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Abstract

treatment decisions.

Typically, a vast amount of experience and data is needed to successfully determine cancer prognosis in the face of (1)
the inherent stochasticity of cell dynamics, (2) incomplete knowledge of healthy cell regulation, and (3) the inherent
uncertain and evolving nature of cancer progression. There is hope that models of cell regulation could be used to
predict disease progression and successful treatment strategies, but there has been little work focusing on the third
source of uncertainty above. In this work, we investigate the impact of this kind of network uncertainty in predicting
cancer prognosis. In particular, we focus on a scenario in which the precise aberrant regulatory relationships between
genes in a patient are unknown, but the patient gene regulatory network is contained in an uncertainty class of
possible mutations of some known healthy network. We optimistically assume that the probabilities of these
abnormal networks are available, along with the best treatment for each network. Then, given a snapshot of the
patient gene activity profile at a single moment in time, we study what can be said regarding the patient’s treatability
and prognosis. Our methodology is based on recent developments on optimal control strategies for probabilistic
Boolean networks and optimal Bayesian classification. We show that in some circumstances, prognosis prediction may
be highly unreliable, even in this optimistic setting with perfect knowledge of healthy biological processes and ideal

Introduction

NCI defines cancer prognosis as ‘..an estimate of the
likely course and outcome of a disease. The prognosis of
a patient diagnosed with cancer is often viewed as the
chance that the disease will be treated successfully and
that the patient will recover’ [1]. A central problem in
translational medicine is thus to decide, given biologi-
cal knowledge and a collection of observations, whether
a cancer patient will bear any chance of successful treat-
ment.

There are a myriad of approaches to model both nor-
mal (healthy) and aberrant (cancerous) cell dynamics,
including biological pathways, co-expression networks,
Bayesian networks, Boolean networks (BNs), probabilis-
tic BNs (PBNs), Petri nets, differential equation-based
networks, etc. It is believed that these may be used
to predict disease diagnosis, progression, and success-
ful treatment strategies, which has led to much work on
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the identification and analysis of biological networks in
genomics and biomedicine.

There remain two questions regarding prognosis. First,
even if the underlying network of a patient were per-
fectly known and the best drug to use for the patient
were also known, would a patient necessarily be cur-
able? Second, suppose the precise network of a patient
were unknown, but probabilities of an uncertainty class
of networks, for instance all possible mutations of some
healthy network, were available along with the best drug
to use for each abnormal network. Then based on avail-
able measurements, say genomic or proteomic profiles of
the patient, what could be said regarding a patient’s treata-
bility and prognosis? That is, might the very nature of
cancer, with its uncertain progression and unique charac-
teristics in each individual, make it impossible to predict
prognosis, even given perfect knowledge of all biologi-
cal processes and ideal treatment decisions? In this paper,
we give quantitative answers to these questions, at least
at a conceptual level in the context of optimal control
strategies for PBNs, by studying intervention outcome in
a framework of uncertain biology.
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Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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PBNs are a class of dynamical models for functional
gene regulatory networks (GRNs) [2]. They can cap-
ture the intrinsic uncertainty of gene interactions and
measurement error, rendering GRN dynamics as Markov
chains. They also provide a systematic way of modeling
intervention scenarios, where the theory of discrete-time
Markov decision processes can be applied to determine
optimal intervention strategies. The steady-state distribu-
tion (SSD) of the model Markov chain reflects the long-
term behavior (phenotypes) of the underlying network,
and changes imposed on the SSD through various types
of network intervention serve as a guide for developing
beneficial treatment strategies. In short, given a PBN, one
can optimally design an intervention strategy to alter the
dynamics of the network so that the gene activity profiles
(GAPs) evolve in a desired manner.

Managing uncertainty is especially important in mod-
eling biological networks, where there is inherent uncer-
tainty in the state of a network due to immeasurable latent
variables, as well as uncertainty due to a lack of knowl-
edge or partial knowledge of the relationships between
observable variables even in a healthy network [3]. Here,
we focus on a third source of model uncertainty due to
the inherent unpredictability of somatic gene mutations
or aberrant pathway malfunctioning that may arise in a
cancer. This corresponds to listing plausible scenarios in
which a healthy network may undergo a functional dis-
ruption in normal gene regulation. It is imperative to take
into account this uncertainty to provide a robust decision
regarding cancer prognosis.

We assume that a patient’s network belongs to an uncer-
tainty class of networks, each derived from a known
healthy network that contains some structure essentially
common to all networks. Each network in the uncertainty
class possesses one or more ‘mutations’ of the healthy net-
work, representing various possible subtypes or stages of
cancer. Some networks in the uncertainty class may be
very treatable (good prognosis), while others may be diffi-
cult or impossible to treat (bad prognosis). In fact, we will
partition the space of networks into four classes based on
the severity of disease with treatment and the benefit of
treatment. We measure the severity of disease by the long-
run probability that cancerous cells visit certain known
undesirable states, or equivalently, the SSD mass of these
undesirable states. We measure the benefit of treatment
by the difference between steady-state mass in undesir-
able states before and after treatment, which we call the
steady-state shift.

