BioMart [13], BLAST [21, 22]
was used to align the transcript sequence against the Entrez-
Gene database and the EntrezGene identifier with high de-
gree of sequence similarity was assigned to transcript ID.
Because of this similarity-based mapping method, the same
transcript variant might have several different EntrezGene
IDs, while several transcript variants might share identical
EntrezGene IDs. In such situations, we downloaded the pro-
tein sequence information for all soybean genes in the
KEGG pathway database and the one-to-one mapping be-
tween Glyma-format ID, and EntrezGene ID for each
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transcript was chosen based on sequence identity. This step
removed those transcripts from same gene that their se-
quences did not match the gene sequences in KEGG data-
base. Finally, the protein sequence information and gene
expression value for a total of 26,873 protein-coding genes
were built and used for metabolic pathway reconstruction.

These 26,873 genes were clustered into 16 clusters using
the Expectation-Maximization-based clustering algorithm
with an average of 1679 in each cluster. These clusters were
then used to enlarge the initial, mapped pathways. The
gene size distribution for 16 clusters is shown in Fig. 2.

The 90 soybean-related metabolic pathways were down-
loaded from the KEGG database with the assumption that
they represent physiology-relevant pathways in order to val-
idate the pathway prediction results. The statistics of nodes
and the edge relationships (e.g., ECrel, PPrel, GErel) for each
target pathway are shown in Fig. 3, along with the number
of true soybean genes mapped to each target pathway. Nine
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pathways with no detected edges were removed giving a
total of 81 pathway sets for validation and evaluation of the
performance of Bayesian network construction.

The KEGG Automatic Annotation Server (KAAS)
mapped all 26,873 soybean genes based on the assigned
KO number. During KO-gene assignment in the initial
mapping process, soybean-related gene information and
pathways in the KEGG database were excluded in order to
validate our results back to these reference pathways.
Among the 26,873 genes, 9272 genes were successfully
assigned to KO identifiers in KEGG. The network struc-
ture for each pathway can be downloaded and viewed
using the KEGG Markup Language (KGML), which is
XML format based. KGML represents the pathway as a
graph object comprised of the entry nodes labeled as K
numbers and edges with the relation and reaction
elements. By way of example, the glyoxylate and dicarbox-
ylate metabolism pathway (KO00630) is shown in Fig. 4.

Glymal 3g29410.1 Glyma05g28490.1 Glyma08g] 149f

Glyma01g40810.1 G

Glymal 5g0154

Glyma0$g03100.) Glyig
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Fig. 9 Final predicted metabolic pathway for the glyoxylate and dicarboxylate metabolism pathway (KO00630). The metabolic pathway was
reconstructed for the glyoxylate and dicarboxylate metabolism pathway (KO00630) based on the probabilistic network modeling method with
inclusion of the associated chemical compounds. The yellow nodes denote the chemical compounds extracted from the KEGG knowledgebase
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3.2 Metabolic pathway prediction

In order to evaluate the prediction accuracy for the prob-
abilistic network method using the soybean data, we applied
the method on the 81 reference pathways to predict new
networks. The 81 new networks were compared to the tar-
get pathways downloaded from the KEGG database in
terms of the recall rate (ie., the rate of the edges in target
pathways that were correctly mapped) and precision rate
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(ie., the rate of edges in predicted pathways that were
mapped to target pathways) [9]. The experiment was re-
peated 50 times on each pathway and the average recall rate
and precision rate are shown in Figs. 5 and 6, respectively.
As demonstrated in Fig. 5, the probabilistic and knowledge-
based method predicted more true relations than the initial
mapping methods in terms of recall rate. This is due to the
initial exclusion of the soybean-related gene information
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from the KEGG database when performing the gene-to-
KO assignments through KAAS, which allowed consider-
ation of gene information across all the other species.
Hence, some true KO numbers were not assigned to genes
correctly, which led to incomplete assignments during the
initial mapping. After applying the Bayesian network
based on the data-driven and knowledge-driven methods,
the new relationships could be predicted successfully.

Figure 6 showed that our method can also predict new
gene relationships that do not exist in the reference path-
way, in addition to completely incorporating the initial
mapping results (i.e., no information is loss from the initial
KAAS-generated pathways).

Again, using the glyoxylate and dicarboxylate metabolism
pathway (KO00630) as an example, the whole process for
the metabolic pathway construction can be viewed through
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Figs. 4, 7, 8, and 9. Figure 4 represents the initial mapping
for the pathway and, when compared to the true target
pathway shown in Fig. 7, the initial mapping method does
not predict all the edges in the target pathway. Applying the
probabilistic modeling method by adding more genes into
the pathway creates a more complete network, and all the
true relationships in the target pathway are predicted suc-
cessfully, which is shown in Fig. 8. The green-colored edge
denotes the edge existing in the target pathway, and the
edge with red color represents the edge not included in the
initial mapping network while involved in the target path-
way. Figure 9 shows the final metabolic pathways by attach-
ing related chemical reactions. The new method has the
capability to predict new relationships and reactions be-
tween genes and improve the prediction accuracy compared
to the traditional reference pathway mapping approach.

