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Abstract

Biological network alignment aims to find regions of topological and functional (dis)similarities between molecular
networks of different species. Then, network alignment can guide the transfer of biological knowledge from
well-studied model species to less well-studied species between conserved (aligned) network regions, thus
complementing valuable insights that have already been provided by genomic sequence alignment. Here, we review
computational challenges behind the network alignment problem, existing approaches for solving the problem, ways
of evaluating their alignment quality, and the approaches’ biomedical applications. We discuss recent innovative
efforts of improving the existing view of network alignment. We conclude with open research questions in
comparative biological network research that could further our understanding of principles of life, evolution, disease,
and therapeutics.
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Review
Introduction
Bioinformatics research has revolutionized our under-
standing of cellular functioning. The field has opened
avenues to unveil complex biological mechanisms and
their connections to disease. Genomic sequence align-
ment, in particular, has improved our biomedical knowl-
edge by finding sequence regions of similarities between
genes in different species, where the regions likely reflect
functional and evolutionary relationships between the
sequences [1–4]. However, genes or their protein products
do not function in isolation; rather, they carry out cellu-
lar processes by interacting with each other. This is what
biological networks model, such as protein-protein inter-
action (PPI), gene regulatory, or metabolic networks. In
a biological network, nodes represent biomolecules (such
as genes or proteins), and edges represent physical or
functional interactions between the biomolecules (such
as PPIs). For simplicity, henceforth, we use terms “gene”
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and “protein” interchangeably. Unlike genomic sequence
research, biological network research allows for studying
complex cellular processes that emerge from the collective
behavior of the biomolecules.
Due to advancements in high-throughput biotechnolo-

gies (such as yeast two-hybrid (Y2H) assays [5] or affin-
ity purification coupled to mass spectrometry (AP/MS)
[6]), large-scale PPI and other network data have become
available for many species [7–16]. Given the availability
of the interactome data, network research is promis-
ing to further our understanding of processes of life,
evolution, and therapeutics. In particular, analogous to
genomic sequence alignment, biological network align-
ment aims to find good node mapping between networks
of different species that identifies topologically and func-
tionally similar (i.e., conserved) network regions. Then,
network alignment can be used to efficiently transfer
the knowledge of cellular functioning from well-studied
model species, such as yeast Saccharomyces cerevisiae,
flyDrosophila melanogaster, or worm Caenorhabditis ele-
gans, to less well-studied human, between the conserved
network regions [17–19].
Biological network alignment gains importance because

many proteins remain largely functionally unannotated
[20–22], especially in human and other species relevant
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for studying disease [22, 23]. Importantly, many cru-
cial biological processes and diseases in human are hard
to study experimentally, and hence, the corresponding
knowledge needs to be transferred from model species
[24–30]. Human aging is an example of such a biological
process. Because susceptibility to many prevalent dis-
eases increases with age, studying human aging could aid
therapeutics. Yet, human aging is hard to study experi-
mentally due to long human lifespan as well as ethical con-
straints. Thus, aging-related knowledge in human needs
to be obtained computationally, by transferring experi-
mentally obtained aging-related knowledge from model
species to human. Traditionally, this transfer has relied
on genomic sequence alignment [31]. However, biolog-
ical network data and genomic sequence data can give
complementary biological insights [32–35], implying that
analyses of network data can elucidate functional knowl-
edge that cannot be extracted from sequence data by cur-
rent methods. Thus, restricting alignment to sequences
may limit the knowledge transfer [32–36]. For example,
∼20 % of aging-related genes in model species do not
have sequence-based orthologs in human [37]. And while
sequence alignment can thus not transfer this knowledge
between the species, network alignment can be used to
identify network-based functional orthologs across the
species and thus further our knowledge of aging. Similar
holds for many other biological processes and diseases.
In addition to across-species transfer of functional

knowledge discussed above, just as sequence alignment,
network alignment can also be used to infer phyloge-
netic relationships of different species based on similari-
ties between their biological networks [38–40]. We note
that in the biomedical domain, network alignment has
mostly been used in the context of PPI networks. How-
ever, the problem is applicable to other types of biological
networks, such as gene co-expression networks [41]. Fur-
ther, network alignment has applications outside of the

biomedical domain [42], with implications on, e.g., user
privacy in online social networks [43].
Unlike the computationally tractable “linear” sequence

alignment, exact alignment of large networks, such as
biological ones, is computationally intractable due to the
nondeterministic polynomial time (NP)-completeness of
the underlying subgraph isomorphism problem, which
asks if a network exists as an exact subgraph of another
network [44]. Therefore, efficient heuristic approaches
need to be sought to solve the network alignment problem
approximately.
Similar to sequence alignment, network alignment

approaches (or network aligners) can be local and global.
Local network alignment aims to find smaller network
regions, such as biological pathways or protein complexes,
which are highly conserved between larger input net-
works (Fig. 1a; for a more formal description, see the
following sections). Initial network alignment efforts have
focused on local alignment [45–54]. However, local align-
ers are generally not capable of finding large subgraphs
that are topologically and functionally conserved between
input networks. Therefore, most of the recent efforts have
focused on global network alignment [18, 19, 25, 38–40,
43, 55–82], which typically aims to map well (almost)
entire networks to each other. As such, global alignment is
typically capable of finding large subgraphs that are con-
served between input networks but at potential expense of
suboptimally matching local network regions (Fig. 1b; for
a more formal description, see the following sections).
A network alignment approach can also be categorized

as either pairwise or multiple, based on how many net-
works it can align at once. Pairwise network alignment
aligns two networks at a time (Fig. 2a), whereas multiple
network alignment can align more than two networks at
the same time (Fig. 2b).
There exists an additional categorization of network

alignment approaches into one-to-one or many-to-many

Fig. 1 Illustration of a local and b global network alignment
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Fig. 2 Illustration of a pairwise and bmultiple network alignment

methods. One-to-one network alignment produces one-
to-one (or injective) node mapping, where a node from
a given network can be mapped to at most one unique
node from another network (Fig. 2a). On the other hand,
many-to-many network alignment produces many-to-
many node mapping, where a node from a given network
can be mapped to several nodes from another network
(Fig. 2b). We note that there also exists an approach that
produces one-to-many node mapping, meaning that it
maps a node from a given network to multiple nodes from
another network, while a node from the later network can
be mapped to at most one node from the former net-
work [83].
To date, all local aligners have been of the many-to-

many type, while global aligners have been of both one-to-
one and many-to-many types. Further, one-to-one global
aligners have traditionally been associated with pairwise
alignment. In this context, nodes in the smaller of the
two aligned networks are injectively mapped to nodes in
the larger network, thus resulting in aligned node pairs
(Fig. 2a). Similarly, many-to-many global aligners have tra-
ditionally been associated with multiple alignment. In this
context, the output is aligned node clusters rather than
pairs, where each cluster can contain multiple nodes from
the same network (Fig. 2b). Recently, “hybrid” approaches
have appeared, such as one-to-one alignment of multi-
ple networks [75, 77, 78]. In this case, an aligned node
cluster can contain at most one node from each of the
aligned networks, and each node can appear in at most
one aligned cluster. Table 1 categorizes some of the most
prominent network alignment approaches as either local
or global, pairwise or multiple, and one-to-one or many-
to-many. The approaches are discussed in more detail in
the following sections.
A general algorithmic idea behind network alignment

approaches is to compute similarities between nodes
in different networks with respect to some cost func-
tion and rapidly identify from all possible alignments a

high-scoring alignment with respect to the node simi-
larities. Many of the existing network alignment algo-
rithms use within their node cost function biological
information external to network topology, such as pro-
tein sequence similarities. However, to extract the most
from each source of biological information, it would be
good to know howmuch of new biological knowledge can
be uncovered solely from topology before integrating it
with other sources of biological information [39, 40, 54,
60, 69, 72, 73]. Only after methods for topological network
alignment are developed that result in alignments of good
topological and biological quality, it is beneficial to inte-
grate them with other biological (e.g., sequence) data to
further improve the quality.
We note that network alignment is one possible type

