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Abstract

Convex bootstrap error estimation is a popular tool for classifier error estimation in gene expression studies. A basic
question is how to determine the weight for the convex combination between the basic bootstrap estimator and the
resubstitution estimator such that the resulting estimator is unbiased at finite sample sizes. The well-known 0.632
bootstrap error estimator uses asymptotic arguments to propose a fixed 0.632 weight, whereas the more recent
0.632+ bootstrap error estimator attempts to set the weight adaptively. In this paper, we study the finite sample
problem in the case of linear discriminant analysis under Gaussian populations. We derive exact expressions for the
weight that guarantee unbiasedness of the convex bootstrap error estimator in the univariate and multivariate cases,
without making asymptotic simplifications. Using exact computation in the univariate case and an accurate
approximation in the multivariate case, we obtain the required weight and show that it can deviate significantly from
the constant 0.632 weight, depending on the sample size and Bayes error for the problem. The methodology is
illustrated by application on data from a well-known cancer classification study.
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Introduction
The bootstrap method [1-7] has been used in a wide range
of statistical problems. The asymptotic behavior of boot-
strap has been studied [8-11], while small-sample prop-
erties have been studied under simplifying assumptions,
such as considering the estimator based on all possible
bootstrap samples (the ‘complete’ bootstrap) [12-14]. The
small-sample properties of the usual bootstrap are not
well understood, in particular when it comes to estimating
the error rates of classification rules [15,16].
There has been, on the other hand, interest in the appli-

cation of bootstrap to error estimation in classification
problems and, in particular, gene expression classifica-
tion studies [17-20]. Of particular interest is the issue
of classifier error estimation [21,22]. Bootstrap methods
have generally been shown to outperform more tradi-
tional error estimation techniques, such as resubstitution
and cross-validation, in terms of root-mean-square (RMS)
error [4,5,7,23-35]. Bootstrap error estimation is typically
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performed via a convex combination of the (generally)
pessimistic basic bootstrap estimator, known as the zero
bootstrap, and the (generally) optimistic resubstitution
estimator. A basic problem is how to choose the weight
that yields an unbiased estimator.
The problem of unbiased convex error estimation was

previously considered in [36-38] for a convex combination
of resubstitution and cross-validation estimators, and in
[4,7,23] for a combination between resubstitution and the
basic bootstrap estimator. In the former case, a fixed sub-
optimal weight of 0.5 was proposed in [36,38], while an
asymptotic analysis to find the optimal weight was pro-
vided in [37]. In the latter case, our case of interest, a fixed
suboptimal weight of 0.632 was proposed in [4], leading
to the well-known 0.632 bootstrap estimator, while in [7],
a suboptimal weight is computed by means of a sample-
based procedure, which attempts to counterbalance the
effect of overfitting on the bias, leading to the so-called
0.632+ bootstrap error estimator; the problem of finding
the optimal weight for finite sample cases was addressed
via a numerical approach in [23].
Here, we determine the optimal weight for finite sample

cases analytically, in the case of linear discriminant analy-
sis under Gaussian populations. In the univariate case, no
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other assumptions are made. In the multivariate case, it is
assumed that the populations are homoskedastic and that
the common covariance matrix is known and used in the
discriminant. In either case, no simplifications are intro-
duced to the bootstrap error estimator; it is the usual one,
based on a finite number of random bootstrap samples.
The analysis in this paper follows in the steps of previ-

ous papers that have provided analytical representations
for the moments of error-estimator distributions [39,40].
In the univariate case, exact expressions are given for the
expectation of the zero bootstrap error estimator, in the
general heteroskedastic (general-variance) Gaussian case.
By using similar expressions for the expected true and
resubstitution error [39], this allows the exact calculation
of the required weight. In the multivariate case, the expec-
tation of the zero bootstrap error estimator is expressed
as a probability involving the ratio of two noncentral chi-
square variables, in the homoskedastic Gaussian case,
assuming that the true common covariance matrix is used
in the discriminant. The resulting expression is exact but
necessitates approximation for its numerical computa-
tion. This is done in this paper via the Imhof-Pearson
three-moment method, which is accurate in small-sample
cases [41]. Use of similar expressions for the expected
true and resubstitution error [40] then allows the exact
calculation of the required weight.
In the homoskedastic case, the required weight for unbi-

