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Abstract

anesthesia (DGA)

This paper presents a fusion-based neural network (NN) classification algorithm for 40-Hz auditory steady state
response (ASSR) ensemble averaged signals which were recorded from eight human subjects for observing sleep
patterns (wakefulness W, and deep sleep N3 or slow wave sleep SWS). In SWS, sensitivity to pain is the lowest
relative to other sleep stages and arousal needs stronger stimuli. 40-Hz ASSR signals were extracted by averaging
over 900 sweeps on a 30-s window. Signals generated during N; deep sleep state show similarities to those
produced when general anesthesia is given to patients during clinical surgery. Our experimental results show that
the automatic classification system used identifies sleep states with an accuracy rate of 100% when the training and
test signals come from the same subjects while its accuracy is reduced to 97.6%, on average, when signals are

used from different training and test subjects. Our results may lead to future classification of consciousness and
wakefulness of patients with 40-Hz ASSR for observing the depth and effects of general anesthesia (DGA).
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1 Introduction

The manual scoring of sleep patterns is a time-consuming
process, consisting of the determination of sleep states
using an electroencephalograph (EEG) signal. Automatic
classification has been studied in sleep scoring extensively
[1-3] and is considered an important tool in biomedical
research. Although good results have been achieved using
EEG, the classification of human EEG signals continues to
be a difficult problem due to the high-dimensional and
noisy nature of EEG data [4].

Auditory steady state response (ASSR) is a brain audi-
tory evoked potential (AEP) produced with a periodic
stimuli with a 40-Hz repetition rate. AEP is produced as
a result of electrical changes in the ear and brain of a
normally hearing person in response to acoustic stimuli.
An AEP signal shows how neural information propa-
gates from the acoustic nerves in the ear to the cortex
[5]. Specifically, AEP signals are extracted from EEG
[6,7]. The auditory stimuli are either the repeated clicks
or tone bursts that vary in frequency and rise time. If
the stimulus lasts long enough to get the response to its
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steady state, then the signal is called ASSR [6]. AEP
and ASSR signals are mainly used as audiology tools for
predicting the hearing threshold and sensitivity of an
individual.

In 1950, the first clear approach to distinguish the
evoked response from background EEG was made by
Dawson [8]. First AEPs were generated by averaging the
EEG response by Geisler et al. [9] in 1958. Later in 1980s,
the 40-Hz ASSR was described by Galambos et al. [10].
An ASSR signal is called a 40-Hz response when the
stimulus has a repetition rate of around 40 Hz. The ampli-
tude of AEP signal is much smaller than the amplitude of
EEG signal, hence extracting the AEP from the back-
ground EEG is a challenging process that involves noise
cancelation techniques. AEP is divided into three main
parts, namely, auditory brain stem response (ABR), mid-
latency AEP (MLAEP), and late latency AEP (LLAEP)
[5,11-13]. Figure 1 shows an AEP signal.

The ASSR is greatly affected by the stimuli modulation
rate and is phase locked and follows the modulated en-
velope of the stimulus [14]. Different stimulus rates re-
sult in stimulation of different portions of the auditory
nerves and hence produce different ASSRs. Specifically,
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Figure 1 Auditory evoked potential.

ASSRs stimulated with stimuli of lower than 20 Hz re-
flect the activity of LLAEP generators. ASSRs stimulated
with stimuli of 20 to 60 Hz are generated by the same
generators as MLAEP generators, while those stimu-
lated with stimuli of above 60 Hz are generated by ABR
generators [14,15].

Galambos et al. [10] demonstrated that when stimuli
presented at the rates of 30 to 50 Hz, the amplitude of
the response was two to three times greater than the
amplitude of the transient MLAEP in response to stimu-
lus presented at 10 Hz. A 40-Hz response, like that pro-
duced by MLAEP has small inter- and intra-subjective
variations [5,16], but it is strongly influenced by the sub-
ject's state of arousal [8]. Correspondingly, the amplitude
in a 40-Hz response varies by the subject's level of
arousal [10,14,17,18] and consciousness [19,20]. A 40-Hz
response can be used as a measure of depth of general
anesthesia [20-24].

Preliminary classification results of this research work
have been published using linear discriminant analysis
(LDA) and quadratic discriminant analysis (QDA) classi-
fiers [25]. In this work, the average error rate for training
and testing with the same subject is 1.12% with LDA
and 1.66% with QDA. LDA has an acceptable error rate
of 2.57% but the QDA error rate increases to 17.43%
for six subjects. In other situations, the classifiers are
trained with ASSRs from all subjects except for the
subject whose ASSRs is to be classified. The average er-
ror rate over all subjects in this case is 5.91% with LDA
and 20.69% with QDA.

Neural networks (NNs) are fundamentally analog,
non-programmed data processing structures [26]. The
networks are comprised of processing elements, each of
which has a set of inputs, a set of weights, and one out-
put. Inputs are multiplied by their weights and summed.
The output is computed as a non-linear function of the

Page 2 of 12

summation. They offer fine-grained parallelism and ex-
hibit fault tolerance. One advantage of any NN, which
performs a classification task, is that it will learn its
own coarse-grained features, thus does not require pre-
cise locations to form any part of an input set [27].