Our objective is to optimally classify patients into our
four prognosis categories and to study the impact of net-
work uncertainty on predicting prognosis. Recent work
on optimal Bayesian classification (OBC) furnishes an ele-
gant framework for designing optimal classifiers and opti-
mally estimating their error [4,5]. In the general setting,
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it is assumed that the true underlying sampling distri-
bution belongs to a parameterized uncertainty class of
distributions associated with a known prior probability
distribution. Closed-form solutions are available for sev-
eral models with conjugate priors.

In prior work, there have been several studies develop-
ing subnetwork markers extracted from protein or gene
interaction networks to improve cancer diagnosis [6-9].
While it is clear that classifier performance can be greatly
improved using subnetwork markers, these works only
consider groups of components known to interact and do
not take full advantage of network structure itself. Fur-
thermore, these works focus on diagnosis and do not
model the effect of intervention. Work in [10] proposes a
competition-based strategy using large datasets to iden-
tify the best methods to predict breast cancer prognosis.
Several methods are employed using genomic or clini-
cal information or both. While the authors demonstrate
that some of the best methods for prognosis prediction
incorporate molecular features selected by expert prior
knowledge along with both molecular and clinical data,
all methods used are based on data-driven machine learn-
ing rather than optimal prediction and error estimation
and do not take full advantage of network structure to
improve prediction. In [11,12], the authors present meth-
ods of constructing uncertainty classes of gene expression
distributions in the OBC framework that are consistent
with available pathway information to improve classifi-
cation. However, the focus is on diagnosis rather than
prognosis, and these works treat network uncertainty as
stemming from ignorance. For instance, they assume that
all data is drawn from the same sampling distribution,
rather than modeling multiple subtypes of cancer that
may exhibit different patterns of gene expression. While
these advances improve cancer classification using var-
ious forms of prior knowledge, no work that we know
of rigorously addresses optimal error rates that can be
achieved in the presence of uncertain knowledge of the
underlying network due to the inherent heterogeneity of
cancer.

In this work, we assume a single GAP is observed from
the patient, which is essentially a snapshot of the state
of the patient’s network at the moment the sample is
drawn. The patient’s sampling distribution is thus equiv-
alent to the steady-state distribution of their network
without intervention, giving a correspondence between
the uncertainty class of networks and the uncertainty class
of sampling distributions. We impose a prior distribution
over the uncertainty class of networks, with the inter-
pretation that certain mutation events are more or less
likely with known probabilities. We can therefore cast
our classification problem in a discrete Bayesian setting
and directly apply closed-form optimal Bayesian classi-
fication and Bayesian error analysis. Note there is no
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training data per se, since we are modeling uncertainty in
the progression of cancer itself while assuming a perfect
understanding of cell regulation, as opposed to modeling
uncertainty due to ignorance of biological relationships
between genes, where knowledge could be enriched with
training examples. Figure 1 illustrates a schematic of our
procedure to study prognosis prediction.

Network model
Since PBNs fundamentally rely on the dynamics of con-
stituent BNs, we shall define BNs first. A BN is charac-
terized by a set of n nodes, v; € {0,1} fori = 1,...,n,
representing the expression level of genes or their prod-
ucts, and a collection of n Boolean predictor functions,
fi + {0,1Y" — {0,1} for i = 1,...,n, describing the
functional relationships between genes. In this setting,
0 and 1 represent down- and upregulation of genes,
respectively.

The GAP is defined to be a length-# binary vector,

k ok

vk = [Vl, Voseons VI,;:I, describing the expression level of all

n genes at time k = 0, 1,. .., where vf € {0, 1} is the value
of node i at time k. The Boolean function f; determines the
value of node i at time k + 1 by VfH =f; (vk) Although
f; takes as input the entire GAP, vX, in general it might
depend on only r(i) predictor nodes for gene i. We assume
all genes update synchronously. Several methods for con-
structing transition rules have been proposed, for instance
the ‘majority vote’ rule [3,13,14], and the ‘strong inhibition’
rule [15]. Here, we adopt the former method. For a BN, we
define a regulatory matrix, R, with (i, /) component

1 if gene j activates gene i,
-1
0

Rij = (1)

if gene j suppresses gene i,
otherwise.

Therefore, row i of R has r(i) non-zero elements. The
majority vote rule stipulates that a gene should become
upregulated if more activating genes are ON than sup-
pressing genes, downregulated if more suppressing genes
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are ON than activating genes, and stay the same other-
wise. Thus, we define the regulatory functions

1 if Y, Ryvf >0,
A(¥) =10 it Ry <0, (2)
vf otherwise.

There is a natural bijection between v* and its integer rep-
resentation x* € S = {0,1,...,2" — 1} given by 2X =
> 2”’ivff . We call xX the state of the network at time k
and S the state space.

PBNs generalize BNs by introducing random switching
between several contexts, where each context is a BN on
its own. They also introduce a random gene perturbation,
where the current state of each gene in the network is ran-
domly flipped with probability p. If the PBN has only a
single context, then the model becomes a BN with pertur-
bation (BNp), which will serve as our model for GRNs in
this paper.