asedness is shown to be a function only of the Bayes
error and sample size. Accordingly, plots and tables of the
required weight for varying values of Bayes error and sam-
ple size are presented; if the Bayes error can be estimated
for a problem, this provides a way to obtain the optimal
weight to use. In the univariate case, it was observed that
as the sample size increases, the optimal weight settles
on an asymptotic value of around 0.675, thus slightly over
the heuristic value 0.632; by contrast, in the multivariate
case (d = 2), the asymptotic value appears to be strongly
dependent on the Bayes error, being as a rule significantly
smaller than 0.632, except for very small Bayes error.
This paper is organized as follows. The ‘Bootstrap clas-

sification’ section defines linear discriminant analysis as
well as its application under bootstrap sampling. The
‘Bootstrap error estimation’ section reviews convex boot-
strap error estimation. The ‘Unbiased bootstrap error
estimation’ section contains the main theoretical results
in the paper, providing the analytical expressions for the
computation of the required convex bootstrap weight in
the univariate and multivariate cases. The ‘Gene expres-
sion classification example’ section contains a demonstra-
tion of the usage of the optimal weight in bootstrap error
estimation using data from the breast cancer classification
study in [42,43]. Lastly, the ‘Conclusions’ section contains
a summary and concluding remarks.
All the proofs are presented in the Appendix.

Bootstrap classification
Classification involves a predictor vector X ∈ Rd, also
known as a feature vector, which represents an individual
from one of two populations�0 and�1 (we consider here
only this binary classification problem). The classification
problem is to assign X correctly to its population of ori-
gin. The populations are coded into a discrete label Y ∈
{0, 1}. Therefore, given a feature vector X, classification
attempts to predict the corresponding value of the label Y.
We assume that there is a joint feature-label distribution
FXY for the pair (X,Y ) characterizing the classification
problem. In particular, it determines the probabilities c0 =
P(X ∈ �0) = P(Y = 0) and c1 = P(X ∈ �1) = P(Y = 1),
which are called the prior probabilities.
Given a fixed sample size n, the sample data is an

i.i.d. sample Sn = {(X1,Y1), . . . , (Xn,Yn)} from FXY .
The population-specific sample sizes are given by n0 =∑n

i=1 IYi=0 and n1 = ∑n
i=1 IYi=1 = n − n0, which

are random variables, with n0 ∼ Binomial(n, c0) and
n1 ∼ Binomial(n, c1). When we need to emphasize that
n0 and n1 are random variables, we will use capital let-
ters N0 and N1, respectively. This sampling design, which
is the most commonly found one in contemporary pattern
recognition, is known asmixture sampling [44].
A classification rule �n is used to map the training data

Sn into a designed classifier ψn = �n(Sn), where ψn is
a function taking on values in the set {0, 1}, such that X
is assigned to population �0 or �1 according to whether
ψn(X) = 0 or 1, respectively. The classification error rate
εn of classifier ψn is the probability that the assignment is
erroneous:

εn = c0 P(ψn(X) = 1 | Y = 0) + c1 P(ψn(X) = 0 | Y = 1)
def= c0 ε0n + c1 ε1n,

(1)

where (X,Y ) is an independent test point and εin =
P(ψn(X) = 1 − i | Y = i) is the error rate specific to
population �i, for i = 0, 1. Since the training set Sn is ran-
dom, εn is a random variable, with expected classification
error rate E[εn]; this gives the average performance over
all possible training sets Sn, for fixed sample size n.
Linear discriminant analysis (LDA) employs Anderson’s

W discriminant [45], which is defined as follows:

W (X) =
(
X − μ̂0 + μ̂1

2

)T
�−1 (

μ̂0 − μ̂1
)

(2)

where

μ̂0 = 1
n0

n∑
i=1

XiIYi=0 and μ̂1 = 1
n1

n∑
i=1

XiIYi=1

(3)
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are the sample means relative to each population, and � is
a matrix, which can be either (1) the true common covari-
ance matrix of the populations, assuming it is known (this
is the approach followed, for example, in [39,40,46]), or (2)
the sample covariance matrix based on the pooled sample
Sn, which leads to the general LDA case. In this paper, we
will assume case (1) throughout.
The corresponding LDA classifier is given by