of network comparison. There also exists alignment-free
network comparison. Approaches of this type “simply”
aim to quantify the similarity between different networks
by comparing their overall topological properties (e.g.,
degree distributions or graphlet-based properties), ignor-
ing in the process node correspondence between the
networks and without aiming to identify conserved edges
or subgraphs [84–88]. On the other hand, network align-
ment aims to find good node correspondence between
networks that leads to highly similar conserved network
regions. Thus, network alignment and alignment-free net-
work comparisons have very different goals. Our focus is
on network alignment.
Also, there is another type of network comparison,

called network querying, which is more related to network
alignment. Network querying typically evaluates whether
a small query subnetwork (e.g., a simple path or a tree-
like structure) exists as an exact subgraph of a larger
target network, and if so, it identifies such a query-target
subnetwork match. Prominent approaches of this type
adopt a “color-coding” idea and ensure a confidence level
of the resulting subnetwork match [89–92]. Unlike net-
work querying, network alignment compares networks of
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Table 1 Overview of prominent network alignment approaches

Network Local or Pairwise or One-to-one or Link to the
aligner global? multiple? many-to-many? software

PathBLAST [93] Local Pairwise Many-to-many http://www.pathblast.org

NetworkBLAST [46] Local Pairwise Many-to-many http://www.cs.tau.ac.il/~bnet/networkblast.htm

MaWISh [48] Local Pairwise Many-to-many http://compbio.case.edu/koyuturk/software/mawish

Graemlin 1.0 [47] Local Multiple Many-to-many http://graemlin.stanford.edu

NetworkBLAST-M [94] Local Multiple Many-to-many http://www.cs.tau.ac.il/~bnet/License-nbm.htm

NetAligner [54] Local Pairwise Many-to-many http://netaligner.irbbarcelona.org

AlignNemo [52] Local Pairwise Many-to-many http://www.sourceforge.net/p/alignnemo/home/Home

AlignMCL [53] Local Pairwise Many-to-many http://sites.google.com/site/alignmcl

IsoRank [55] Global Pairwise One-to-one http://groups.csail.mit.edu/cb/mna

IsoRankN [59] Global Multiple Many-to-many http://groups.csail.mit.edu/cb/mna

GRAAL [38] Global Pairwise One-to-one http://bio-nets.doc.ic.ac.uk/GRAAL_suppl_inf

H-GRAAL [39] Global Pairwise One-to-one http://www.nd.edu/~cone/software_data.html

MI-GRAAL [40] Global Pairwise One-to-one http://bio-nets.doc.ic.ac.uk/MI-GRAAL

GHOST [60] Global Pairwise One-to-one http://www.cs.cmu.edu/~ckingsf/software/ghost

SPINAL [67] Global Pairwise One-to-one http://code.google.com/p/spinal

SMETANA [74] Global Multiple Many-to-many http://www.ece.tamu.edu/~bjyoon/SMETANA

BEAMS [75] Global Multiple Many-to-many http://webprs.khas.edu.tr/~cesim/BEAMS.tar.gz

NetCoffee [76] Global Multiple Many-to-many http://code.google.com/p/netcoffee

FUSE [78] Global Multiple One-to-one Available upon e-mail request until formally published

NETAL [68] Global Pairwise One-to-one http://bioinf.modares.ac.ir/software/netal

GraphM [58] Global Pairwise One-to-one http://cbio.ensmp.fr/~mzaslavskiy/pwp_projects.html

NATALIE 2.0 [64] Global Pairwise One-to-one http://www.mi.fu-berlin.de/w/LiSA/Natalie

GEDEVO-M [77] Global Multiple One-to-one http://gedevo.mpi-inf.mpg.de/multiple-network-alignment

MAGNA [69] Global Pairwise One-to-one http://www.nd.edu/~cone/MAGNA

WAVE [73] Global Pairwise One-to-one Available upon e-mail request until formally published

GREAT [72] Global Pairwise One-to-one Available upon e-mail request until formally published

PINALOG [65] Global Pairwise One-to-one http://www.sbg.bio.ic.ac.uk/~pinalog

In the table, there are eight local and 19 global network aligners. Of the eight local aligners, six are pairwise and two are multiple, and all eight are many-to-many. Of the 19
global aligners, 13 are pairwise and six are multiple, and 15 are one-to-one and four are many-to-many. All global pairwise approaches are one-to-one, while global multiple
approaches are either one-to-one or many-to-many

arbitrary sizes, and also, it typically searches for an inexact
subnetwork match between networks. Again, our focus is
on network alignment.
In the following sections, we discuss the different types

of existing prominent network alignment approaches.
After we contrast the different approaches, we discuss
existing measures that are used to evaluate alignment
quality of the approaches. Next, we discuss very recent
innovative directions that question the traditional view of
the network alignment problem. Further, we discuss key
biological applications of network alignment. Finally, we
present open research questions in comparative biological
network research that are expected to enhance personal-
ized health care via improved understanding of cellular
functioning, disease, and therapeutics.

Local network alignment
Approaches for local network alignment
We first discuss pairwise and then multiple local network
aligners.
PathBLAST [93] aligns two PPI networks to identify

their conserved pathways. An alignment graph is first
built, in which a node represents a pair of putative
orthologs (one from each network), and an edge repre-
sents a conserved interaction. Highest-scoring paths are
then searched for through the alignment graph with a
dynamic programming approach based on the degree
of protein sequence similarity and the interaction qual-
ity. In the process, gaps and mismatches are allowed to
account for evolution variations and experimental errors
in pathway structure.

http://www.pathblast.org
http://www.cs.tau.ac.il/~bnet/networkblast.htm
http://compbio.case.edu/koyuturk/software/mawish
http://graemlin.stanford.edu
http://www.cs.tau.ac.il/~bnet/License-nbm.htm
http://netaligner.irbbarcelona.org
http://www.sourceforge.net/p/alignnemo/home/Home
http://sites.google.com/site/alignmcl
http://groups.csail.mit.edu/cb/mna
http://groups.csail.mit.edu/cb/mna
http://bio-nets.doc.ic.ac.uk/GRAAL_suppl_inf
http://www.nd.edu/~cone/software_data.html
http://bio-nets.doc.ic.ac.uk/MI-GRAAL
http://www.cs.cmu.edu/~ckingsf/software/ghost
http://code.google.com/p/spinal
http://www.ece.tamu.edu/~bjyoon/SMETANA
http://webprs.khas.edu.tr/~cesim/BEAMS.tar.gz
http://code.google.com/p/netcoffee
http://bioinf.modares.ac.ir/software/netal
http://cbio.ensmp.fr/~mzaslavskiy/pwp_projects.html
http://www.mi.fu-berlin.de/w/LiSA/Natalie
http://gedevo.mpi-inf.mpg.de/multiple-network-alignment
http://www.nd.edu/~cone/MAGNA
http://www.sbg.bio.ic.ac.uk/~pinalog
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NetworkBLAST [46] is an extension of PathBLAST that
aims to identify not just simple linear pathways (as Path-
BLAST does) but also more complex network structures,
e.g., dense functional modules or protein complexes. It
does so by identifying high-scoring seeds in the alignment
graph (which is similar to PathBLAST’s) and extending
around the seeds in a greedy fashion.
MaWISh [48] is a pairwise local aligner model-

ing evolution (conservation and divergence) of pro-
tein interactions. In the alignment graph, evolutionary
information is encoded into edge weights through the
concepts of matches, mismatches, and duplication. MaW-
ISh addresses network alignment as a maximum weight
induced subgraph problem. Intuitively, it greedily grows a
subgraph starting from a seed with maximum gain with
respect to the cost function; a bad move (negative gain) is
allowed in order to bypass a poor local optimum.
NetAligner [54] is a pairwise aligner featuring