Probabilistic transition rules of any PBN can be modeled
by a homogeneous Markov chain. We denote the stochas-
tic process of state transitions by (ZkeS:k=0,1,..}.
Originating from state x € S, the successor state y € S
is selected according to the transition probability matrix
(TPM) P, with (x,y) element Py, := P(ZK! = y | Zk =
x) for all k = 0,1,... [2]. Due to random gene pertur-
bation, the equivalent Markov chain is ergodic and has a
unique invariant distribution, 7, equal to the SSD of the
network under no intervention. We also use 7, to denote
the probability mass of 7 evaluated at state x € S.

Optimal intervention in PBNs

Treatment aims to alter the dynamics of a cell to achieve
some desirable property or behavior. To formalize this for
agiven PBN, letU{ be a set of undesirable states, which may
be an arbitrary subset of S. States in U/ may correspond
to pathological behavior or known cancer phenotypes.
A natural measure of the performance of a treatment
or control policy then becomes the long-run expected
occupation of undesirable states. We now review optimal
intervention, assuming the true TPM is perfectly known.

Class of Networks

Y
[ Network Prior |-----»{ Observe Patient |
Uncertainty ~ [~>{ SSD/TPM w/o Control|->{Effective SSD/TPM by || Classification

Prognosis Classes

A

Optimal Control

Y

Controlled
Networks

Figure 1 A schematic of our procedure to study prognosis prediction.
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Two types of intervention methods for PBNs have been
proposed: structural intervention [16] and external control
[17,18]. The former aims to effectively change the wiring
of a GRN so that long-run dynamics of the underlying
Markov chain are moved toward beneficial states. Sev-
eral advanced techniques, such as siRNA interference,
can carry out pathway blockage [3]. The latter method
involves designing a program for taking actions over time
that alter the expression level of some genes (or gene
products), known as control genes, effectively steering
the long-run dynamics of the network away from unde-
sirable states. This type of intervention corresponds to
intervention using drugs to act on gene products. In
this paper, we choose the latter method and assume that
the PBN admits an external control input a from a set
of actions, A = {0,1}, where 2 = 0 indicates no-
intervention and ¢ = 1 indicates that the expression
level of a single control gene, corresponding to a node
¢ € {1,2,...,n}, is flipped. Under control action a = 1,
the transition probabilities at state x, or equivalently the
row corresponding to x in the original TPM, are replaced
by the row corresponding to state x¥ having the same
binary representation as x except with node v, flipped.
Let {(Zk,Ak) eSxA:k=0,1,.. } denote the stochas-
tic process of states and actions taken. The transition rules
for the controlled PBN are given by a new TPM, P(a),
with (x,y) element Pyy(a) = P(ZK1 = ¥ | Zk = x, Ak =
a), for k = 0,1, .... The ergodicity of the controlled TPM,
P(a), for each a € A, is immediate from the ergodicity of
the original uncontrolled TPM, P.

Suppose we wish to optimally steer the dynamics away
from undesirable states by applying a regimen of exter-
nal control actions at each time k = 0,1,...,N. This
optimization problem has been well-studied in the con-
text of optimal Markov decision processes. We define a
control policy, u = {,uo,ul, .. .,/LN}, as a sequence of
instructions for taking actions that take into account the
entire history of states and actions up to time k, kX =

(%,a% 24, a",. .., 2, ak). In particular, after observing the

history, #*~1, and the current state, z¥, the control policy
prescribes action a € A with some designated probability
pk (a | K1, 2K), satisfying 0 < p* (a | #=1,2F) < 1and
Yaea X (a | B 2K = 1.

Denote the class of all control policies by M. Two
classes of policies of particular interest are stationary ran-
domized and stationary deterministic policies, denoted by
Mg and Msp, respectively. Mg includes policies that
are time invariant, where ;¥ does not depend on k and is
only conditioned on the current state. Mgp is a subset of
Mg and defined to be the set of all stationary determin-
istic policies such that u* is either 0 or 1, depending on
a, for every state in S. In this case, the control policy is a
deterministic function from S to A. Given the initial state
7% = x of the Markov chain and any policy j, one can
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determine a unique probability measure P} over the space
of all trajectories of states and actions, which correspond-
ingly defines the joint stochastic processes (ZX, A) of the
states and actions for the controlled system [19]. Let 14
denote an indicator function, where 14(x) is one ifx € A
and zero otherwise. Our goal is to minimize the long-run
expected occupation of undesirable states or equivalently
to minimize the objective

N
J(x, 1) = lim sup EX [Nil > 1y (Z"):| , (3)

N—oo k=0

where EY denotes the expectation relative to P4 [20]. Let
J*(x) = inf,cpq J(x, ) for any initial state x € S. A pol-
icy u* is optimal if J*(x) = J(x, u*), for everyx € S. It
can be shown that there exists an optimal control policy
that belongs to Mgp, and that J*(x) is independent of the
initial state x [19].