ψn(X) =
{
1 , ifW (X) < 0
0 , ifW (X) ≥ 0

, (4)

that is, the sign ofW (X) determines the classification of X.
A bootstrap sample S∗

n contains n instances drawn uni-
formly, with replacement, from Sn. Hence, some of the
instances in Sn may appear multiple times in S∗

n, whereas
others may not appear at all. Let C be a vector of size n,
where the ith component C(i) equals the number of
appearances in S∗

n of the ith instance in Sn. The vector C
will be referred to as a bootstrap vector.
For a given Sn, the vector C uniquely determines a boot-

strap sample S∗
n, which we denote by SCn . Note that the

original sample itself is included: if C = (1, . . . , 1) def= 1n,
then SCn = Sn, since each original instance appears once
in the bootstrap sample. Note also that the number of
distinct bootstrap samples, i.e., values for C, is equal to(2n−1

n
)
; even for small n, this is a large number. For exam-

ple, the total number of possible bootstrap samples of size
n = 20 is larger than 6.8 × 1010.
The vector C has a multinomial distribution with

parameters (n, 1/n, . . . , 1/n),

P(C = (i1, . . . , in)) = 1
nn

n!
i1! · · · in! , i1 +· · ·+ in = n .

(5)

Starting from a classification rule �n, one may design
a classifier ψC

n = �n(SC) on a bootstrap training set SC .
Its classification error εCn is given as in (1), namely, εCn =
c0εC,0n + c1εC,1n where εC,in = P(ψC

n (X) = 1 − i | Y = i)
is the error rate specific to population �i, for i = 0, 1. In
this paper, we apply this scheme to the LDA classification
rule defined previously. Notice the distinction between
a bootstrap LDA classifier and a ‘bagged’ (bootstrap-
aggregated) LDA classifier [47,48]; these correspond to
distinct classification rules. The bootstrap LDA classifier
is employed here as an auxiliary tool to analyze the prob-
lem of unbiased bootstrap error estimation for the plain
LDA classifier.

Bootstrap error estimation
Since the feature-label distribution is typically unknown,
the classification error rate εn has to be estimated by
a sample-based statistic ε̂n, commonly referred to as an
error estimator. Data in practice are often limited, and

the training sample Sn has to be used for both designing
the classifier ψn and as the basis for the error estima-
tor ε̂n. The simplest and fastest way to estimate the error
of a designed classifier ψn is to compute its error on the
sample data itself:

ε̂ r
n = 1

n

n∑
i=1

(
Iψn(Xi)=1 IYi=0 + Iψn(Xi)=0 IYi=1

)
. (6)

This resubstitution estimator, or apparent error, is often
optimistically biased, that is, it is often the case that
Bias

(
ε̂ r
n
) = E

[
ε̂ r
n
]−E[εn]< 0, though this is not always so.

The bias tends to worsen withmore complex classification
rules [49].
The basic bootstrap error estimator is the zero bootstrap

error estimator [4], which is introduced next. Given the
training data Sn, B bootstrap samples are randomly drawn
from it. Denote the corresponding (random) bootstrap
vectors by {C1, . . . ,CB}. The zero bootstrap error estima-
tor is defined as the average error committed by the B
bootstrap classifiers on sample points that do not appear
in the bootstrap samples:

ε̂ boot
n = 1

B

B∑
i=1

⎡⎣ 1
n(Ci)

∑
j:Ci(j)=0

(
IψC

n (Xj)=1 IYj=0

+ IψC
n (Xj)=0 IYj=1

)]
,

(7)

where n(C) is the number of zeros in C.
The bootstrap zero estimator tends to be pessimistically

biased, since the amount of distinct training instances
available for designing the classifier is on average (1 −
e−1)n ≈ 0.632n < n. Pessimistic bias in an error estimator
can be mitigated by forming a convex combination with
an optimistic error estimator [23]. In the case of bootstrap
error estimation, the standard approach is to form a con-
vex combination of the zero bootstrap with resubstitution,

ε̂ conv
n = (1 − w) ε̂ r

n + w ε̂ boot
n . (8)

Selecting the appropriate weight w = w∗ leads to an
unbiased error estimator, E[ε̂ conv

n ]= E[εn].
In [4], the weight w is heuristically set to w = 0.632 to

reflect the average ratio of original training instances that
appear in a bootstrap sample. This is known as the .632
bootstrap estimator

ε̂ b632
n = (1 − 0.632) ε̂ r

n + 0.632 ε̂ boot
n , (9)

which has been heavily employed in the machine learning
field.