pathway-to-interactome, complex-to-interactome, and
interactome-to-interactome alignments. Also, it is able
to perform both inter- and intra-species alignment of
networks of arbitrary topology. NetAligner constructs
an initial alignment graph and searches for connected
components in this graph to be used as seeds. Then,
nodes from different seeds, which are disconnected in the
initial alignment graph as they do not conserve edges, are
now connected if they conserve indirect interactions (i.e.,
three-node paths) in one or both input networks. Finally,
NetAligner searches again for connected components in
such extended alignment graph, which are its output.
AlignNemo [52] is a recent pairwise local aligner capable

of handling sparse network data. It first uses the concept
of a weighted alignment graph, in which nodes represent
pairs of orthologs from different species (just as in the
previous methods’ alignment graphs), but edges are now
weighted via a scoring strategy that accounts not only for
directly conserved interactions but also for indirect inter-
actions. So, the more paths connecting the two nodes and
the more paths going through both nodes, the greater the
edge weight. Then, a seed-and-extend strategy is used on
the alignment graph to find relatively dense groups of
nodes (i.e., proteins that have more interactions among
themselves than with the rest of the network), which are
AlignNemo’s output.
AlignMCL [53] is another recent pairwise local aligner

that is robust to the choice of networks to be aligned.
It is based on Markov clustering (MCL), a known
graph clustering algorithm that simulates random walks
using Markov chains iteratively. AlignMCL first builds a
weighted alignment graph the same way as AlignNemo.
Next, it applies MCL to this graph to identify conserved
protein modules.
Graemlin 1.0 [47] is an early multiple aligner. Based on

a phylogenetic tree of species whose networks are being

aligned, it uses a “progressive alignment” strategy by per-
forming successively pairwise alignments of the closest
network pairs. It first finds with a seed-and-extend strat-
egy a pairwise alignment of the two closest species based
on their phylogenetic relationship. Then, it transforms the
resulting alignment together with unaligned nodes from
the two networks into a new network for use in the next
phase of the progressive alignment.
NetworkBLAST-M [94] is also a multiple aligner. It

works with a novel representation of multiple networks,
a layered alignment graph, in which each layer corre-
sponds to a network and putative orthologs from dif-
ferent layers which are connected by inter-layer edges.
NetworkBLAST-M then uses a seed-and-extend strategy
to identify a high-scoring alignment from the layered
alignment graph. Seeds come from a set of k-spines (a
k-spine is a connected subgraph of size k with each
node coming from a different layer) generated based
on either identical topologies or underlying phylogeny.
NetworkBLAST-M performs an expansion around the
seed by iteratively adding to the alignment a k-spine that
contributes the most to the current score, until no k-spine
can be added or the alignment size exceeds the limit.

Alignment quality measures for local network alignment
A variety of approaches have been used to assess the
quality of a local alignment, which is the set of con-
served networkmodules. Generally, the resultingmodules
are compared against known protein complexes or other
functional units to evaluate their overlap. Then, intu-
itively, the more conserved network modules there are
that have large overlap with known protein complexes, the
better the alignment quality. Popular biological alignment
quality measures in the context of local network align-
ment, which quantify this notion of “network module–
protein complex” overlap, are discussed below. We note
that evaluation of topological alignment quality (e.g., of
the amount of edges that are conserved by the align-
ment) is not common when it comes to local network
alignment. This is because local aligners result in many-
to-many node mappings, whereas edge conservation is
typically defined with one-to-one node mapping in mind,
and thus, it is not clear how to measure topological align-
ment quality of many-to-many aligners [38]. Plus, local
network aligners are more biologically motivated, mean-
ing that they are aimed at mapping protein complexes
across networks, whereas global aligners are more mathe-
matically motivated, aiming to solve a modification of the
subgraph isomorphism problem.

1. Gene ontology (GO) [95] semantic similarity. GO
semantic similarity aims to assess to what extent the
mapped (i.e., conserved) network modules from
different species are functionally related. First, GO
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semantic similarity is computed between each two
proteins in the given module. This can be done in
many ways, e.g., by averaging GO semantic
similarities across the proteins’ associated GO term
pairs [52, 53]. Then, semantic similarity of an entire
module can be computed by averaging the resulting
similarities over all mapped protein pairs within the
module. Finally, the score of an alignment can be
computed by summarizing the results over all
mapped network modules, thus assigning a single
GO semantic similarity score to the alignment. The
higher the GO semantic similarity, the better the
alignment quality. This measure was used by
AlignNemo [52] and AlignMCL [53].

2. Detection of known complexes. Given a conserved
module produced by a local aligner and a known
protein complex, precision is the percentage of
proteins in the conserved network module that are
also present in the protein complex, recall is the
percentage of proteins in the protein complex that
are also in the network module, and F-score is the
harmonic mean of precision and recall aiming to
reconcile the two mutually contradicting measures
[52, 54]. Then, the statistics can be summarized over
all modules in the alignment. The higher the values
of these measures, the better the alignment quality.
These measures were used by NetAligner [54],
AlignNemo [52], and AlignMCL [53].

3. Specificity and sensitivity. For each species,
specificity is the percentage of functionally coherent
conserved modules, i.e., modules that are statistically
significantly enriched in a given GO term, out of all
conserved modules. The statistical significance of the
enrichment is typically done with respect to the
hypergeometric test, corrected for multiple
hypothesis testing [96]. Sensitivity is the number of
distinct GO terms that are statistically significantly
enriched in the given local alignment, i.e., in its
conserved network modules. The higher the values of
these two measures, the better the alignment quality.
These measures were used by NetworkBLAST [94],
NetworkBLAST-M [94], and Graemlin 1.0 [47].

Summary of local network aligners: which one to use?
Of the pairwise local aligners, PathBLAST [93], Network-
BLAST [46], and MaWISh [48] are among the earliest
algorithms. When applied to real-world PPI networks,
these pioneering aligners revealed existing as well as
novel functional modules, many of which would not have
been identified from sequence alignment alone. Path-
BLAST has been obsolete for a while now and has not
been evaluated against any recent local network aligner.
NetAligner was shown to be better than NetworkBLAST
when identifying known functional modules in terms of

precision and recall (Fig. 3a), perhaps due to NetAl-
igner being able to handle sparse complexes, while Net-
workBLAST could only identify dense complexes [54].
AlignNemo was shown to outperform both MaWISh
and NetworkBLAST when detecting protein complexes,
while performing comparably to NetAligner (Fig. 3b) [52].
AlignMCL was shown to generate more of high-quality
conserved networkmodules that match known complexes
well compared to NetAligner and MaWISh (Fig. 3c) [53].
Unlike the above pairwise approaches, Graemlin 1.0

[47] and NetworkBLAST-M [94] are capable of align-
ing multiple networks. When compared against each
other, NetworkBLAST-M was shown to outperform
Graemlin 1.0 in terms of specificity and sensitivity
(Table 2) [94].
The above results are overall conclusions. Importantly,

the superiority of an aligner also depends on the choice
of the network data (e.g., synthetic versus real-world net-
works, binary Y2H versus co-complex AP/MS networks,
etc.) as well as alignment quality measure and evalua-
tion framework. Therefore, we recommend a new pair-
wise local aligner to be compared against AlignNemo
and AlignMCL and a new multiple local aligner to be
compared against NetworkBLAST-M.