3.3 Function enrichment analysis

MULTICOM-PDCN [16, 17] was used to predict func-
tions of 26,873 genes that were used in the whole path-
way construction. For the 26,873 genes, 5938 GO terms
were identified, with 54.02, 33.05, and 12.86 % GO terms
belong to biological process, molecular function, and cel-
lular component, respectively. Gene function enrichment
analysis was conducted on each pathway to identify sig-
nificantly enriched functions based on the Fisher exact test
using a P value less than 0.05. The predicted edges in each
pathway were validated in two ways: (1) the respective per-
centage of predicted gene pairs belong to the three cat-
egories (i.e., biological process, molecular function, and
cellular component) and (2) the percentage of predicted
gene pairs mapped to the same GO terms. Figure 10 re-
ports the distribution of edges related to the three GO cat-
egories and GO terms in the initial pathway from the
KEGG database. Figure 11 represents the distribution of
predicted edges in which the initial mapped edges were
excluded in the final reconstructed metabolic pathway
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associated with the three GO term categories. Recent
studies found that genes in the same metabolic pathway
are more likely to be co-expressed [23, 24]. By assuming
genes with a similar expression structure may have similar
function properties, we tested whether gene pairs in the
same metabolic pathway share identical GO terms or be-
long to the same GO categories, which we used to further
validate our network. As shown in Fig. 10, 35.69 % of 15
edges on average across all the 81 initial mapping path-
ways from KEGG shared the same GO annotations, in
which 17, 29.16, and 16.79 % of gene-set pairs show the
significant enrichment for molecular function, biological
process, and cellular components, respectively. Therefore,
as expected, gene pairs connected in metabolic pathways
often shared similar functional properties, even though
not all of the genes in the same pathways have identical
GO annotations [23, 24]. In Figure 11, among all the pre-
dicted edges, an average of 9.17 % of 384 gene-set pairs
have identical GO annotation, with 4.13, 5.24, and 5.27
% of gene-set pairs associated to molecular function,
biological process, and cellular components, respect-
ively. The top 10 enriched functions in the predicted
Bayesian network for the glyoxylate and dicarboxylate
metabolism pathway are listed in the Table 1. Several
functions, such as glyoxylate cycle, L-malate dehydrogen-
ase activity, and malate metabolic process are over-
represented in this glyoxylate pathway. Two gluconeogen-
esis and the peroxisomal glyoxylate cycle-related gene Gly-
mal4g03000.1 (citrate synthase) and Glymallg04720.1
(NAD-dependent malate dehydrogenase) were pre-
dicted to be linked in the reconstructed metabolic path-
way, while this edge was not mapped successfully in the
initial mapping pathway but clearly represents a true re-
lationship in the target pathway. The gene Gly-
mal7gl13730.1 (malate synthase) and Glyma06g45950.1/
Glymal2g10780.1 (isocitrate lyase) were also paired
with a forward direction in the final predicted network.

Table 1 The top 10 enriched functions of 106 genes identified in the predicted network for the glyoxylate and dicarboxylate

metabolism pathway (KO00630)

GO term Category Functions P value

GO:0006097 Biological process Glyoxylate cycle 2.20E-16
GO:0006099 Biological process Tricarboxylic acid cycle 2.20E-16
GO:0009514 Cellular component Glyoxysome 2.20E-16
GO:0030060 Molecular function L-Malate dehydrogenase activity 2.20E-16
GO:0006542 Biological process Glutamine biosynthetic process 501E-14
GO:0004356 Molecular function Glutamate-ammonia ligase activity 246E-13
GO:0006108 Biological process Malate metabolic process 1.93E-12
GO:0004460 Molecular function L-Lactate dehydrogenase (cytochrome) activity 1.35E-11
GO:0006089 Biological process Lactate metabolic process 1.35E-11
GO:0055114 Biological process Oxidation reduction 1.52E-10
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4 Conclusions

In this study, we applied probabilistic graphical and
knowledge-based methods to reconstruct soybean meta-
bolic pathways based on a comprehensive transcriptome
database. Based on the results, the method performed
better than the traditional sequence-homology mapping
method by predicting more real relationships in the
pathways. Functional enrichment analysis on the pre-
dicted pathways also revealed that functional related
gene pairs were predicted successfully to enlarge the ini-
tial mapping network from KEGG. The good perform-
ance of the data and knowledge-based probabilistic
method provided fundamental, new biological informa-
tion for soybean research and demonstrates that this
method can be generally applicable for other genomes
where similar starting data are available.
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