Unbiased bootstrap error estimation
The 0.632 bootstrap error estimator reviewed in the pre-
vious section is not guaranteed to be unbiased. In this
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section, we will examine the necessary conditions for set-
ting the weight w = w∗ in (8) to achieve unbiasedness. We
will then particularize the analysis to the Gaussian linear
discriminant case, where exact expressions for w∗ will be
derived, both in the univariate and multivariate cases.
The bias of the convex estimator in (8) is given by

E
[
ε̂ conv
n − εn

] = (1−w)E
[
ε̂ r
n
]+wE

[
ε̂ boot
n

]
−E [εn] .

(10)

Setting this to zero yields the exact weight

w∗ = E
[
ε̂ r
n
] − E [εn]

E
[
ε̂ r
n
] − E

[
ε̂ boot
n

] (11)

that produces an unbiased error estimator.
Now, applying expectation on both sides of (7) produces

E
[
ε̂ boot
n

]
=

∑
C

E
[
ε C
n | C

]
p(C) , (12)

where p(C) is given by (5) and the sum is taken over all
possible values of C (an efficient procedure for listing all
multinomial vectors is provided by the NEXCOM routine
given in [50], Chapter 5). Equations (11) and (12) allow
the computation of the weight w∗ given the knowledge of
E[ εn], E

[
ε̂ r
n
]
, and E

[
ε C
n | C]

. We will present next exact
formulas for these expectations in the case of the LDA
classification rule under Gaussian populations.

Univariate case
In the univariate case, the common variance term can-
cels and theW statistic and LDA classifier become greatly
simplified, with

ψn(X) =
{
1 , if

(
X − μ̂0+μ̂1

2

)
(μ̂0 − μ̂1) < 0

0 , otherwise
. (13)

The following functions will be useful. Let �(u) =
P(Z ≤ u) and �(u, v; ρ) = P((Z1,Z2) ≤ (u, v)), where
Z is a zero-mean, unit-variance Gaussian random vari-
able, and Z1, Z2 are zero-mean, unit-variance random
variables that are jointly Gaussian distributed, with corre-
lation coefficient ρ.
Assume that population �i is distributed as N(μi, σi),

for i = 0, 1, where σ0 �= σ1 in general.
Under these conditions, John obtained in [39] an exact

expression for the expectation of the true classification
error for fixed sample sizes n0 and n1 (this is known as
separate sampling [44]). John’s result can be written as
follows:

E
[
ε0n | N0 = n0

] = �(a, b; ρe) + �(−a,−b; ρe) , (14)

where

a = μ1 − μ0√
σ 2
0
n0 + σ 2

1
n1

, b = μ0 − μ1√(
4 + 1

n0

)
σ 2
0 + σ 2

1
n1

,

ρe =
σ 2
0
n0 − σ 2

1
n1√(

σ 2
0
n0 + σ 2

1
n1

) ((
4 + 1

n0

)
σ 2
0 + σ 2

1
n1

) .

(15)

The corresponding result for E[ ε1n | N0 = n0] is obtained
by simply interchanging all indices 0 and 1 in the previous
expressions. The expected error rate can then be found by
using conditioning and Equation (1):

E[ εn] =
n∑

n0=0
E[ εn | N0 = n0]P(N0 = n0)

=
n∑

n0=0

(
c0E

[
ε0n | N0 = n0

] + c1E
[
ε1n | N0 = n0

])
× P(N0 = n0) .

(16)

where

P(N0 = n0) =
(
n
n0

)
cn00 cn11 . (17)

As for resubstitution, Hills provided in [51] exact
expressions for the expected error for fixed n0 and n1.
However, his expression applies only to the case σ0 = σ1.
Theorem 3 in [52] provides a generalization of this result
to the case of populations of unequal variances. First, note
that

ε̂ r
n = n0

n
ε̂ r,0
n + n1

n
ε̂ r,1
n , (18)

where

ε̂ r,0
n = 1

n0

[ n∑
i=1

Iψ(Xi)=1 IYi=0

]
and

ε̂ r,1
n = 1

n1

[ n∑
i=1

Iψ(Xi)=0 IYi=1

] (19)

are the apparent error rates specific to class 0 and 1,
respectively. The result in [52] can be written as

E
[
ε̂ r,0
n | N0 = n0

] = �(c, d; ρr) + �(−c,−d; ρr) ,
(20)
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where

c = μ1 − μ0√
σ 2
0
n0 + σ 2

1
n1

, d = μ0 − μ1√(
4 − 3

n0

)
σ 2
0 + σ 2

1
n1

,

ρr = −
σ 2
0
n0 + σ 2

1
n1√(

σ 2
0
n0 + σ 2

1
n1

) ((
4 − 3

n0

)
σ 2
0 + σ 2

1
n1

) .