Classification of signal patterns is the most common
NN applications. It has been demonstrated with artificial
as well as natural data [28-32] that the learning vector
quantization (LVQ) methods [31-34] constitute a very vi-
able alternative to the more traditional classification ap-
proaches. LVQ classification accuracy is as good as other
NN algorithms or better, whereas because of the very
simple computations are applied, the learning and classi-
fication speed can be considerably higher as compared
to other NN algorithms [35]. Also, LVQ methods are
very easy to use.

Additionally, support vector machine (SVM) classifica-
tion is incorporated. SVMs are supervised learning
models with associated learning algorithms that analyze
data and recognize patterns used for classification and re-
gression analysis. Given a set of training examples, each
marked as belonging to one of two categories, an SVM
training algorithm builds a model that assigns new exam-
ples into one category or the other, making it a non-
probabilistic binary linear classifier.

This research focuses on a fusion-based NN system
classification of 40-Hz ASSR signals recorded from eight
subjects used in observing sleep patterns in humans. The
purpose of this work is threefold: a) to generate an auto-
matic classification of sleep patterns (wakefulness W, and
deep sleep N3) based on an adaptive LVQ-NN and SVM
with 40-Hz ASSR input signals, b) to develop a features-
level fusion approach for combining a 40-Hz ASSR
ensemble averaged sweep signals generated from two
separate electrodes/channels, and c) to classify sleep
patterns with the resultant ASSR sweep signals to enhance
the decision confidence level.

The remainder of this paper is organized as follows:
a view of previous related work is given in Section 2.
Section 3 describes various stages of database acquisi-
tion from eight human subjects during sleep cycles.
This is followed by a description of data extraction in
the form of an ASSR ensemble of averaged sweep sig-
nals from EEG generated for classification. In Section 4,
the overview of the algorithm including the proposed
features-level fusion approach based on an adaptive
LVQ-NN architecture is presented. The empirical re-
sults are discussed in Section 5. Finally, in Section 6,
the paper is concluded.

2 Previous work

The most common physiological signal used for sleep
discrimination in clinical settings is the recording of brain
activity with an EEG [36]. One of the important uses of
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observing sleep patterns of subjects at home is early detec-
tion of sleep disorders resulting in prompt intervention
and reduced health care costs [37]. In 1986, Jarger et al.
[18] studied ten subjects in three stages: awake, stage 1,
and stage 2 of sleep. The 40-Hz ASSR signal was gener-
ated by averaging over 128 sweeps. Amplitude and phase
of the 40-Hz component of the fast Fourier transform of
the signal was considered. They observed that while sleep-
ing affects the amplitude, phase coherency remains un-
affected by the level of subject arousal. A fuzzy logic
approach to the classification of human sleep using EEG
data is presented in [38]. In this approach, frequency and
amplitude information from an epoch of the EEG signal
are extracted into a vector that is then compared to previ-
ously taught vectors representing the canonical features of
six stages: wakefulness, rapid eye movement (REM) sleep,
and four non-REM sleep stages. For each stage, member-
ship functions are calculated in each epoch. The stage
with the maximum degree of membership is scored and
classified. The system is implemented in software using
the C programming language. Analysis of about 1,101
epochs of the EEG data yielded an overall agreement of
77% between the program and a human scorer.

Suzuki et al. [39] recorded 40-Hz ASSR signals from
12 subjects with normal hearing in awake and stage 2 of
sleep. They compared the 40-Hz recorded SSR with syn-
thesized SSR signals generated from superimposing the
recorded ABR and middle latency response (MLR) sig-
nals. Required signal-to-noise ratio (SNR) reduction for
the 40-Hz ASSR signals was achieved by averaging over
2,048 sweeps. They observed that the amplitude of the
40-Hz ASSR signal in awake state is twice as large as in
sleep state and that the synthesized 40-Hz ASSR cannot
predict accurately this reduction in amplitude. Lewicke
et al. [40] reliably determined sleep and wake states using
only the electrocardiogram (ECQG) of infants. The method
was tested with simultaneous 8-h ECG and polysom-
nogram (PSG) determined sleep scores from 190 infants
enrolled in the collaborative home infant monitoring
evaluation (CHIME) study. LVQ neural network, multi-
layer perceptron (MLP) neural network, and SVMs were
tested as the classifiers. After systematic rejection of
difficult-to-classify segments, the models could achieve
85% to 87% correct classification while rejecting only
30% of the data.

To overcome the limitations of inter-subject variabil-
ity, Kalrken and Floreano [41] suggested a novel online
adaptation technique that updates the sleep/wake clas-
sifier in real time and evaluated the performance of a
newly developed adaptive classification algorithm that
was embedded on a wearable sleep/wake classification
system called SleePic. Their proposed algorithm processed
ECG and respiratory effort signals for the classification
task and applied behavioral measurements (obtained from
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accelerometer and press button data) for the automatic
adaptation task. When trained as a subject-independent
classifier algorithm, the SleePic device was only able to
correctly classify 74.94 + 6.76% of the human rated sleep/
wake data. By using the automatic adaptation method, the
mean classification accuracy was improved to 92.98 +
3.19%. A subject-independent classifier based on activity
data only showed a comparable accuracy of 90.44 + 3.57%.