Global network alignment
Approaches for global network alignment
We classify prominent global network aligners into three
groups according to their algorithmic design. The first
group of methods employ a two-step approach: 1) use a
cost function to compute pairwise similarities between
nodes in different networks and 2) use an alignment strat-
egy to rapidly identify from all possible alignments the
highest-scoring alignment with respect to the total sim-
ilarity over all aligned nodes [38–40, 55, 57, 59, 60, 63,
67, 74–76, 78]. Although a typical cost function aims
to compute topological similarities between nodes, most
of the global network aligners allow for the integration
of sequence information into the node cost function. A
typical alignment strategy uses the precomputed node
similarity matrix resulting from the above step 1 to iter-
atively produce an alignment, and it does not allow for
updating the matrix while creating an alignment. How-
ever, nodes that are already aligned at a given iteration
of the alignment strategy might convey valuable informa-
tion for guiding the remaining iterations of the strategy.
Therefore, it could be desirable to update the initial node
similarity matrix resulting from step 1 in each iteration
of step 2. Motivated by this, the second group of recent
global network aligners allows for iteratively updating
the node similarity matrix while producing the alignment
[68], or they employ an alternative similar idea [58, 64, 77].
Finally, the third group of very recent network aligners
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Fig. 3 Illustration of the performance of different local network aligners. The figure compares a NetworkBLAST and NetAligner, b AlignNemo,
NetworkBLAST, and MaWISh, and cMaWISh, NetAligner, and AlignMCL, with respect to precision, recall, or F-score of “aligned network
module–known protein complex” matches. In a, precision and recall are shown when aligning networks of human (H) and yeast (Y), where the
order of networks (i.e., H/Y versus Y/H) plays a role. The statistical significance of the performance difference between the two methods is indicated
with an asterisk. In b, results are shown only for conserved network modules with more than six nodes, when aligning yeast and fly networks. In the
lower left, precision versus recall is shown for each conserved module, represented as a circle whose radius is proportional to the size of the module.
In the lower right, F-score distributions are shown for each method. Finally, at the top right, percentages are shown to quantify how well the given
method’s conserved modules match known protein complexes. In c, each point represents an alignment. The position of a point on y-axis is
determined by the number of modules (or solutions) conserved under the given alignment that match known protein complexes with F-score (i.e.,
F-index) above 0.5. The position of a point on x-axis is determined by the number of modules conserved under the given alignment that have
semantic similarity (SS) scores above 0.3; semantic similarity of a conserved module quantifies functional homogeneity of proteins within the
module. a, b, and c are adopted from [52, 54] and [53], respectively

proposes a novel view of the network alignment problem
(see below for details) [25, 69, 72, 73]. Next, we discuss
these three approach groups.

Two-step global network aligners Traditional global
network aligners employ the above two-step approach
to produce alignments, and they mostly differ in which
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Table 2 Comparison of NetworkBLAST-M and Graemlin 1.0 on nine microbial networks in terms of specificity and sensitivity

Specificity (%) Sensitivity

Species NetworkBLAST-M Graemlin 1.0 NetworkBLAST-M Graemlin 1.0

S. coelicolor 100.0 71.4 17 12

E. coli E12 90.0 76.5 16 10

M. tuberculosis 87.9 76.9 17 8

S. typhimurium 93.1 81.3 14 10

C. crescentus 84.8 86.7 15 11

V. cholerae 90.6 80.0 16 9

S. pneumoniae 97.0 71.4 14 8

C. jejuni 96.2 76.9 12 9

H. pylori 92.3 56.3 13 8

For a given measure, the superior of the two methods is indicated in bold. The table is adopted from [94]

node cost function and alignment strategy they use, as
follows.
IsoRank has its pairwise version [55] and its multiple

version [57]. Both exploit the idea of Google’s PageRank
algorithm [97] to define the same cost function. Intu-
itively, two nodes from different networks are similar if
their network neighbors are similar, where the neighbors
are similar if their own neighbors are similar, and so on.
In each of the two IsoRank versions, the alignment strat-
egy aligns in one-to-one fashion nodes between different
networks greedily with respect to the cost function. Iso-
Rank has further evolved into IsoRankN [59], a different
multiple network aligner that uses the same cost func-
tion as IsoRank, but that uses a different, spectral graph
theoretic alignment strategy to produce a many-to-many
alignment. Intuitively, this alignment strategy is similar to
PageRank-Nibble algorithm [98], and it finds dense clus-
ters of nodes from multiple networks to produce aligned
clusters, where each cluster can contain multiple nodes
from the same network.
The GRAAL family of pairwise aligners [38–40], devel-

oped in parallel with the IsoRank family, uses graphlet
(or small induced subgraph [84, 99]) counts to com-
pute mathematically rigorous topological node similarity
scores [100–102]. Intuitively, two nodes are a good match
if their extended network neighborhoods are topologi-
cally similar with respect to the graphlet counts. It is
the alignment strategies of the GRAAL family members
that are different. The alignment strategy of the origi-
nal GRAAL [38] is a greedy seed-and-extend approach,
while the alignment strategy of H-GRAAL [39] is an opti-
mal approach that aims to solve the maximum weight
bipartite matching problem using Hungarian algorithm
[44]. More recent MI-GRAAL [40] combines alignment
strategies of GRAAL and H-GRAAL to further improve
alignment quality. In parallel to MI-GRAAL, C-GRAAL
[63] has appeared, whose node cost function is based on
the idea of shared network neighbors rather than graphlet

counts. Its alignment strategy is a seed-and-extend
approach.
More recent and also pairwise GHOST [60] uses “spec-

tral signatures” to compute node similarities. GHOST’s
alignment strategy is similar to MI-GRAAL’s, except that
MI-GRAAL solves a linear assignment problem by taking
into account the similarities between nodes in different
networks, while GHOST heuristically solves a quadratic
assignment problem by also taking into account the simi-
larities between nodes within the same network.
Similar to IsoRank, SPINAL [67] computes the simi-

larity between two nodes based on the confidence that
their neighbors can be matched well. This is done via an
iterative approach that stops once a converged node sim-
ilarity matrix is obtained. Given the node similarities, the
aligner uses a seed-and-extend approach to produce an
alignment.
The remaining aligners in this two-step category are

multiple rather than pairwise approaches. SMETANA [74]
bases its node cost function on a semi-Markov random
walk model. Its alignment strategy uses a greedy approach
to produce aligned node clusters. BEAMS [75] uses pro-
tein sequence similarity as its node cost function. Then,
given k networks, its alignment strategy constructs a k-
partite node similarity graph, identifies a set of disjoint
cliques from the similarity graph that maximizes the num-
ber of conserved edges between each pair of cliques,
and repeatedly merges the cliques to form aligned node
clusters until the alignment score (with respect to edge
conservation) can no longer be maximized. NetCoffee’s
[76] cost function is based on the likelihood that two
given proteins (from different networks) are topologically
conserved. Its alignment strategy constructs a weighted
bipartite graph for each pair of networks, searches for
candidate edges from each bipartite graph (i.e., candidate
aligned node pairs) by solving maximum weight bipar-
tite matching problem, and finally produces an alignment
over all network pairs using a simulated annealing-based
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approach guided by an objective function; the objective
function is a measure of the summation of candidate
edge weights, where the weight is defined by the node
cost function. FUSE [78] bases its cost function on a
non-negative matrix tri-factorization technique. Given k
networks, its alignment strategy constructs a weighted
k-partite graph and solves in approximate fashion the
maximum weight k-partite matching problem to produce
one-to-one multiple network alignment.