While this optimization problem can be solved with
dynamic programming, it may also be formulated as a
classical linear program (LP) that minimizes the long-
run expected frequency of undesirable states and control
action pair for policies in Mgg [19,21,22]. The LP formu-
lation, reviewed in the remainder of this section, requires
that for any 4 € Mgp, the underlying Markov chain be
ergodic, which holds true for PBNs. Given a family of
TPMs, P(a) for a € A, and any policy u € Mgy, we can
obtain the TPM of the controlled process, Q(u), via

Q) = Y Py(@)p(alx), (4)

acA

where Q,,(u) is the (x,y) element of Q(u), and
n(alx) is the probability distribution on actions pre-
scribed by p given the current state. Let w(u) =
[mo(w), w1 (), . .., ms)—1(p)] denote the unique invariant
vector of Q(u) such that, forallx € S,

() =), 0=<me() <1, Y mu) =1

xeS

(5)

The joint probability mass of any state-action pair, x and
a, as a function of u is defined by vy, (1) := p(alx)me(w),
where we have ZaeA Vya() = (). Then, it can be
shown that for anyx € S, J(x, ) = J(1v), where

J) =" vea(). (6)

xeU ac A
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Hence, the original optimization problem can be reduced
to the following LP:

ming E Vxas
{de

x€U ac A

ZU’C“ = Z Zvyapyx(ﬂ),\?'x esS,
ae

A €S acA
subject to Y

Z vaa - 17 vxa Z O;Vx S S,ﬂ S .A
x€SacA
Let {v},} be minimizing arguments of the above problem.
Then, an optimal policy u* € Msgp is given by:
Via
2V

acA

w*(alx) = (7)

Although the search space for p is Mgg, it can be shown
that u* € Mgp [19,21,22]. Furthermore, since the con-
trolled Markov chain is ergodic, > . 4vi, # 0 for all
xeS.

Network uncertainty class
Having established a method to model networks and
optimal intervention, we next discuss a model for net-
work uncertainty that captures variability among cancer
patients due to unpredictable and compounding muta-
tions. Essentially, we assume that the patient’s network
belongs to an uncertainty class of possible ‘cancer’ net-
works that are the result of one or several detrimental
modifications (mutations) of a nominal ‘healthy’ network.
Let R denote the regulatory matrix of a nominal
healthy network, which possesses a small steady-state
mass in undesirable states. We denote our uncertainty set
of regulatory matrices by ® and impose two constraints:
(1) regulatory matrices in © differ from R* by only a
few number of elements. For example, assuming that each
mutation, or perturbation, corresponds to a random edge
addition (0 is mutated to 1 or —1) or removal (1 or —1 is
mutated to 0), each element in ® might have up to some
number of edges added or removed relative to R, We
allow different limits to the number of edges added versus
removed, but assume that the total number of each type of
edge mutation in any regulatory matrix of ® is small rela-
tive to the size of the network. (2) ® should contain only
regulatory matrices for which the undesirable steady-state
mass is greater than some threshold. Thus, cancers in our
model have detrimental effects as mutations accumulate.
To reflect the reality that cancer cells with more muta-
tions are more rare and that certain types of perturbations
may be more or less likely, we assign prior probabilities to
every network represented in ©. To this end, we assume
that the number of mutations of a network in ® follows
essentially a truncated geometric distribution, where the
probability of / mutations is proportional to y’ for some
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0 < y < 1 (normalization is necessary since the number
of mutations of networks in ® is bounded). We further
assume that all networks with / mutations are equally
likely, for example, if there are N; regulatory matrices in
© that have [ elements mutated with respect to R, then
they are all equally likely with probability proportional to
¥!/Nj. Once we have calculated these values for all ele-
ments of ®, we normalize their sum to one, guaranteeing
a valid probability distribution, and denote the resulting
probability distribution by A, i.e., wehave Y 5 o A(R) =
land A(R) > Oforall R € ©.

Each R in ® induces a SSD under no intervention,
which we denote by 7r. Also, let wg, be the SSD of R
evaluated at point x € S, and let I[1 = {ng : R € ©} be
the multiset of all SSDs corresponding to networks in ©.
Note that SSDs in IT may not be unique.

Each R is also associated with an optimal control pol-
icy u% € Msp resulting in a new optimally controlled
network, R*, with SSD g+ having minimal undesirable
steady-state mass with respect to all control policies. Note
that in general, every control policy 4 € Msgr induces a
controlled network, R, for every R € ®. We can par-
tition ® into several sets based on intervention results.
For example, one might calculate the steady-state mass
of undesirable states after intervention and label the out-
come with either a ‘good’ (low undesirable mass) or ‘poor’
(high undesirable mass) prognosis. One may also be inter-
ested in whether it is worth intervening in the sense that
the steady-state mass of undesirable states shifts substan-
tially with optimal control. Hence, we partition ® into four
prognosis classes:

e Class1 (@1): Triy < aand TRy — TRy < Pi
(patient’s condition is not critical),

e (Class2 (@2): TRy < o and TRy — TRy > B1
(patient responds well to an effective treatment),

e (Class 3 (@3): TRy > o and TRy — TR > B
(patient’s condition can be improved to some extent),

e Class 4 (@4): Trxy > o and TRy — TRy < P2
(patient’s condition is poor and cannot be improved).