Almazaydeh et al. [42] focused on an automated classi-
fication algorithm, which processed short duration epochs
of the ECG data. The classification technique was based
on SVM and had been trained and tested on sleep apnea
recordings from subjects with and without OSA. The
results showed that an automated classification system
could recognize epochs of sleep disorders with a high
accuracy of 96.5% or higher. Brignol et al. [43] proposed
a phase space-based algorithm for automatic classifica-
tion of sleep-wake states in humans using EEG data
gathered over relatively short-time periods. The effective-
ness of this approach was demonstrated through a series
of experiments involving EEG data from seven healthy
adult female subjects and was tested on epoch lengths
ranging from 3 to 30-s. The performance of the phase
space approach was compared to a two-dimensional state
space approach using spectral power in two selected
human-specific frequency bands. These powers were cal-
culated by dividing integrated spectral amplitudes at se-
lected human-specific frequency bands. The comparison
demonstrated that the phase space approach gave better
performance for the case of short as well as standard 30-s
epoch lengths.

Majdi Bsoul et al. [44] developed a low-cost, real-time
sleep apnea monitoring system called ‘Apnea MedAssist’
which was used for recognizing obstructive sleep apnea
episodes with a high degree of accuracy for both home
and clinical care applications. The fully automated sys-
tem uses patient's single channel nocturnal ECG to ex-
tract feature sets and uses the support vector classifier
(SVC) to detect apnea episodes. ‘Apnea MedAssist’ uses
either the general adult subject-independent SVC model
or subject-dependent SVC model and achieves a classifi-
cation F-measure of 90% and a sensitivity of 96% for the
subject-independent SVC. A two-stage procedure based
on artificial neural networks for the automatic recogni-
tion of sleep spindles in a multi-channel electroencepha-
lographic signal was introduced in [45]. Two different
networks, i.e., a backpropagation multilayer perceptron
and radial basis SVM, were proposed as the post-classifier
and compared in terms of their classification perfor-
mances. Visual evaluation, by two electroencephalogra-
phers (EEGers), of 19 channel EEG records of six subjects
showed that the best performance was obtained with a ra-
dial basis SVM providing an average sensitivity of 94.6%
and an average false detection rate of 4.0%.
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3 Database acquisition and preprocessing

After ethics approval was obtained from the University
of Toronto Research Ethics Office, subjects having no
history of hearing loss or neurological problems were re-
cruited by the research team. Written informed consent
was obtained from all the subjects, and they were re-
warded $100 for their participation. The stimulus, a
wideband (700 to 3,000 Hz) chirp with 40.68 Hz rate,
generated by Vivosonic Inc. Integrity™ V500 (Vivisonic
Inc., Toronto, ON, Canada) was presented binaurally to
both right and left ears using a Vivosonic Inc. ER-3A-
ABR (Etymotic Research Inc., Elk Grove Village, IL, USA)
insert earphone, loud enough to generate an ASSR but
not too loud to cause discomfort to the participants.
The stimulus has peaks at 60 dB HL and an equivalent
sound pressure level and central frequency of 500 Hz
with a sampling rate of 34.8 kHz. The device records
EEG signals from 11 scalp sites of the international 10-20
system (Figure 2).

For our study, we used electrode sites F,, C,, C34, T34,
A1, and O,. A reference electrode was used as the com-
mon electrode of all channels. A ground electrode was
used to reduce the environmental noise, and a L,C was
used for recording eye movements, in order to make
sleep scoring based on raw EEG signals easier. An elec-
trode cap by Bio-Medical Instruments Inc. (Warren, MI,
USA) was custom designed with ten recording elec-
trodes and two leads for the ear clip electrodes. A pair
of 3% inch DIN style EEG silver ear clips was used. A 10
mm in diameter gold cup electrode was used for record-
ing eye movements. We used the Nicolet™ EEGwireless
32 (Natus Medical Incorporated, Pleasanton, CA, USA)
amplifier to record the EEG amplification. Two extra
electrodes were connected from the Integrity™ device
stimuli generator to channel 25 of the EEG amplifier for
recording the stimuli together with other EEG channels.
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The sampling frequency of the amplifier was f; = 12 kHz,
and all electrode impedances were below 5 kQ.

After recording, the raw mixed ASSR and EEG signals
were reviewed and scored with conventional sleep sco-
ring methods to awake W, and three stages of sleep
namely N;, N, and Nj3. Signals of the W, and Nj stages
were transferred to MATLAB for preprocessing. Fre-
quencies below 20 Hz and above 100 Hz were filtered
out with third-order Butterworth low-pass and high-pass
filters; the signals from seven recorded channels were
synchronized and segmented into 295 sample sweeps.
The EEG amplifier has 12 kHz sampling frequency but
the Integrity stimulus was sampled with a 38.4 kHz
sampling rate. Hence, the cycles for the 40-Hz response
were not whole numbers. We got around this by only
including cycles with 295 samples. This resulted in
throwing out some of the data. However, this did not
pose an issue as the required time to acquire data was
not essential to the task. In almost all cases in the litera-
ture, ensemble averaging is used for extracting a 40-Hz
ASSR signal from background noise [23,24]. Assuming
the recorded signal as:

xi[n] = si[n] + ri[n] (1)

where x;[n] is the ASSR in response to the ih sweep of
the stimuli and r;[#] is the EEG and noise from other
sources. Under the assumption that s;[#] is phase locked
to the stimuli, noise r;[n] is zero mean, E(r;[n]) = 0, has
constant variance, var(r;) = ¢® and is uncorrelated from
one sweep to another, E(r;[n]r;[n - k) = p,[k]6(i - j) en-
semble average is an unbiased estimator and increases
the variance of the noise. We used weighted ensemble
averaging to extract the ASSR signals. The weights were
calculated according to the Kalman filter coefficients.
Each 40-Hz ASSR signal is extracted by averaging over a