Iterative global network aligners The following
approaches allow for updating node similarity scores
computed with respect to the given cost function during
each iteration of the alignment strategy, or they employ a
similar idea of iteratively improving the alignment as it is
built via an optimization strategy.
NETAL [68] is a pairwise aligner that iteratively recom-

putes the similarity between two currently unaligned
nodes based on the current alignment and the expected
number of conserved interactions incident to the two
nodes if the nodes were to be aligned. GraphM [58] is
a pairwise aligner that employs a gradient ascent-based
iterative approach guided by an objective function to iter-
atively find a high-scoring alignment with respect to the
objective function. GraphM uses two variations of the
objective function. The first variation is based on the
overall protein sequence conservation in the alignment.
The second variation is based on both the sequence and
edge conservation in the alignment. Motivated by the
mathematical foundations of NATALIE [62], NATALIE
2.0 [64] formulates the network alignment problem as a
quadratic assignment problem (similar to GHOST) that
is then generalized into an integer linear programming
problem. Given the NP-completeness of the latter, the
aligner adapts a Lagrangian relaxation approach to solve
the problem using a subgradient optimization.
Unlike the above three pairwise one-to-one aligners,

GEDEVO-M [77] is a multiple (also one-to-one) aligner.

It generalizes the concept of graph edit distance (GED)
between two networks (which is the minimum number
of edge insertions and deletions needed to transform one
network into another) into GED for multiple networks,
in order to solve multiple network alignment problem by
iteratively optimizing a GED-based objective function.

Novel views of network alignment Recently, two major
drawbacks have been recognized with the current view of
the network alignment problem, as follows.

Mix-and-match-based network aligners. Recall that
many of the existing global network aligners rely on the
two-step algorithmic idea: node cost function and align-
ment strategy. Most of them have their own cost functions
and alignment strategies (see above). As a result, when
a network aligner is found to be superior to another, it
is not clear whether this superiority comes from the first
aligner’s cost function, its alignment strategy, or both.
So, to fairly evaluate different two-step approaches, one
should compare their different node cost functions under
the same alignment strategy, for each alignment strat-
egy, as well as their different alignment strategies under
the same node cost function, for each node cost func-
tion [25, 71]. This way, one can properly evaluate which
node cost function or alignment strategy is superior. Also,
in the process, the combination of cost function of one
method and alignment strategy of another method could
outperform each original method.
Motivated by this, recent efforts have been made to

mix-and-match node cost functions and alignment strate-
gies of prominent existing network aligners, in order to
perform a fair evaluation of their two algorithmic com-
ponents (Fig. 4) [25, 71]. In particular, by comparing the
three intuitively similar node cost functions of IsoRank
family, GRAAL family, and GHOST, according to which
two nodes are similar if their extended network neigh-
borhoods are similar (see above), it was established that

Fig. 4 Fair evaluation of two-step global network aligners. To fairly evaluate two aligners, one should mix and match their node cost functions (CFs)
and alignment strategies (ASs) and compare the different CFs under the same AS, and vice versa
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the GRAAL family’s graphlet-based node similarity mea-
sure is superior to those of IsoRank’s family as well as
GHOST [25, 71]. On the other hand, which alignment
strategy is superior depends on the choice of data set or
evaluation criteria. But nonetheless, in each of the two
efforts [25, 71], novel superior network aligners have been
proposed that combine cost function of one method and
alignment strategy of another method, confirming that it
is important to properly and fairly evaluate the two-step
approaches as described above.

Edge-focused network aligners. Traditional network
aligners discussed so far (with exception of BEAMS and
GraphM) identify from possible alignments the high-
scoring alignments with respect to the overall node sim-
ilarity (or node conservation). However, the accuracy of
the alignments is then evaluated with some other measure
that is different than the node similarity used to construct
the alignments. Typically, one measures the amount of
conserved edges. Thus, the traditional methods align sim-
ilar nodes between networks hoping to conserve many
edges (after the alignment is constructed!).
Instead, MAGNA [69] has recently been proposed that

directly optimizes edge conservation while the alignment
is being constructed, without decreasing in the process the
quality of node mapping. Intuitively, this aligner exploits
the idea of a genetic algorithm to crossover via a novel
mathematical concept two parent alignments into a supe-
rior child algorithm. MAGNA simulates the population of
alignments that evolves over time for as long as allowed
by computational resources and allows the fittest (high-
est scoring with respect to edge conservation) alignments
to proceed to the next generation. Importantly, the ini-
tial population of alignments can consist of either ran-
dom alignments or alignments from existing methods.
Thus, MAGNA can work on top of the alignments of
the existing methods to further improve their quality. But
importantly, MAGNA improves upon the existing net-
work alignment methods (that optimize node conserva-
tion rather than edge conservation) even when run on top
of random alignments. MAGNA was recently extended
into MAGNA++ framework [82], in order to simultane-
ously optimize both node and edge conservation, which
further improves alignment quality. Further, MAGNA++
features a user-friendly graphical interface for domain
(e.g., biological) scientists while also offering source code
for easy extensibility by computational scientists.
Another edge-focused alignment effort is WAVE [73],

which is not a complete aligner per se, but instead, a
novel iterative alignment strategy that can be used on top
of any existing node cost function. Importantly, just as
MAGNA++, WAVE aims to optimize both node and edge
conservation during the alignment process, unlike previ-
ous alignment strategies. For this, it uses a novel measure

of edge conservation that (unlike existing measures that
treat each conserved edge the same) weighs each con-
served edge so that edges with highly similar end nodes
(with respect to the cost function) are favored. Using
WAVE on top of established node cost functions has led
to superior alignments compared to the existing meth-
ods that optimize only node conservation or only edge
conservation or that treat each conserved edge the same.
In parallel to WAVE, GREAT [72] has appeared, which

just like WAVE optimizes both node and edge conserva-
tion and also weighs each conserved edge to favor con-
served edges that are topologically similar over conserved
edges that are topologically dissimilar. Unlike WAVE,
GREAT approaches the network alignment problem from
a novel perspective, by aligning well edges between net-
works first in order to improve the node cost function
needed to then align well nodes between the networks.
GREAT, the edge-based network aligner, outperforms
fairly comparable node-based network aligners. Also, it
improves upon the most recent state-of-the-art meth-
ods that aim to optimize node conservation only or edge
conservation only or that treat each conserved edge the
same.
We note an alternative novel view of the network align-

ment problem. Namely, unlike the other network aligners,
PINALOG [65] first detects clusters (dense subnetworks)
in the input networks, aligns the clusters between the net-
works, and finally aligns nodes within the aligned clusters
using a seed-and-extend approach.

Alignment quality measures for global network alignment
Unlike local network alignment that is typically evalu-
ated only biologically (see above), global network aligners
are evaluated both topologically and biologically. Depend-
ing on whether a global alignment is pairwise or mul-
tiple, given the difference in their input (aligned node
pairs versus aligned node clusters), different measures
of alignment quality are used for the different approach
categories, as follows.

Alignment quality measures for pairwise network
aligners Recall that all pairwise global aligners are also
one-to-one in nature. Intuitively, a good network aligner
should match well nodes between aligned networks, con-
serve many edges, and find a large common connected
subgraph. With this in mind, the following topological
quality measures are widely used by pairwise one-to-one
aligners.

1. Node correctness (NC). NC of an alignment is the
percentage of nodes in the smaller network (in terms
of the number of nodes) that are correctly aligned
(according to the ground truth node mapping) to
nodes in the larger network [38]. Unlike other
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measures discussed below, NC is applicable only
when the actual ground truth node mapping between
networks is known, which is rarely the case for
real-world networks. Thus, NC is typically computed
on synthetic network data, when aligning a network
to its noisy counterparts obtained by, e.g., randomly
adding or rewiring a percentage of edges in the
original network [38–40, 60, 69]. The higher the NC
score, the better the alignment quality. This measure
was used by GRAAL [38], H-GRAAL [39],
MI-GRAAL [40], GHOST [60], NETAL [68],
MAGNA [69], GREAT [72], and WAVE [73], as well
as in a follow-up study on fair evaluation of existing
aligners [71].