(21)

The corresponding result for E[ ε̂ r,1
n | N0 = n0]

is obtained by interchanging all indices 0 and 1. The
expected resubstitution error rate can then be found by
using conditioning and Equation (18):

E
[
ε̂ r
n
] =

n∑
n0=0

E
[
ε̂ r
n | N0 = n0

]
P(N0 = n0)

=
n∑

n0=0

(n0
n
E

[
ε̂ r,0
n | N0 = n0

]+ n1
n
E

[
ε̂ r,1
n |N0=n0

])
× P(N0 = n0) .

(22)

Finally, let us consider the expected bootstrap error.
Given C, the bootstrap LDA classifier is obtained by
replacing μ̂i by μ̂C

i , i = 0, 1, in (13):

ψC
n (X) =

⎧⎨⎩1 , if
(
X − μ̂C

0 +μ̂C
1

2

) (
μ̂C
0 − μ̂C

1
)

< 0

0 , otherwise
,

(23)

where

μ̂C
0 =

∑n
i=1 C(i)XiIYi=0∑n
i=1 C(i)IYi=0

and μ̂C
1 =

∑n
i=1 C(i)XiIYi=1∑n
i=1 C(i)IYi=1

(24)

are bootstrap sample means.
Now, note that with N0 = n0 fixed, the training data

labels Yi, i = 1, . . . , n, are no longer random. Since all
classification rules of interest are invariant to reordering
of the training data, we can, without loss of generality,
reorder the sample points so that Yi = 0 for i = 1, . . . , n0,
and Y1 = 1 for i = n0 + 1, . . . , n. Let the same reorder-
ing be applied to a given bootstrap vector C. The next
theorem extends John’s result to the classification error of
the bootstrapped LDA classification rule defined by (23).

Theorem 1. Assume that population �i is distributed as
N

(
μi, σ 2

i
)
, for i = 0, 1. Then the expected error rate of the

bootstrap LDA classification rule defined by (23) is given
by:

E
[
εC,0n |N0 = n0,C

]
= �(e, f ; ρc) + �(−e,−f ; ρc) ,

(25)

where

e = μ1 − μ0√
s0σ 2

0 + s1σ 2
1

, f = μ0 − μ1√
(4 + s0)σ 2

0 + s1σ 2
1

,

ρc = s0σ 2
0 − s1σ 2

1√(
(4 + s0)σ 2

0 + s1σ 2
1
) (
s0σ 2

0 + s1σ 2
1
) ,

(26)

with

s0 =
∑n0

i=1 C(i)2(∑n0
i=1 C(i)

)2 and s1 =
∑n1

i=1 C(n0 + i)2(∑n1
i=1 C(n0 + i)

)2 ,

(27)

The corresponding result for E
[
εC,1n |N0 = n0,C

]
is

obtained by interchanging all indices 0 and 1.

Proof. See the Appendix.
It is easy to check that the result in Theorem 1 reduces

to the one in (14) and (15) when C = 1n. Following (16),
we can then write

E
[
ε C
n | C

]
=

n∑
n0=0

E
[
ε C
n | N0 = n0,C

]
P(N0 = n0)

=
n∑

n0=0

(
c0E

[
ε C,0
n | N0 = n0,C

]
+ c1E

[
ε C,1
n | N0 = n0,C

])
P(N0 = n0).

(28)

The expected bootstrap error rate E[ ε̂ boot
n ] can now be

computed via (12).
The weight w∗ for unbiased bootstrap error estimation

can now be computed exactly by means of Equations (11),
(12), (14) to (17), (20) to (22), and (25) to (28).
In the special case σ0 = σ1 = σ (homoskedasticity),

it follows easily from the previous expressions that E[ εn],
E[ ε̂ r

n ], and E[ ε̂ boot
n ] depend only on the sample size n

and on theMahalanobis distance between the populations
δ = |μ1 − μ0|/σ , and therefore so does the weight w∗,
through (11). Since the optimal (Bayes) classification error
in this case is ε∗ = �(−δ/2), there is a one-to-one cor-
respondence between Bayes error and the Mahalanobis
distance. Therefore, in the homoskedastic case, the weight
w∗ is a function only of the Bayes error ε∗ and the sample
size n.
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Figure 1 Univariate case. Required weight w∗ for unbiased convex bootstrap estimation plotted against (a) sample size and (b) Bayes error.