Preaurical
point

Figure 2 The international 10-20 system seen from (A) left and (B) above the head. A, ear lobe; C, central; Pg, nasopharyngeal; P, parietal; F,
frontal; Fp, frontal polar; O, occipital. Source http://www.bem fi/book/13/13.htm.
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window of 900 sweeps. Each two adjacent windows have
83% overlap. After extracting 40-Hz ASSR signals, differ-
ent features in time and frequency domain were com-
pared in W, and Nj; stages in all seven channels. It is
observed that peak-to-peak amplitude of 40-Hz ASSR
decreases from W, to Nj. Figures 3 and 4 show five
sweeps of ASSR during W, and N3 for two subjects.

4 Overview of algorithm

4.1 LvQ classifier

The LVQ is a supervised classifier that was first studied
by Kohonen [46]. To classify an input vector, it must be
compared with all prototypes. The Euclidean distance
metric is used to select the closest vector to the input
vector. The input vector is classified to the same class as
the nearest prototype.

The LVQ classifier (Figure 5) consists of an input layer,
a hidden competitive layer, which learns to classify input
vectors into subclasses and an output layer which trans-
forms the competitive layer's classes into target classifi-
cations defined by the user. Only the winning neuron of
the hidden layer has an output of one and other neurons
have outputs of zero. The weight vectors of the hidden
layer neurons are the prototypes, the number of which is
usually fixed before training begins. The number of hid-
den neurons depends upon the complexity of the input-
output relationship and significantly affects the results
of classifier testing. Selection of the number of hidden
neurons must be carefully made as it highly depends on
the encompassed variability in the input patterns. Ex-
tensive experiments are performed to conduct the suit-
able number.

For a training set containing » input ensemble ave-
raged sweeps of various subjects, each of these sweeps
is labeled as being one of k classes which, in our case is
2, i.e., wakefulness and deep sleep states. The learning
phase starts by initiating the weight vectors of neurons
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Figure 3 40-Hz ASSR sweeps of wakefulness W, state for
subjects C (blue) and D (red) for channel Fz-A1A2.
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Figure 4 40-Hz ASSR sweeps of deep sleep N3 state for
subjects C (blue) and D (red) for channel Fz-A1A2.

in the hidden layer. Then, the input vectors are pre-
sented randomly to the network. For each input vector
X;, a winner neuron W; is chosen to adjust its weight
vector:

HXJ'_WiHSHX/—WkH,for all k=i (2)

The weight vector W;(£) is updated to the next step £+ 1
as follows:

Wit +1) = Wit) + a(X; - Wi(t)) (3)
if X; and W; belong to the same class
Wit +1) = Wi(t) - a(X; - Wi(t)) (4)

if X; and W; belong to different classes where 0 <a <1 is
the learning rate, which may be kept constant during
training or may be decreasing monotonically with time for
better convergence [46]. Otherwise, the weights remain the
same. The training algorithm is stopped after reaching a
pre-specified error limit. During the test phase, the dis-
tance of an input vector to each processing element of the
hidden layer is computed and again the nearest element is
declared as the winner. This, in turn, fires one output
neuron, signifying a particular class.

Output vector
Output layer

Competitive layer

Input layer

Input vector

Figure 5 Architecture of the LVQ classifier.
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4.2 Efficient LVQ models

Careful selection of a feature extraction method highly
simplifies the design of the classifier subsystem. Extraction
of appropriate features is one of the most important tasks
for a classification system. As it is impractical to match a
given input signal with all the signal templates stored in
the system, it is necessary to find a compact set of features
that can represent as much of the useful information
present in the original data as possible. Selection of good
features is a crucial step in the process since the next stage
sees only these features and acts upon them [47].

A generic LVQ-NN consists of three layers. The first
layer is the input layer, which consists of as many neu-
rons as the number of input samples of the signal to be
classified. The hidden layer size is problem dependent.
The number of hidden layer neurons (HN) should be
suitable to capture the knowledge of the problem do-
main. For example, when training a neural network to
recognize signals which belong to a number of classes
(NC), then NC hidden layer neurons are required. To
capture a large range of input pattern variability, a large
number of hidden layer neurons is necessary. But, the
problem is calculating how large should be this required
number of hidden layer neurons.

Visualizing the learned pattern of the hidden layer
neurons, it is found that there are neurons with com-
pletely blurred patterns. These neurons are labeled blind
neurons [48], as they do not see the signals that are
clamped to the neurons of the input layer. Eliminating
the blind neurons enhances the classifier performance,
which is important for many biomedical applications. A
classification model which considers reliability in the
development of the model is very useful [40]. The com-
pact LVQ network training algorithm for the classifica-
tion system is illustrated in Figure 6. The algorithm
based on efficient LVQ model parameters is as follows:

1. Select the network parameters:

v Input layer size = Ensemble averaged sweep
signal size (295 neurons)

v Training set size = S (7 subjects) x 1,000
ensemble averaged sweeps
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v Number of classes (NC) = 2 (wakefulness = W,
and sleep = N3)

v Hidden layer neurons; 2(min) < HN < 28(max)

v Learning rate (@) = 0.1

v Set up the target vector which specifies the
target class of each pattern in the training set

v Display update rate = 100

v Arrange the input patterns of the training set as
one-dimensional columns in an array (P)

v Number of training epochs (EP) = 2,500

2. Initialize an LVQ classifier: initialization of the
weight matrix for competitive layer w; and linear
layer ws.

3. Start training of an LVQ classifier based on selected
efficient model parameters.

4. Test the trained classifier on test sets and compute
percentage of correct classification (pcc).

5. Get the best accuracy classification rate of
wakefulness W, and deep sleep Ni.

6. Exit.

4.3 Fusion at the features level

Multimodal classification systems help in achieving im-
proved performance that may not be otherwise possible
using a single classification system. However, an effective
fusion scheme is necessary to combine the information
presented by multiple domain experts. Pieces of evidence
in a multi-classification system can be combined in many
ways/levels and are generally divided into two categories
[49], which we discuss below.

1. Before matching fusion. Fusion in this category
integrates pieces of evidence before matching. This
category fuses the information of multi-classification
into the following levels.

a) Sensor level. At this level, the digital input signal
is the result of sensing the same characteristic
with two or more sensors or electrodes. The raw
data acquired from multiple sensors can be
processed and integrated to generate new data
from which features can be extracted. For

Training Ensemble
Averaged Sweeps

Reconstructed Ensemble
Averaged Sweeps

¥\/ ¢e f\/ Best

Weight Vectors|  [Weight Vectors|
s —»{parameters Initialization | Training [ .
Selection Wi, W2 Wi, W2

Figure 6 LVQ algorithm flow for classification of wakefulness and sleep ensemble averaged sweeps.




Khuwaja et al. EURASIP Journal on Bioinformatics and Systems Biology (2015) 2015:2

example, in the case of face biometrics, both 2-D
texture information and 3-D depth (range)
information (obtained using two different sensors)
may be fused to generate a 3-D texture image of
the face which could then be subjected to feature
extraction and matching [50]. The combination
of the input signals can provide noise cancelation,
blind source separation [51], etc.

b) Feature level. The feature sets extracted from
multiple data sources can be fused to create a
new feature set to denote the identity. The
geometric features of the hand, for example, may
be augmented with the eigen coefficients of the
face in order to construct a new high-dimensional
feature vector [52]. A feature selection/
transformation procedure may be adopted to
produce a minimal feature set from the
high-dimensional feature vector [53].

2. After matching fusion. Fusion in this category
integrates pieces of evidence after matching. This
includes the following levels.

a) Match score level. In this case, multiple classifiers
output a set of match scores which are fused to
generate a single scalar score [54]. As an example,
the match scores generated by the face and hand
modalities of a user may be combined via the
simple sum rule in order to obtain a new match
score which is then used to make the final
decision [55].

b) Rank level. This type of fusion is relevant in
identification systems where each classifier
associates a rank with every enrolled identity
(a higher rank indicating a good match). Thus,
fusion entails consolidating the multiple ranks
associated with an identity and determining a
new rank that would aid in establishing the final
decision.
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¢) Decision level. When each matcher outputs its
own class label (i.e., accept or reject in a
verification system, or the identity of a user in an
identification system), a single class label can be
obtained by employing techniques such as
majority voting or behavior knowledge space [56].
In this last case, the Borda count method [57]
can be used for combining the classifiers' outputs.

Integration at the feature level should provide better
classification results than other levels of integration. This
is because the features contain richer information about
the input data than the matching score or the output
decision of a classifier. However, integration at the fea-
ture level is difficult to achieve in practice due to the
unknown relationship between the feature spaces of dif-
ferent classification systems, the concatenated feature
vector with a very large dimensionality, the inaccessi-
bility of the feature vectors of most commercial sys-
tems, and the computational cost to process the resultant
vector.

In contrast, features-level fusion is easier to apply
when the original characteristics are homogeneous. In
this scenario, the single resultant feature vector needs to
be calculated. We have adopted fusion at the features
level to combine ASSR ensemble averaged sweeps of
two electrode/channel vectors with the same dimension-
ality to concatenate into one vector which will also have
the same dimensionality as the original vectors.

A fused signal is one that is created by concatenating
two ASSR ensemble averaged sweeps from two channels/
electrodes of one subject. Figure 7 shows a features-level
fusion algorithm flow using the compact LVQ-NN algo-
rithm discussed above. This approach is particularly suit-
able for this type of signal processing because the NN
is able to assimilate features of both ASSR ensemble
averaged sweeps during its training phase. This features
combining mechanism is inherent in the algorithm
of the designated LVQ network (295 input neurons, 1

Ensemble Averaged
Sweep Channel 1

Ensemble Averaged
Sweep Channel 2

Figure 7 Features-level fusion algorithm flow.

Fused Ensemble
Averaged Sweep
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hidden neuron, 1 output neuron, 0.01 learning rate, and
700 training epochs).

Moreover, combining of features depends on a small
number of parameters. This offers the advantage that
the parameters of the combining algorithm are very easy
to set out, so as to produce a fused ASSR ensemble aver-
aged sweep signal that is different enough from the
original sweeps to be a new one, as well as to avoid the
creation of an over noisy signal. The target for training
the LVQ network on both ensemble averaged sweeps
from two electrodes is set to be same, which forces the
network to join the features of both signals. The result-
ing fused signal indicates that when one hidden layer
neuron responds to two ensemble averaged sweeps, it
generates a mix of these signals.