2. Symmetric substructure score (S3). S3 measures the
amount of edge conservation between two aligned
networks [69]. This measure has been introduced to
overcome the drawbacks of two other similar
measures: edge correctness (EC) [38] and induced
conserved structure (ICS) [60]. Namely, EC was
proposed to measure the percentage of edges from
the smaller network that are mapped to edges from
the larger network under the given alignment.
However, EC might fail to differentiate between two
alignments that one might consider to be of different
topological quality, as it is defined with respect to the
smaller network but not the larger one [60]. Thus,
ICS was defined as the percentage of edges from the
subgraph of the larger network that participates in
the alignment, which are mapped to edges in the
smaller network under the given alignment [60].
However, now ICS is defined with respect to the
larger network but not the smaller one. That is, since
EC is defined with respect to the smaller network, it
penalizes the alignment for having misaligned edges
in the smaller network but not in the larger network.
On the other hand, since ICS is defined with respect
to the larger network, it penalizes the alignment for
having misaligned edge in the larger network but not
in the smaller network. With this motivation, S3 has
recently been proposed to improve upon EC and ICS
by penalizing for misaligned edges in both the smaller
and larger networks [69]. The higher the S3 score, the
better the alignment quality. This 2014 measure was
used by MAGNA [69], GREAT [72], andWAVE [73],
as well as in a follow-up study on fair evaluation of
existing aligners [71]. In addition, its predecessors EC
and ICS were used by GRAAL [38], H-GRAAL [39],
MI-GRAAL [40], GHOST [60], and NETAL [68].

3. Size of the largest connected common subgraph
(LCCS). Of two alignments with similar S3 scores,
one could expose large, contiguous, and topologically
complex regions of network similarity, while the
other could fail to do so. Thus, in addition to counting

aligned edges, it is important that the aligned edges
cluster together to form large connected subgraphs
rather than being isolated. In this context, a
connected common subgraph (CCS) is defined to be
a connected subgraph (not necessarily induced) that
appears in both networks [39, 40]. The size of the
largest CCS (LCCS) can be measured in terms of the
number of both nodes and edges [38, 40], and a new
summary measure reconciling the two, which also
penalizes for misaligned edges in both networks (just
as S3 does), has been proposed [69]. The higher the
LCCS score, the better the alignment quality. This
measure was used by IsoRank [55], GraphM [58], and
most of the aligners that also used NC (see above).

The following biological quality measures are widely
used by pairwise aligners.

1. GO correctness is the percentage of aligned protein
pairs in which the two proteins share at least k GO
terms [95], out of all aligned protein pairs in which
both proteins are annotated with at least k GO terms
[38]. GO correctness can be computed with respect
to complete GO annotation data, independent of GO
evidence code. However, since many GO annotations
have been obtained via sequence comparison, and
since some of the aligners also use sequence
information to produce their alignments, GO
correctness can be biased by the sequence
information. Therefore, it is highly recommended to
consider only GO annotations with experimental
evidence codes when computing GO correctness of
an aligner that uses sequence information [38]. This
measure was used by GRAAL [38], H-GRAAL [39],
MI-GRAAL [40], C-GRAAL [63], GHOST [60],
NETAL [68], MAGNA [69], and WAVE [73], as well
as in a follow-up study on fair evaluation of existing
aligners [71].

2. GO semantic similarity. We have already discussed
this measure above in the context of local network
alignment. It complements GO correctness, as
follows. GO correctness is a stricter measure that
requires two proteins in an alignment to share one or
more common GO terms. However, two proteins
can still be functionally similar if they share a similar
GO term, without necessarily sharing the same GO
term. GO correctness would fail to identify such
functional similarity between two proteins. GO
semantic similarity between two proteins overcomes
the limitation by taking into account the semantic
similarity between GO terms that the two proteins
are annotated with [103–107]. Just as with local
aligners, GO semantic similarity between two
proteins can be computed in many ways, e.g., by
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averaging GO semantic similarities across the
proteins’ associated GO term pairs [52, 69, 108].
Then, GO semantic similarity of an entire alignment
can be computed by averaging the resulting
similarities over all protein pairs in the alignment,
thus assigning a single semantic similarity score to
the alignment [52, 69, 108]. This measure was used
by GHOST [60] and MAGNA [69].

Alignment quality measures for multiple network
aligners Recall that most of multiple network aligners
are also many-to-many in nature, meaning that multiple
nodes in one network can be mapped to multiple nodes in
another network, resulting in a set of aligned node clus-
ters. The clusters are typically non-overlapping, but a clus-
ter can contain multiple nodes from the same network.
For these reasons, different alignment quality measures
are required for multiple network aligners compared to
pairwise aligners [59]. Intuitively, a goodmultiple network
aligner should produce aligned clusters such that nodes in
each cluster are functionally uniform or consistent. Also,
it should produce many such clusters, so that it covers as
many of the nodes from the aligned networks as possi-
ble. The following alignment quality measures are widely
used for a multiple network aligner. Among them, the
first one is a topological measure and the remaining ones
are biological measures. (Note that an additional poten-
tial measure of topological alignment quality exists, as
follows. BEAMS generalizes the concept of edge conser-
vation from pairwise to multiple alignment [75]. Whereas
BEAMS uses this measure to define its alignment score
that is optimized while creating a multiple alignment,
nothing prevents one to use this measure to evaluate
topological quality of another aligner’s multiple alignment
after it is created.)

1. The larger the number of aligned clusters containing
at least three nodes, the better the alignment quality.
This measure was used by IsoRankN [59], as well as
in a follow-up study on fair evaluation of existing
aligners [25].

2. A related measure is k-coverage, which counts the
number of clusters containing proteins from k
different networks. This measure was used by
SMETANA [74], BEAMS [75], and FUSE [78].

3. Exact cluster ratio is the percentage of aligned
clusters in which all proteins share a GO term. The
higher its value, the better the alignment quality.
This measure was used by IsoRankN [59] and in a
follow-up study on fair evaluation of existing aligners
[25].

4. Exact protein ratio is the percentage of all proteins
that are in the exact clusters (as defined above). The
higher its value, the better the alignment quality.

This measure was used by IsoRankN [59] and in a
follow-up study on fair evaluation of existing aligners
[25].

5. Mean entropy of alignment. First, the entropy of an
aligned cluster S∗

v is computed as:
H(S∗

v ) = H(p1, p2, . . . , pd) = − ∑d
i=1 pi log pi, where

pi is the percentage of all proteins in S∗
v that have GO

term i, and d is the total number of GO terms [59].
Then, the mean entropy of the alignment is obtained
by averaging entropies across all clusters in the
alignment. The lower the entropy of the alignment,
the higher its average within-cluster GO term
consistency, and consequently, the better its
biological quality. This measure was used by
IsoRankN [59], SMETANA [74], BEAMS [75],
NetCoffee [76], GEDEVO-M [77], and FUSE [78], as
well as in a follow-up study on fair evaluation of
existing aligners [25].

6. Normalized mean entropy of alignment. First, the
normalized entropy of an aligned cluster S∗

v is
computed as: H̄(S∗

v ) = 1
log dH(S∗

v ). Then, the mean
normalized entropy is obtained by averaging
normalized entropies across all aligned clusters. The
lower the normalized mean entropy, the better its
biological quality. This measure was used by
IsoRankN [59], SMETANA [74], BEAMS [75],
NetCoffee [76], GEDEVO-M [77], and FUSE [78], as
well as in a follow-up study on fair evaluation of
existing aligners [25].

Evaluating statistical significance of an alignment
When aligning networks with an approach, it is impor-
tant to measure the statistical significance of the given
alignment quality score. There are several approaches
to achieve this. One could compute the probability of
obtaining the same or better score by aligning the actual
networks with a random aligner [39, 48]. Additionally, one
could compute the probability of obtaining the same or
better score by aligning random networks with the actual
approach [39]. In this context, random networks should
come from an appropriate network null model (i.e., graph
family), and many network null models exist [109, 110].