Figure 1 and Table 1 display the value of w∗ in the
homoskedastic case, for several sample sizes and Bayes
errors. In order to extend the plots up to n = 200, it
is necessary to approximate E[ ε̂ boot

n ] in (12) by a Monte
Carlo procedure; this is done by generatingM = 100× n2
independent random vectors {Ci | i = 1, . . . ,M} and let-
ting E[ ε̂ boot

n ]≈ (1/M)
∑M

i=1 E[ ε
Ci
n | Ci]. We find that

this value of M is large enough to obtain an accurate
approximation. All other quantities are computed exactly,

as described previously. One can see in Figure 1a that
w∗ varies wildly and can be very far from the heuris-
tic 0.632 weight; however, as the sample size increases,
w∗ appears to settle around an asymptotic fixed value.
This asymptotic value is approximately 0.675, being thus
slightly larger than 0.632. In addition, Figure 1b allows one
to see that convergence to the asymptotic value is faster
for smaller Bayes errors. These facts help explain the good
performance of the original convex 0.632 bootstrap error
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Table 1 Univariate case: required weightw∗ for unbiased convex bootstrap estimation

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = 90 n = 100

ε∗ = 0.025 0.724 0.687 0.679 0.675 0.674 0.672 0.671 0.671 0.670 0.670

ε∗ = 0.050 0.736 0.696 0.685 0.680 0.678 0.676 0.674 0.673 0.672 0.672

ε∗ = 0.075 0.738 0.701 0.689 0.683 0.679 0.677 0.676 0.674 0.674 0.673

ε∗ = 0.100 0.729 0.704 0.691 0.684 0.681 0.678 0.677 0.675 0.674 0.673

ε∗ = 0.125 0.708 0.701 0.692 0.686 0.682 0.679 0.677 0.676 0.675 0.674

ε∗ = 0.150 0.681 0.692 0.693 0.687 0.683 0.680 0.678 0.677 0.676 0.675

ε∗ = 0.175 0.646 0.670 0.688 0.687 0.683 0.680 0.678 0.677 0.676 0.675

ε∗ = 0.200 0.625 0.631 0.673 0.683 0.683 0.681 0.679 0.677 0.676 0.675

ε∗ = 0.225 0.614 0.574 0.639 0.671 0.679 0.680 0.679 0.677 0.676 0.675

ε∗ = 0.250 0.617 0.516 0.579 0.635 0.663 0.673 0.676 0.677 0.676 0.675

ε∗ = 0.275 0.641 0.470 0.498 0.563 0.617 0.648 0.664 0.671 0.673 0.674

ε∗ = 0.300 0.676 0.459 0.425 0.464 0.523 0.577 0.616 0.641 0.656 0.665

ε∗ = 0.325 0.724 0.487 0.393 0.379 0.405 0.451 0.502 0.548 0.587 0.614

ε∗ = 0.350 0.780 0.549 0.422 0.356 0.331 0.334 0.356 0.389 0.428 0.469

ε∗ = 0.375 0.837 0.639 0.505 0.412 0.350 0.310 0.288 0.280 0.282 0.295

ε∗ = 0.400 0.890 0.741 0.626 0.533 0.458 0.398 0.350 0.312 0.283 0.261

ε∗ = 0.425 0.935 0.842 0.761 0.690 0.627 0.570 0.519 0.474 0.434 0.399

ε∗ = 0.450 0.971 0.925 0.884 0.845 0.808 0.772 0.739 0.707 0.676 0.647

n = 110 n = 120 n = 130 n = 140 n = 150 n = 160 n = 170 n = 180 n = 190 n = 200

ε∗ = 0.025 0.669 0.669 0.669 0.669 0.669 0.669 0.669 0.668 0.668 0.668

ε∗ = 0.050 0.671 0.671 0.671 0.671 0.670 0.670 0.670 0.669 0.670 0.669

ε∗ = 0.075 0.672 0.672 0.671 0.671 0.671 0.671 0.670 0.670 0.670 0.670

ε∗ = 0.100 0.673 0.672 0.672 0.671 0.671 0.671 0.671 0.670 0.670 0.670

ε∗ = 0.125 0.673 0.673 0.672 0.672 0.672 0.671 0.671 0.671 0.670 0.670

ε∗ = 0.150 0.674 0.673 0.673 0.672 0.672 0.672 0.671 0.671 0.671 0.671