4.4 Hidden layer

Efficiency deals with the complexity of a learning
machine in both space and time. The learning time must
scale nicely with respect to the size of data sets. Since
the size of the learning machine determines the memory
required for implementation, a learning machine with a
compact structure is preferred. Developing an adaptive
learning system with a compact structure to achieve good
performance is a challenging problem.

Experimental results [48] demonstrate that after conver-
gence, most of the hidden layer neurons are redundant and
do not evolve significantly and thus do not capture any
data clusters. Typically, these neurons are initialized to
points in the weight space that have relatively low overlap
with the training data points. They play a little role in the
pattern classification process, hence, may be eliminated
without having significant effect on the detection accuracy
rate.

Reducing the number of hidden layer neurons of NN
to the product of subjects and classes, ie., Sx NC can
help in increasing efficiency and performance of the
whole system as many units not evolved properly during
the training phase create confusion in the decision-
making process. Thus, both the training time and the
classification time are minimized.

4.5 SVM classifier

The SVM [58] is a supervised learning algorithm useful
for recognizing subtle patterns in complex datasets.
The algorithm performs discriminative classification,
learning by example to predict the classifications of
previously unseen data. The algorithm has been applied
in domains as diverse as text categorization, image
recognition, and hand-written digit recognition. We
have used the algorithm presented in [59] available
online [60].
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5 Empirical results and discussion

The sleep patterns classification system is tested on 40-Hz
ASSR ensemble averaged sweep signals recorded from
eight human subjects [25]. A N3 or SWS was chosen due
to its similarities to the signals generated during the sur-
gical level of anesthesia [61]. In SWS, sensitivity to pain
is the lowest relative to other sleep stages and arousal
needs stronger stimuli. SWS is the switching of thalamus
from tonic mode in which somatosensory information
is transmitted through the thalamus, to its bursting
mode, in which somatosensory information are inhibited
from transmitting [61].

The performance of a classification system is expressed
by parameters that relate to decision accuracy. A decision
made by a system is labeled as either a true decision or a
false decision [62]. For each type of decision, there are two
possibilities, correct and incorrect. Hence, there are a total
of four possible outcomes: a true state (N3 or Wp) is cor-
rectly classified, a true state is incorrectly classified, a false
state is correctly classified, and a false state is incorrectly
classified. The decisions 1 and 3 are correct while 2 and 4
are incorrect. The confidence associated with different de-
cisions may be characterized by the true distribution and
the false distribution of classifications and used to estab-
lish the following two error rates [49]:

e False accept rate (FAR). The probability that the
system incorrectly matches the input pattern to a
non-matching template in the database. It measures
the percent of invalid inputs which are incorrectly
accepted.

o False reject rate (FRR). The probability that the
system fails to detect a match between the input
pattern and a matching template in the database. It
measures the percent of valid inputs which are
incorrectly rejected.

The FAR and the FRR are dual of each other. A smaller
FRR usually leads to a larger FAR, while a smaller FAR
usually implies a larger FRR. Normally, the system per-
formance requirement is specified in terms of FAR. The
performance of a biometric system may also be expressed
using equal error rate (EER). EER is defined as the rate at
which both accept and reject errors are equal. In general,
the device with the lowest EER is considered to be the
most accurate device for classifying biometric signals.

Various experiments are performed to explore the best
parameters for a sleep pattern classification system using
a developed LVQ fusion scheme and SVM classifier.
First of all, a set of 100 ASSR ensemble averaged sweeps
(50 Wy +50 N3) of one subject was trained and a new
set of 100 ensemble averaged sweeps (50 W+ 50 Nj)
of the same subject was tested until zero error rate
classification accuracy was achieved. This was repeated
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Table 1 LVQ single classifier error rate for ASSR ensemble
averaged sweeps of same training and test subjects
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Table 3 LVQ single classifier error rate for ASSR ensemble
averaged sweeps of different training and test subjects

Subject(s) Training sweeps Test sweeps Error
A 100(50 W + 50 N3) 100(50 Wo + 50 N3) 0%
B 100(50 W + 50 N3) 100(50 Wy + 50 N3) 0%
C 100(50 W + 50 N3) 100(50 Wo + 50 N3) 0%
D 100(50 W + 50 N3) 100(50 W + 50 N3) 0%
E 100(50 W + 50 N3) 100(50 Wy + 50 N3) 0%
F 100(50 W + 50 N3) 100(50 W + 50 N3) 0%
G 100(50 W + 50 N3) 100(50 W + 50 N3) 0%
H 100(50 W + 50 N3) 100(50 Wy + 50 N3) 0%

A B C D E 500050 Wo+50 N3) x5
For channel Fz-A1A2.

500(50 Wo + 50 N3) x 5 0%

for all seven channel/electrode signals without any mis-
classification. Again, the experiments were carried out
with a training of a bigger set of 500 ASSR ensemble
averaged sweeps of five subjects, 5x (50 Wy + 50 N3).
Another set of 500 ensemble averaged sweeps 5 x (50
W5+ 50 N3) of the same subjects were tested until a
zero for LVQ and very small for SVM error rate clas-
sification accuracy was secured for Fz-A1A2 channel
(Tables 1 and 2).