Summary of global network aligners: which one to use?
Of the pairwise global aligners, IsoRank [55], GraphM
[58], GRAAL [38], and H-GRAAL [39] are among the
earliest global alignment algorithms and have by now
been outperformed by the newer approaches. MI-GRAAL
was shown to perform significantly better than IsoRank,
GRAAL, and H-GRAAL [40] (Fig. 5). MI-GRAAL and
GHOST are mostly comparable to each other [71], with
slight superiority of GHOST in some contexts. NETAL
was shown to be either superior or comparable to MI-
GRAAL [68]. MAGNA, a recent edge-based aligner,
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Fig. 5 Illustration of the performance of different global network aligners with respect to LCCS. The figure shows LCCSs between yeast and human
PPI networks revealed by IsoRank (116 proteins and 261 interactions), GRAAL (267 proteins and 900 interactions), H-GRAAL (317 proteins and 1290
interactions), and MI-GRAAL (1858 proteins and 3467 interactions). GHOST and MAGNA, as more recent aligners, produced even larger LCCSs
(figures not shown). Namely, GHOST’s LCCS, as reported in [69], has 1622 proteins and 5356 interactions. MAGNA, when run on MI-GRAAL’s initial
population, returns LCCS with 1660 proteins and 3401 interactions. MAGNA, when run on GHOST’s initial population, returns LCCS with 1327
proteins and 4363 interactions. Note that it is not the raw node and edge counts alone that should be compared between two methods’ LCCSs.
Namely, a good method should find an LCCS that has many edges as well as nodes, while at the same time penalizing for edges from both the
smaller and larger networks that are misaligned under the given alignment (just as S3 does). A summary LCCS measure capturing all of this was
recently proposed [69]. The resulting summary LCCS scores are 51, 54, 59, and 59 % for MI-GRAAL, GHOST, and the two MAGNA versions,
respectively. Clearly, GHOST is superior to MI-GRAAL, while MAGNA is superior to GHOST (and thus to MI-GRAAL). The LCCS figures of IsoRank,
GRAAL, H-GRAAL, and MI-GRAAL are adopted from the original publications [38–40]

was shown to be superior to IsoRank, MI-GRAAL, and
GHOST [69] (Fig. 6a). Newer MAGNA++ was shown to
outperform MAGNA [82]. GREAT and WAVE, also very
recent edge-focused pairwise aligners, have been shown
to perform better than MI-GRAAL, GHOST, MAGNA,
and NETAL [72] (Fig. 6b). The above results are over-
all conclusions. Importantly, the superiority of an aligner
also depends on the choice of the network data (e.g.,
synthetic versus real-world networks, binary Y2H versus
co-complex AP/MS networks, etc.) as well as alignment
quality measure and evaluation framework. Therefore, we
recommend a new pairwise global aligner to be com-
pared againstMI-GRAAL, GHOST, NETAL,MAGNA++,
GREAT, and WAVE.
Of the multiple global aligners, SMETANA, BEAMS,

and NetCoffee were shown to be superior to IsoRankN
[74–76], while SMETANA, BEAMS, and NetCoffee are
mostly comparable to each other [75, 76]. FUSE, a
recent multiple aligner, has been shown to outperform
SMETANA and BEAMSwith respect to most of the align-
ment quality measures [78] (Fig. 6c). Since again, the

superiority of an aligner depends on the choice of data and
alignment quality measure, we recommend a new mul-
tiple global aligner to be compared against SMETANA,
BEAMS, NetCoffee, and FUSE.

Key biological implications of network alignment
Due to recent popularity of global network alignment
(Table 1), our discussion in this section focuses primarily
on biological results of global aligners.

Revealing conserved PPI network regions between yeast and
human
Network aligners have been used to reveal conserved and
unexpectedly large PPI network regions between differ-
ent species, with special focus on yeast and human, as the
two most complete PPI eukaryotic networks to date [111].
Figure 5 illustrates the size of LCCS between yeast and
human PPI networks obtained by IsoRank, GRAAL, H-
GRAAL, and MI-GRAAL. GHOST and MAGNA, being
the more recent aligners, revealed even larger LCCSs
[60, 69].



Faisal et al. EURASIP Journal on Bioinformatics and Systems Biology  (2015) 2015:3 Page 14 of 19

Fig. 6 Additional illustration of the performance of different global network aligners. This figure shows a the superiority of MAGNA over IsoRank,
MI-GRAAL, and GHOST with respect to NC when aligning synthetic noisy yeast networks with known node mapping, and with respect to S3 and
LCCS when aligning Campylobacter jejuni and Escherichia coli bacterial PPI networks [69], b the ranking of GREAT, MI-GRAAL, GHOST, MAGNA, and
NETAL over all alignments produced by the original GREAT study [72] with respect to three alignment quality measures (NC, S3, and LCCS)
combined, demonstrating the superiority of GREAT over the other aligners [72], and c the superiority of FUSE (its best parameter version, as reported
in [78]) over BEAMS (its best parameter version, as reported in [78]) and SMETANA with respect to the number of functionally consistent aligned
node clusters, i.e., clusters that are enriched in a biological process (BP) or molecular function (MF) GO term [78]. The figures in a, b, and c are
adopted from [69, 72] and [78], respectively

Importantly, conserved network regions uncovered by
the aligners are typically enriched in the same biological
function (this is true for both local and global aligners).
For example, GRAAL has aligned a subnetwork consisting
of 52 nodes between yeast and human, where 98 % yeast
proteins and 67 % human proteins are involved in splicing
(Fig. 7) [38]. This is highly encouraging because splicing is
known to be conserved among eukaryotic species, even if
they are as diverse as yeast and human [112].

Revealing evolutionary relationships between species
Several prominent network aligners aimed to uncover
evolutionary relationships between species and con-
struct the species’ phylogenetic tree based on similar-
ities between their biological networks. GRAAL and
H-GRAAL were first such aligners. Since PPI network
structure has subtle effects on the evolution of proteins
and reasonable phylogenetic inference can only be done
between closely related species [113], and since no PPI
data were available for closely related species around
the time GRAAL and H-GRAAL appeared, these meth-
ods focused on phylogenetic tree inference based on
metabolic networks [114]. In particular, these aligners

used metabolic data from KEGG [15] to reconstruct phy-
logenetic relationships for seven closely related organ-
isms from the family of protist, as well as for six closely
related organisms from the family of fungi [38, 39]. It
was encouraging that the resulting phylogenetic trees
were non-random and very similar to “ground truth” trees
found by sequence comparison. The fact that the network-
based trees slightly differed from those based on sequence
data is not alarming, as there is no reason to believe
that the sequence-based ones should a priori be consid-
ered the correct ones. This is because sequence-based
phylogenetic tree inference suffers from several problems
underlying sequence comparison [38, 39], which is a com-
putational way of obtaining the trees, just as network
alignment is.
Around the time MI-GRAAL appeared, genome-

wide PPI networks became available for five closely
related species from the family of herpesviruses [115].
By “genome-wide,” we mean that all possible protein
pairs in each virus were tested for interactions. Thus,
MI-GRAAL used these PPI network data to infer evo-
lutionary relationships between the five herpesviruses
based on their network similarities. Importantly,
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Fig. 7 GRAAL’s second largest CCS. The second largest CCS uncovered by GRAAL when aligning PPI networks of yeast and human, consisting of 286
interactions amongst 52 proteins; each node in the CCS contains a label denoting a pair of yeast and human proteins that are aligned and each
edge between two nodes means that an interaction exists in both species between the corresponding protein pairs [38]

MI-GRAAL correctly reconstructed the phylogenetic tree
(Fig. 8).
All of these results support the original hypothesis of

GRAAL, H-GRAAL, and MI-GRAAL studies that biolog-
ical network data is a valuable source of biological and
evolutionary information.