Here, TRyt = ),y TRx and Treyy = Y,y TR*x denote
the accumulated steady-state mass of undesirable states
under no intervention and optimal intervention, respec-
tively, and 0 < «, B1, B2 < 1. Further, note the probability
that a network belongs to @' is given by

d= Y A(R) (8)
R/ €®!
and define the probability distribution A’ to be the condi-
tional probability of the networks in ©%:

A(R) = A(R (9)

ct

for every R € ® and i € {1,2,3,4)}.
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Bayesian classification

Our objective is now to study optimal classification of
patients into the four prognosis classes. A classifier, ¥, is
a function that takes as input observations, in our case
a point x € S representing the GAP of a cancer patient
at a single time epoch, and outputs a prediction of some
unknown label associated with the observations, here a
member of {1,2,3,4} representing one of four possible
prognoses of the patient. In general, classification perfor-
mance depends on the underlying sampling distribution
governing observations, which in our model is precisely
the steady-state distribution of the patient’s network with-
out control. Were the network of the patient perfectly
known, prognosis could be determined perfectly as the
class corresponding to this network, and it would not be
necessary to obtain a GAP for the patient. In the case of
network uncertainty, prediction is no longer perfect and
observing the GAP of a patient potentially aids in making
a better prognosis.

To perform optimal classification, we utilize OBC the-
ory, which is founded on a Bayesian framework that
models uncertainty in the underlying sampling distribu-
tions [4,5]. Essentially, a prior probability is assigned to
all sampling distributions in an uncertainty class that may
have produced the observed sample. In our application,
the prior probability on the uncertainty class of networks
induces a prior on the uncertainty class of steady-state
distributions without control, making OBC classification
very natural to implement. The main idea is to leverage
minimum mean-square error (MMSE) estimation the-
ory to obtain an optimal Bayesian error estimates for
any classifier. Thanks to MMSE estimation theory, the
optimal Bayesian error estimate (BEE) is precisely the
expected misclassification rate with respect to the prior.
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The optimal Bayesian classifier is then defined to be that
classifier which minimizes the BEE.

In the usual implementation of OBC, uncertainty is
interpreted as more of an issue of ignorance, where there
are some true underlying class-conditional distributions,
but their identity in the uncertainty class is unknown and
can be revealed with training data. Here, all distributions
in the uncertainty class may exist in the population, and
the issue is in devising a robust classifier that can be
applied generally to all distributions in the uncertainty
class with minimal expected error. A consequence is that
training data from different patients generally cannot be
used to collapse the prior to a tighter posterior, unless care
is taken to consider known connections to the patient of
interest.

Given a specific network in R € ©® having label i and
sampling distribution 7 € I, and an arbitrary classifier
¥, let e (¥) denote the misclassification rate of ¢ under
TR:

W) = ) TR
xpr (%) AL

(10)

Now, suppose R is unknown. Let £ = {1,2,...,L}, where
L is the number of classes, each associated with a set of
networks @, a multiset of sampling distributions, {7% :
R € ©'}, and priors, {A/(R) : R € ©'}. A natural metric
for classifier performance is the expected misclassification
rate, £() = Ep[er (¥)], where E5 denotes an expecta-
tion over R with respect to the distribution A. One can
show that £(y) = > ;.o c'Eiler (¥)], where E ,; denotes
an expectation over R € © with respect to conditional
distribution A’. This quantity is, in fact, equivalent to the
BEE, where the class probabilities, ¢/, are perfectly known,
and E y:[er ()] is the expected error contributed by class i.

1 T T T T T
o
0.8t A
< ° o o
§ 0.6} o ° 1
C@ ®© o 0%
& > ° o
o, © o %
< 04 Ogp © o 1
€ % % ©
o 9o o
0.2 RO ]
0 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
TRHEY
Figure 2 Expected undesirable steady-state mass of networks without intervention versus the undesirable steady-state mass of R*.




Yousefi and Dalton EURASIP Journal on Bioinformatics and Systems Biology (2015) 2015:1

The OBC formalized in [4] is defined by

Yopc = arg inf Ex [er(¥)], (11)
yeC

where C is the space of all classifiers. For every i € £, we

define the effective density at point x € S by

fi=) areA(R). (12)

Re®!

The following theorem shows how {opc can be found [4].