The next phase of experiments involved training the
NN classifier with ASSR ensemble averaged sweeps of
five subjects and testing the ensemble averaged sweeps
of the sixth subject, which was not part of the training.
The sleep patterns classification system faced a real
challenge in classifying the ensemble averaged sweeps
of a subject, which did not form the basis of system
training. Sleep patterns classification systems that rely
on physiological signals suffer from inter-subject differ-
ences that make accurate classification within a single,
subject-independent model difficult [41]. Although, the
sleep and/or wakefulness patterns for different subjects
vary slightly in shape and in amplitude levels [24], the

Table 2 SVM single classifier error rate for ASSR
ensemble averaged sweeps of same training and test
subjects

Subject(s) Training sweeps Test sweeps Error
A 100(50 Wp + 50 N3) 100(50 Wo + 50 N3) 1%
B 100(50 W + 50 N3) 100(50 Wy + 50 N3) 1%
C 100(50 W + 50 N3) 100(50 W + 50 N3) 1%
D 100(50 Wy + 50 N3) 100(50 Wy + 50 N3) 2%
E 100(50 W + 50 N3) 100(50 Wy + 50 N3) 0%
F 100(50 W + 50 N3) 100(50 W + 50 N3) 2%
G 100(50 Wy + 50 N3) 100(50 Wy + 50 N3) 0%
H 100(50 W + 50 N3) 100(50 Wy + 50 N3) 1%

A B C D E 500050 Wo+50N3)x5 50050 Wy + 50 N3) x 5 3%

Training Test Training Test Error
subjects subject sweeps sweeps

ABGCDE F  500050Wo+50N5)x5 10050 Wo+50Ns) 0%
A B CDF E 500050 Wo+ 50 N3) x5 100(50 Wo+50 N3) 0%
A B CEF D 500(50 Wo+ 50 N3) x5 100(50 Wy + 50 N3) 0%
A B DEF C 500050 Wo +50 N3) x5 100(50 Wo+50 N3) 0%
A CDEF B 500050 Wo + 50 N3) x5 100(50 Wo+50 N3) 0%
B.C,D,ELF A 500050 Wo+50N3)x5 100050 Wo+50 N3) 0%

For channel Fz-A1A2.

devised LVQ NN system is still capable of classifying
the ASSR ensemble averaged sweeps with no error rate.
However, SVM classification error rate jumps to signifi-
cant value (Tables 3 and 4).

The reliability of the results depends heavily on the
accuracy of statistical parameters involved in classifiers
in general. The obtained results cannot be accurately
estimated with only a small number of training samples.
Therefore, it is of vital importance to include the minimum
number of training samples and to ensure that the derived
conclusions have a good degree of consistency. To increase
the reliability of our estimations, a similar set of experi-
ments was repeated with a higher number of subjects and/
or ASSR ensemble averaged sweeps (Tables 5 and 6).

It is difficult to predict which channels/electrodes will
produce noisy input data and unacceptable error rates that
will challenge the performance of classification systems.
These random degradations make it difficult to classify
the wakefulness or deep sleep state and lower the per-
formance of classification algorithms. Hence, in general,
more channels/electrodes are used to record/monitor the
sleep patterns to compensate for unexpected errors.

The final phase of experiments was carried out with
input vectors of the NN sleep patterns classification system.
The resultant ASSR ensemble averaged sweep signals from
two channels/electrodes of one subject obtained at the fea-
tures level. Tables 7 and 8 show various results of LVQ and
SVM classifiers with fused ASSR ensemble averaged sweeps.

Table 4 SVM single classifier error rate for ASSR
ensemble averaged sweeps

Training Test Training Test Error
subjects  subject sweeps sweeps

ABCD,E F 50050 W+ 50 N3) x5 10050 Wy +50 N3) 9%

A B CD,F E 50050 Wy +50 N3) x5 100(50 Wy +50 N3)  28%
ABCEF D 500050 Wo + 50 N3) x5 100(50 W+ 50 N3)  13%
AB,D,EF  C 500050 Wy+50N35)x5 100(50 Wy+50 N3)  14%
ACDEF B 500050 Wy+50N5)x5 100(50 Wy+50 N3)  20%
B,CDEF A 500050 Wo + 50 N3) x5 100(50 Wo+50 N3)  23%

For channel Fz-A1A2.

Of different training and test subjects for channel Fz-A1A2.
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Table 5 LVQ single classifier error rate for large set of
ASSR ensemble averaged sweeps

Page 10 of 12

Table 7 LVQ multimodal classifier error rate for large set
of ASSR ensemble averaged sweeps

Training Test Training Test Error Training Test Training Test Error
subjects  subject sweeps sweeps subjects  subject sweeps sweeps

A B CD, H 7,000(500 Wy + 500 N3) x 7 1,000(500 W + 500 N3) 7% A B, C D, H 7,000(500 Wy +500 N3) x 7 1,000(500 W + 500 N3)  17.2%
EFG EFG

A B CD, G 7,000(500 Wo+ 500 N3) x 7 1,000(500 W + 500 N3) 0% A B C D, G 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wp + 500 N3) 0%
EFH EFH

A B CD, F 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wy + 500 N3) - 0% A B C D, F 7,000(500 Wy + 500 N3) x 7 1,000(500 Wy + 500 N3) 0%
EGH EGH

A B CD, E 7,000(500 Wo+ 500 N3) x 7 1,000(500 W + 500 N3)  6.6% A B C D, E 7,000(500 Wy + 500 N3) x 7 1,000(500 W + 500 N3)  7.9%
F,GH F,GH