Revealing new knowledge about human aging
Since the US population is on average growing older
because of ∼78 million of baby boomers who began
turning 65 in 2011, and since susceptibility to dis-
eases increases with age, studying molecular mechanisms
behind aging and aging-associated diseases gains impor-
tance. However, human aging is hard to study experi-
mentally because of long lifespan and ethical constraints.
Therefore, learning knowledge about human aging needs
to rely on computational research. Genomic sequence
alignment, a popular computational direction, has typ-
ically been used to learn about human aging by trans-
ferring the knowledge from highly studied model species
to poorly studied human between conserved sequence
regions. According to GenAge, one of the most trusted
data sources on aging, 298 human genes are involved

in the aging processes or diseases, and most of this
knowledge are predictions obtained via genomic sequence
comparison [116]. However, non-sequence data and
genomic sequence data can give complementary biologi-
cal insights. Therefore, PPI network data can be studied
to elucidate aging-related knowledge missed by the cur-
rent sequence-based approaches. Also, since not all genes
implicated in aging in model species have sequence-based
orthologs in human, restricting comparison to sequence
data may limit the knowledge transfer.
Motivated by this, it was recently hypothesized that net-

work alignment can be used to transfer the knowledge
about aging from one species to another between con-
served (aligned) PPI networks [25]. Indeed, it was shown
that state-of-the-art network aligners at the time, MI-
GRAAL and IsoRankN, as well as their mix-and-match
combination, can uncover existing aging-related knowl-
edge with statistically significantly high accuracy, in the
sense that the methods align well known aging-related
network parts of one species to known aging-related net-
work parts of other species. Then, from the alignments,
novel aging-related knowledge was predicted in currently
unannotated network regions whenever such regions were



Faisal et al. EURASIP Journal on Bioinformatics and Systems Biology  (2015) 2015:3 Page 16 of 19

Fig. 8MI-GRAAL’s application to inferring phylogenetic relationships between species. Phylogenetic tree of five hyperviruses, namely
varicella-zoster virus (VZV), Kaposis sarcoma-associated herpes virus (KSHV), herpes simplex virus 1 (HSV-1), murine cytomegalovirus (mCMV), and
Epstein–Barr virus (EBV) [115], according to a the gold standard [117, 118] and bMI-GRAAL alignments of the species’ PPI networks [40]

aligned to known aging-related network regions. In this
way, compared to 298 human aging-related genes from
GenAge, additional 792 human genes were predicted as
novel aging-related candidates [25]. These predictions
were validated by demonstrating their topological and
biological similarities to known aging-related genes, as
well as via literature search. For example, they were found
to be involved in aging-related biological processes and
diseases, such as brain tumor, cancer, or prostate cancer.
We note that additional methods for network-based

research of human aging exist, which are not aimed
at across-species network comparison. For example,
recently, the current static PPI network of human was
integrated with aging-related gene expression data to con-
struct dynamic, age-specific networks [24]. Then, genes
whose network positions significantly changed with age
were predicted as aging-related, and they were validated
in similar ways as above. The value of this dynamic net-
work approach is that it overcomes the key drawback of
traditional biological network research, which deals with
static network representations of the cellular functioning
that changes with time (or age).

Conclusions
Future directions and concluding remarks
Comparative biological network research has attracted
significant attention in the computational biology com-
munity. Nonetheless, despite all of the valuable existing
efforts, many research questions remain to be addressed.
For example, different network aligners, and even differ-
ent parameter versions of the same aligner, tend to identify
very different solutions. A struggle for a computational
scientist is the current lack of in-depth understanding
of the qualitative (rather than just quantitative) effect of
method or parameter choice on the resulting output. A

struggle for a biological scientist is which of the differ-
ent alignment solutions to focus on for their experimental
validation.
Moreover, despite the increasing availability of biologi-

cal network data, the data remains noisy and incomplete,
even for well-studied species. The effect of noise on the
data on the resulting alignment(s) is poorly understood.
On a related note, many different types of biological net-
work data exist that capture somewhat complementary
functional slices of the cell, whereas the network align-
ment community has focused their attention mainly on
PPI networks. By developing efficient approaches for data
integration as well as for alignment of the resulting hetero-
geneous network data, one could not only buffer noise in
each individual network type but also uncover novel bio-
logical knowledge that would be missed by studying each
individual data type in isolation.
Further, as we have discussed, many different types of

network aligners exist that typically aim to achieve dif-
ferent goals and thus require different evaluation frame-
works, which makes it hard to fairly compare the different
methods. Perhaps future focus should shift towards devel-
opment of “hybrid” approaches that inherit the best from
all worlds while offering consistency in terms of method
evaluation and comparison.
Also, regarding method evaluation, whereas accuracy

is important, so is computational complexity. Thus,
improvements in this aspect are needed to make the exist-
ing and futuremethods scalable to biological network data
that will only continue to grow in size. To further ensure
practical usefulness of a method, proper documentation
of the software implementing themethod, reliability of the
software, and availability of a friendly graphical user inter-
face are all critical for the method to be widely adopted,
especially by biomedical domain scientists.
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Given the tremendous amounts of biological network
data that are being produced, network alignment will only
continue to gain importance. Further advances in this
research area could lead to new discoveries about the prin-
ciples of life, evolution, disease, and therapeutics, and in
the long run, they could facilitate advances in health care
and personalized medicine.
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111. V Janjić, R Sharan, N Pržulj, Modelling the yeast interactome. Sci. Rep.
4, 4273 (2014)

112. K Wentz-Hunter, J Potashkin, The evolutionary conservation of the
splicing apparatus between fission yeast and man. Nucleic. Acids. Symp.
Ser. 33, 226–228 (1995)

113. I Agrafioti, J Swire, J Abbott, D Huntley, S Butcher, M Stumpf, Comparative
analysis of the saccharomyces cerevisiae and caenorhabditis elegans
protein interaction networks. BMC Evol. Biol. 5(1) (2005)

114. CV Forst, K Schulten, Phylogenetic analysis of metabolic pathways. J.
Mol. Evol. 52(6), 471–489 (2001)

115. E Fossum, CC Friedel, SV Rajagopala, B Titz, A Baiker, T Schmidt, T Kraus, T
Stellberger, C Rutenberg, S Suthram, S Bandyopadhyay, D Rose, A Brunn
von, M Uhlmann, C Zeretzke, YA Dong, H Boulet, M Koegl, SM Bailer, U
Koszinowski, T Ideker, P Uetz, R Zimmer, J Haas, Evolutionarily conserved
herpesviral protein interaction networks. PLOS Pathogens. 5(9), 1000570
(2009)

116. JP Magalhães de, A Budovsky, G Lehmann, J Costa, Y Li, V Fraifeld, GMM
Church, The human ageing genomic resources: online databases and
tools for biogerontologists. Aging Cell. 8(1), 65–72 (2009)

117. DJ McGeoch, D Gatherer, Integrating reptilian herpesviruses into the
family herpesviridae. J. Virol. 79(2), 725–731 (2005)

118. DJ McGeoch, FJ Rixon, AJ Davison, Topics in herpesvirus genomics and
evolution. Virus Res. 117(1), 90–104 (2006)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Review
	Introduction
	Local network alignment
	Approaches for local network alignment
	Alignment quality measures for local network alignment
	Summary of local network aligners: which one to use?

	Global network alignment
	Approaches for global network alignment
	Mix-and-match-based network aligners.
	Edge-focused network aligners.

	Alignment quality measures for global network alignment
	Summary of global network aligners: which one to use?

	Key biological implications of network alignment
	Revealing conserved PPI network regions between yeast and human
	Revealing evolutionary relationships between species
	Revealing new knowledge about human aging


	Conclusions
	Future directions and concluding remarks

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