ε∗ = 0.175 0.674 0.673 0.673 0.672 0.672 0.672 0.672 0.671 0.671 0.671

ε∗ = 0.200 0.674 0.673 0.673 0.673 0.672 0.672 0.672 0.671 0.671 0.671

ε∗ = 0.225 0.675 0.674 0.673 0.672 0.672 0.672 0.672 0.672 0.671 0.671

ε∗ = 0.250 0.675 0.674 0.673 0.673 0.672 0.672 0.672 0.672 0.671 0.671

ε∗ = 0.275 0.674 0.674 0.673 0.673 0.673 0.673 0.672 0.671 0.671 0.671

ε∗ = 0.300 0.669 0.671 0.672 0.672 0.672 0.672 0.672 0.672 0.672 0.672

ε∗ = 0.325 0.635 0.648 0.657 0.663 0.666 0.668 0.669 0.670 0.671 0.671

ε∗ = 0.350 0.508 0.543 0.572 0.597 0.615 0.630 0.642 0.649 0.655 0.660

ε∗ = 0.375 0.313 0.337 0.365 0.394 0.425 0.455 0.484 0.511 0.536 0.557

ε∗ = 0.400 0.245 0.234 0.229 0.228 0.229 0.235 0.243 0.254 0.268 0.283

ε∗ = 0.425 0.367 0.338 0.313 0.290 0.270 0.253 0.238 0.224 0.213 0.203

ε∗ = 0.450 0.620 0.594 0.569 0.545 0.522 0.501 0.480 0.461 0.442 0.424

estimator with moderate sample sizes and small Bayes
errors.

Multivariate case
Assume that population�i is distributed as a multivariate
Gaussian N(μi,�), for i = 0, 1. Under these conditions,
John obtained in [39] an exact expression for the expecta-
tion of the error of the LDA classification rule, defined by

(2) to (4), for the case where N0 = n0 is fixed. This result
is stated by Moran in [40] as follows:

E
[
ε0n | N0 = n0

] = P
(
W1
W2

>
1 − ρe
1 + ρe

)
, (29)

where W1 and W2 are independently distributed as non-
central chi-square variables with d degrees of freedom
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(d being the dimensionality) and noncentrality parameters
λ1 and λ2, with

λ1 = n0n1
2(1 + ρe)

(
1√

n0 + n1
− 1√

n0 + n1 + 4n0n1

)2
δ2 ,

λ2 = n0n1
2(1 − ρe)

(
1√

n0 + n1
+ 1√

n0 + n1 + 4n0n1

)2
δ2 ,

ρe = n1 − n0√
(n0 + n1)(n0 + n1 + 4n0n1)

,

(30)

where δ2 = (μ1 − μ0)T�−1(μ1 − μ0) is the squared
Mahalanobis distance between the populations. The cor-
responding result for E[ ε1n | N0 = n0] is obtained by
interchanging n0 and n1. The expected true error rate can
then be found by using (16).
Moran also provided the following expression for the

expectation of the resubstitution error estimator in the
multivariate case, for fixed N0 = n0 [40]:

E
[
ε̂ r,0
n | N0 = n0

] = P
(
W3
W4

>
1 − ρr
1 + ρr

)
, (31)

where W3 and W4 are independently distributed as non-
central chi-square variables with d degrees of freedom and
noncentrality parameters λ3 and λ4, with

λ3 = n0n1
2(1 + ρr)

(
1√

n0 + n1
− 1√

n0 − 3n1 + 4n0n1

)2
δ2 ,

λ4 = n0n1
2(1 − ρr)

(
1√

n0 + n1
+ 1√

n0 − 3n1 + 4n0n1

)2
δ2 ,

ρr = −
√

n0 + n1
n0 − 3n1 + 4n0n1

,

(32)

The corresponding result for E[ ε̂ r,1
n ] is obtained by inter-

changing n0 and n1. The expected resubstitution error
rate can then be found by using (22).
The bootstrap LDA classifier in the multivariate case is

given by

ψC
n (X) =

⎧⎪⎨⎪⎩1 , if
(
X − μ̂C

0 +μ̂C
1

2

)T
�−1 (

μ̂C
0 − μ̂C

1
)

< 0

0 , otherwise
,

(33)

where μ̂C
0 and μ̂C

1 are defined in (24). The next theorem
generalizes John’s result for the multivariate classification
error to the case of the bootstrapped LDA classification
rule.