A B CE D 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wy + 500 N3) 0% A B CE, D 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wy + 500 N3) 0%
F,GH F,GH

A B D, E, @ 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wy + 500 N3) - 0% A B D E, @ 7,000(500 Wo+500 N3) x 7 1,000(500 Wy + 500 N3) 0%
F,GH F,GH

A CDE B 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wy + 500 N3) - 0% A CDE B 7,000(500 Wy + 500 N3) x 7 1,000(500 Wp + 500 N3) 0%
F,GH F, G H

B,CDE A 7,000(500 Wo+ 500 N3) x 7 1,000(500 W + 500 N3) - 5.5% B,CDE A 7,000(500 Wy + 500 N3) x 7 1,000(500 Wy + 500 N3)  17.9%
F,GH F,GH

Of different training and test subjects for channel Fz-ATA2. Of different training and test subjects for channels C4-A1A2 and Fz-A1A2.

The efficiency of the proposed LVQ architecture is
evaluated on both the time and the space scale. By set-
ting the number of HN equal to the product of subjects
and classes (S x NC), the network memory requirements
for the internal representation of target signals was con-
densed and the processing speed was enhanced. Specific-
ally, both the training time of the network and the test
time of the ASSR ensemble averaged sweep signals were
reduced. This makes it feasible for large data training and
test samples in real-time application domains as the
storage requirements of the sleep pattern classification
system with fusion scheme are the same as a single chan-
nel/electrode classification system.

Table 6 SVM single classifier error rate for large set of
ASSR ensemble averaged sweeps

6 Conclusions

The manual scoring of sleep patterns (wakefulness W,
and deep sleep N3) is a time-consuming process, in which
sleep states are normally determined using EEG signals of
human subjects. This paper considered a LVQ-NN- and
SVM-based automatic classification algorithm for 40 Hz
ASSR ensemble averaged signals. 40 Hz ASSR signals
were extracted by averaging over 900 sweeps on a 30-s
window from EEG. EEG signals were recorded from eight
human subjects. N3 deep sleep state was selected for this
task because of its resemblance to states of consciousness
and wakefulness achieved by the administration of general
anesthesia given to patients during clinical surgery. Future

Table 8 SVM multimodal classifier error rate for large set
of ASSR ensemble averaged sweeps

Training Test Training Test Error Training Test Training Test Error
subjects  subject sweeps sweeps subjects  subject sweeps sweeps

A B CD, H 7,000(500 Wo+ 500 N3) x 7 1,000(500 W+ 500 N3)  32% A B CD, H 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wp + 500 N3) - 30%
EFG EFG

A B CD, G 7,000(500 Wy +500 N3) x 7 1,000(500 W+ 500 N3)  16% A B CD, G 7,000(500 Wo+500 N3) x 7 1,000(500 Wp + 500 N3) - 23%
EFH EFH

A B CD, F 7,000(500 Wo+ 500 N3) x 7 1,000(500 W+ 500 N3)  13% A B CD, F 7,000(500 Wo+500 N3) x 7 1,000(500 Wp + 500 N3) - 19%
EGH E G H

A B CD, E 7,000(500 Wo+500 N3) x 7 1,000(500 W+ 500 N3)  31% A B CD, E 7,000(500 Wo+500 N3) x 7 1,000(500 Wp + 500 N3)  23%
F,.GH F, G H

A B CE D 7,000(500 Wo+500 N3) x 7 1,000(500 Wy + 500 N3)  16% A B CE D 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wp + 500 N3)  14%
F,.GH F, G H

A B D, E @ 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wo + 500 N3)  17% A B DE @ 7,000(500 Wy +500 N3) x 7 1,000(500 Wp + 500 N3) - 20%
F,.GH F, G H

ACDE B 7,000(500 Wo+ 500 N3) x 7 1,000(500 W+ 500 N3)  22% A CDE B 7,000(500 Wo+500 N3) x 7 1,000(500 Wp + 500 N3)  16%
F,.GH F, G H

B,CDE A 7,000(500 Wo+ 500 N3) x 7 1,000(500 Wy + 500 N3) - 29% B,CDE A 7,000(500 Wo+500 N3) x 7 1,000(500 Wp + 500 N3) - 24%
F,.GH F, G H

Of different training and test subjects for channel Fz-A1A2. Of different training and test subjects for channels C4-A1A2 and Fz-A1A2.
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studies can thus observe the depth of general anesthesia
by classifying consciousness and wakefulness states of
patients with 40-Hz ASSR.

A single classifier has the weakness of not providing
the confidence level required in monitoring sleep pat-
terns. As a result, a multimodal classifier using fusion
scheme at the features level by combining signals from
two electrodes/channels was used to enhance the clas-
sification confidence. Our three-fold objectives of a) ge-
nerating an automatic classification of sleep patterns
(wakefulness W, and deep sleep N3) based on an adap-
tive LVQ-NN and SVM with 40-Hz ASSR input signals,
b) developing a features-level fusion approach for com-
bining a 40-Hz ASSR ensemble averaged sweep of signals
generated from two separate electrodes/channels, and c)
classifying sleep patterns with the resultant ASSR sweep
signals to enhance the decision confidence level have been
accomplished. LVQ-NN outperforms as compared to the
SVM for 40-Hz ASSR ensemble averaged signals classifi-
cation for observing sleep patterns.
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