Theorem 1. An optimal Bayesian classifier, Yopc, satis-
Jying Equation 11 exists and at point x € S is given by
Yopc(x) = i, where i € L is such that c"fxi > cjf; for all
j € L. In the event of a tie, by convention we choose the
class, i, satisfying c'f! > c/ij forallj € L with the smallest
index.
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Using Equations 9 and 12, we can rewrite the above
condition and assign x € S to class i € L if

D RAR) = Y ARA(R)

Re®! Re®

(13)

for all j € L. The expected misclassification rate of Yopc
is

BWosd) =Y, > Y TrReAR). (14)
xeS jeLl Re®
j#YoBC (%)

Furthermore, the probability of label i conditioned on a
fixed observation x € S is given by

fi  _ Xreo TRAR)

i ) 15
Yje Ifs 2 reo TRxA(R) (15)

for i € L. Whereas Equation 14 evaluates the overall error
rate over random networks and observations, Equation 15

1
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Figure 3 Expected undesirable steady-state mass of networks after optimal intervention versus the undesirable steady-state mass of R,
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may be used to evaluate the error rate over random net-
works conditioned on a particular observation, x.

Simulation results

In this section, we implement our procedure to study
prognosis prediction on synthetically generated networks,
as well as two real networks derived from biological
processes related to cancer development. The first real
network models the mammalian cell cycle, and the sec-
ond emulates cell response to various stress signals
such as DNA damage, oxidative stress, and activated
oncogenes.

Synthetic networks

To construct synthetic uncertainty classes of networks,
we begin by outlining a methodology to construct healthy
networks that are calibrated to have low undesirable
steady-state mass. We generate a seed regulatory matrix,
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RS, by randomly filling each row of RS with —1 or 1 as
follows. Let 7max denote the maximum number of pre-
dictors for each gene. We draw the number of predictors
for gene i, r(i), uniformly from the set {1,.. ., rmax}.- The
location of the r(i) non-zero elements in the ith row of
RS, designating the predictors of gene i, are determined
by drawing uniformly from the set {T" C {1,2,...,n} :
|T| = r(i)}. Once the predictors of each gene are deter-
mined, we assign 1 to each corresponding location in RS
with probability 8 €[ 0, 1] and —1 with probability 1 — B.
B reflects a bias toward what type of regulatory relation-
ship (activation or suppression) is more likely to occur.
Given the perturbation probability p, we calculate a TPM
and its SSD for the network corresponding to the seed
regulatory matrix [23]. We then select a nominal healthy
network, R'!, as the network with minimum undesir-
able steady-state mass among all possible networks with a
single mutation relative to RS.

(o]
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Size of ©
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Figure 4 OBC error rate versus the size of the uncertainty set, ©.
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Let REM and ADD be two non-negative integers.
We enumerate all regulatory matrices such that no
greater than REM and ADD edges are removed from
or added to R, respectively. We then exclude net-
works that have lower undesirable steady-state mass than
the healthy network, as well as networks with unde-
sirable steady-state mass less than the average undesir-
able mass of all networks with single mutations. This
guarantees that the set ® contains only networks with
unfavorable steady-state distributions. Given y, we then
calculate the probability distribution A for elements
of ®.

We generate 250 random seed networks with seven
genes (n = 7). For each network, we select at most
three predictors for each gene (rmax = 3), with both
types of edges being equally likely (8 = 0.5) and set
the BNp random gene perturbation probability p to 0.01.
We define the set of undesirable states, i/, to be the
set of all states in which the gene corresponding to the
most significant bit (v;) in the binary representation of
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the state is downregulated. This results in half of the
states being undesirable. We also set the number of
edge removals to REM = 1, the number of edge addi-
tions to ADD = 1, and the mutation probability y to
0.5. Each seed network corresponds to an uncertainty
set ©.

In the next stage of our procedure, given a control
gene, we design the optimal intervention policy for each
R € ©, which results in a controlled SSD 7x+. In our
classification settings, L = 4 and we partition ® into
four subsets by choosing «, 81, and By such that these
subsets have (almost) equal sizes. Given A, the prior prob-
ability of networks in ®, we use Equation 13 to find
the OBC for the uncertainty set ® and probability dis-
tribution A. We also estimate the error of this classifier
using Equation 14. Changing the control gene does not
affect ®, however it will change the partitioning of ® and
classification results. Thus, we set the control gene, in
turn, to every gene in the network excluding the target
gene.
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Figure 5 Histograms of the probability of correctly classifying networks for an uncertainty class. Low error rate (43 networks in ®).
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Figures 2 and 3 show the relationship between the
undesirable steady-state mass in the healthy network and
the expected (relative to A) undesirable mass of net-
works before and after optimal intervention, respectively.
In each scatter plot, each point represents a specific
seed network and its corresponding uncertainty class. In
general, we observe smaller undesirable mass after con-
trol, which is not unexpected since, by definition of the
objective function, the undesirable mass after applying the
optimal control cannot exceed that of the uncontrolled
network.

Since the seed networks are randomly generated, they
differ in the total number of edges and thus produce differ-
ent sized uncertainty sets, ©. Furthermore, the size of ® is
affected by the steady-state criteria for including mutated
networks in the set. We expect that as uncertainty regard-
ing the underlying mechanism of cancer increases, i.e., as
the size of ® increases, classification becomes a harder
task. This effect is observed in Figure 4, where we show
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scatter plots with respect to the OBC classifier error rate
(vertical axis) and the size of uncertainty set ® (horizontal
axis). As uncertainty sets grow in size, we observe a trend
of increasing error rates.

For a fixed network having label i, consider the prob-
ability of correct classification with respect to random
observed states:

Y e

xES:wOBC(x):i

(16)

Figures 5, 6, 7 and 8 provide histograms of this proba-
bility across all networks in a given uncertainty class. Each
figure corresponds to a different uncertainty class (each
generated from different seed regulatory matrix) with
classification errors at different ranges from low to high,
and results under all possible control genes are shown. In
almost all cases, the probability of correct classification
depends highly on the specific network, for example, in
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Figure 6 Histograms of the probability of correctly classifying networks for an uncertainty class. Moderately low error rate (141 networks
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Figure 5, control gene 2, we observe 10 networks out of 43
with nearly zero probability of correct classification, along
with 10 networks with nearly perfect classification.

For each uncertainty set, class probabilities conditioned
on each state may be found across all networks via
Equation 15. Figure 9 illustrates the average of these prob-
abilities over all 250 uncertainty sets under control gene
7. By convention, undesirable states are on the left (states
0 through 63). If we observe an undesirable state from
the patient, we will most likely classify the patient as class
3 (improvement to some extent), otherwise the classifi-
cation outcome is most likely class 1, which implies that
the patient’s condition is not that critical. However, this
figure reflects only an average trend, and results vary
considerably for a particular state and uncertainty set.

See the supplementary materials for analogous results
on 54 different settings, varying 8 € {0.1,0.5,0.9}, p €
{0.1,0.5,0.9}, ¥ € {0.005,0.01,0.1}, and rmax € {2,3}, and
a discussion on the effect of these parameters.
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Real networks

Mammalian cell-cycle network

We now apply our methodology to a dynamical network
modeling the behavior of normal mammalian cells during
the cell cycle [24]. The network has ten genes, CycD,
Rb, p27, E2F, CycE, CycA, Cdc20, Cdhl, UbcH10, and
CycB. Regulatory relationships between genes in this net-
work are shown in Table 1. Three key genes are cyclin
D (CycD), retinoblastoma (Rb), and p27. Under normal
conditions, extracellular signals, which control the activa-
tion of CycD, coordinate cell division with overall growth.
The tumor-suppressor gene Rb is expressed in the absence
of the cyclins. When present, however, cyclins inhibit Rb
by phosphorylation. The gene p27 is also active in the
absence of the cyclins. An active p27 blocks the action
of CycE or CycA and, hence, Rb can also be expressed
even if CycE or CycA are present. This results in a mecha-
nism that stops uncontrolled cell division. However, unde-
sirable cell proliferation in the absence of any growth
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Figure 7 Histograms of the probability of correctly classifying networks for an uncertainty class. Moderately high error rate (293 networks
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Figure 8 Histograms of the probability of correctly classifying networks for an uncertainty class. High error rate (344 networks in ®).

factor might arise if CycD, Rd, and p27 are all simulta-
neously downregulated. Therefore, we define the states
corresponding to this condition as undesirable states.

We construct a BNp following the majority-voting
updating rule for this network and set p = 0.01. This

network will serve as the nominal healthy network in our
analysis. Due to computational constraints, we only con-
sider regulatory networks for which no more than one
edge is removed from R' and also exclude those hav-
ing lower undesirable steady-state mass than the healthy
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Table 1 Regulatory relationships of the mammalian cell
cycle network

Gene Predictors: regulatory type (+/—)
CycD CycD: +
Rb CycD: —, p27: +, CycE: —, CycA: —, CycB: —
p27 CycD: —, p27: 4, CycE: —, CycA: —, CycB: —
E2F Rb: —, p27: 4, CycA: —, CycB: —
CycE Rb: —, p27: 4+, E2F: +, CycE: —, CycA: —
CycA Rb: —, E2F: 4, CycA: 4, Cdc20: —,
Cdh1: —, UbcH10: —
Cdc20 Cdh1: —, CycB: +
Cdh1 p27: 4+, CycA: —, Cdc20: +, CycB: —
UbcH10 CycA: +, Cdc20: +, Cdh1: —,
UbcH10: +, CycB: +
CycB Cdc20: —, Cdh1: —

network or the average undesirable mass of all networks
with a single edge mutation. The set of mutated networks
constitutes ©, and since we only allow one mutation, the
distribution A will be uniform. For every network in ©,
we take each gene in the network, excluding CycD, Rb,
and p27 as control genes in turn, and find the optimal
intervention, which maximally shifts the SSD away from
undesirable states. Given A, ®, a control gene and the
controlled networks, we follow a similar procedure for
partitioning © as used for the synthetic networks and
design an OBC. The results are presented in Table 2 for
each control gene, where mrn;,;, = 0.3405, Ep[mryl =
0.3541 and ® contains 21 mutated networks. Although
the average improvement in the SSD of undesirable states
is significant, the classification error rates are poor, which
indicates that prognosis classification is difficult for this
network. The best classification performance in achieved
when E2F is the control gene, which is slightly better than
random guessing.

Table 2 The expected undesirable mass after intervention
and the OBC error rate for the mammalian cell cycle
network

Control gene Erlmreu] e(YoBc)

E2F 0.2889 0.6572
CycE 02334 0.6733
CycA 0.2872 0.6650
Cdc20 0.3386 0.6799
Cdh1 0.3371 0.6704
UbcH10 0.3497 0.6705
CycB 0.2941 0.6631
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Stress response network

We next consider a p53 signaling pathway derived from
the KEGG database [25]. p53 is the tumor suppressor
protein encoded by the TP53 gene in humans. p53 acti-
vation plays a crucial role in cellular responses to various
stress signals that might cause genome instability. These
responses include a transient cell cycle arrest, senescence,
and apoptosis. The original p53 network involves many
genes or proteins, which makes it impossible for us to
analyze. Therefore, we only focus on the genes upstream
of p53 in its regulatory pathway and construct a BNp
based on the relationships listed in Table 3. The network
has nine nodes: DNAdamage, p53, p14ARF, ATR, ATM,
CHEK1, CHEK2, MDM2, and MDMX. We assume that
the states for which DNAdamage and p53 are active and
inactive, respectively, are undesirable.

We construct a BNp following the majority-voting
updating rule with p = 0.01. We then enumerate all the
networks that have no greater than one edge removed
from or added to the nominal p53 network and use the
same criterion as in the mammalian cell cycle example
to select networks for inclusion in the uncertainty set of
mutated networks. We also calculate the distribution A
assuming a mutation probability of y = 0.5. Each node
in the network, except DNAdamage and p53, is allowed
as a control gene. Given A, ®, a control gene, and the
controlled networks, we partition ® and design an OBC.
For this network, mpHn;; = 0.0057, Ep[rry]= 0.0183,
and © consists of 829 mutated networks. The classifica-
tion results are shown in Table 4 for each control gene.
Although the uncertainty set is much larger, classifica-
tion error rates are better than observed for the cell cycle
network. The best classification performance is achieved
when ATR is the control gene.

Conclusion
We have outlined a framework in which it is possible
to utilize prior knowledge regarding cell regulation, for

Table 3 Regulatory relationships of a p53 signaling
network

Gene/protein/signal Predictors: regulatory type (+/—)

DNAdamage DNAdamage: +
p53 ATR: 4+, CHEK1: 4, CHEK2: +,
MDM2: —, MDMX: —
p14ARF p14ARF: +
ATR DNAdamage: +
ATM DNAdamage: +
CHEK1 ATR: +
CHEK2 ATM: +
MDM2 p14ARF: —, MDMX: +
MDMX MDM2: —




Yousefi and Dalton EURASIP Journal on Bioinformatics and Systems Biology (2015) 2015:1

Table 4 The expected undesirable mass after intervention
and the OBC error rate for the stress response network

Control gene NEZT &(YoBc)

p14ARF 0.0095 05175

ATR 0.0104 04789

ATM 0.0150 0.5935
CHEK1 0.0110 05218
CHEK2 0.0134 0.5561
MDM2 0.00666 0.5376
MDMX 0.0084 05220

instance pathway information in healthy and aberrant net-
works, to optimally predict prognosis. That being said,
there are several important generalizations of our model
that merit further study: (1) integrating partial ignorance
of the healthy network itself into our uncertainty class
of networks, (2) allowing the network to change over
time, thereby taking into account the progressive deteri-
oration of cancer as mutations accumulate, (3) modeling
uncertainty in the ideal drug regimen for each network,
(4) integrating different types of observations into the
analysis, and (5) combining optimal prognosis prediction
with optimal treatment recommendations under network
uncertainty.

While ¢opc makes optimal prognosis predictions under
network uncertainty, obtaining the GAP or any other rele-
vant information from a patient has the effect of reducing
uncertainty. A key point in this work is that we study per-
formance with respect to prognosis only. Although one
must overcome network uncertainty, it is not necessary
to be able to actually infer the network or any muta-
tions, rather, for our purposes one only needs enough
relevant data to make good predictions regarding progno-
sis. Thus, a second major question we address is whether
it is possible to successfully predict prognosis with a
relatively small amount of data and available biological
knowledge.

The larger the uncertainty class, generally the more dif-
ficult prognosis becomes. This is an intuitive result: more
uncertainty requires more information to draw accu-
rate conclusions. Furthermore, prognosis performance
depends on many factors, including the type of cancer (the
original healthy network and its associated uncertainty
class), the individual patient’s network, and the particular
sample drawn from the patient. Very often, prognosis
prediction from a single GAP is highly unreliable, even in
this optimistic setting with perfect knowledge of healthy
biological processes and ideal treatment decisions. In this
case, the remedy is to collect more data, for instance time-
series GAP measurements, to help identify the patient’s
network or at least ensure reliable prognosis prediction.
One may be lucky and find that their condition is quite
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clear from a single measurement, but, at least in our
examples, it is typical to find that very little is revealed
about one’s condition, necessitating additional lab
tests.
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