Theorem 2. Assume that population �i is distributed as
N(μi,�), for i = 0, 1. Then, the expected error rate of the
bootstrap LDA classification rule defined by (33) is given
by

E
[
εC,0n |N0 = n0,C

]
= P

(
W5
W6

>
1 − ρc
1 + ρc

)
, (34)

where W5 and W6 are independently distributed as non-
central chi-square variables with d degrees of freedom and
noncentrality parameters λ5 and λ6, with

λ5 = 1
2(1 + ρc)

(
1√

s0 + s1
− 1√

s0 + s1 + 4

)2
δ2 ,

λ6 = 1
2(1 − ρc)

(
1√

s0 + s1
+ 1√

s0 + s1 + 4

)2
δ2 ,

ρc = s0 − s1√
(s0 + s1)(s0 + s1 + 4)

,

(35)

where s0 and s1 are defined in (27). The corresponding
result for E[ εC,1n |N0 = n0,C] is obtained by interchanging
s0 and s1.

Proof. See the Appendix.
It is easy to check that the result in Theorem 2 reduces

to the one in (29) and (30) when C = 1n.
As in the univariate case, Theorem 2 can be used in

conjunction with Equations (12) and (28) to compute
E[ ε̂ boot

n ].
The weight w∗ for unbiased bootstrap error estimation

can now be computed exactly by means of Equations (11),
(12), (16) to (17), (22), (28), (29) to (32), and (34) to (35).
An issue that arises in the multivariate case is the com-

putation of the probabilities in (29), (31), and (34). This
computation is very difficult since it involves the ratio
of noncentral chi-square random variables, which has a
doubly noncentral F distribution. Computation of this dis-
tribution is a hard problem. Moran proposes in [40] a
complex procedure, based on work by Price [53], to com-
pute this probability, which only applies to even dimen-
sionality d. We employ a simpler procedure, namely, the
Imhof-Pearson three-moment method, which is applica-
ble to even and odd dimensionality [41]. This consists of
approximating a noncentral χ2

d (λ) random variable with
a central χ2

h random variable, by equating the first three
moments of their distributions. This approach was also
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employed in [52], where it was found to be very accu-
rate. To fix ideas, we consider (29). The Imhof-Pearson
three-moment approximation is given by

E
[
ε0n

] = P
(
W1
W2

>
1 − ρe
1 + ρe

)

 P

(
χ2
h > y

)
, (36)

where χ2
h is a central chi-square random variable with h

degrees of freedom, with

h = c32
c23

,

y = h − c1

√
h
c2

,
(37)

and

ci = (1 + ρe)
i (d + iλ1) + (−1)i (1 − ρe)

i (d + iλ2),

i = 1, 2, 3.
(38)

The approximation is valid only for c3 > 0 [41]. If c3 <

0, one uses the approximation

E
[
ε0n

] = P
(
W1
W2

>
1 − ρe
1 + ρe

)

 P

(
χ2
h < y

)
, (39)

where h and y are as in (37), and

ci = (−1)i (1 + ρe)
i (d + iλ1) + (1 − ρe)

i (d + iλ2),

i = 1, 2, 3 .
(40)

The same approximation method applies to (31) and (34)
by substituting the appropriate values.
As in the univariate case, the assumption of a common

covariance matrix � makes the expectations E[ εn], E[ ε̂ r
n ],

and E[ ε̂ boot
n ] and thus also the weightw∗, functions only of

n and δ. Since ε∗ = �(−δ/2), this means that the weight
w∗ is a function only of the Bayes error ε∗ and the sample
size n.
Figure 2 and Table 2 display the value of w∗ computed

with the previous expressions in this section, for several
sample sizes and Bayes errors. As in the univariate case,
E[ ε̂ boot

n ] in (12) is approximated by a Monte Carlo proce-
dure, with the same numberM = 100×n2 of MC vectors.
All other quantities are computed exactly, as described
previously, save for the Imhof-Pearson approximation.We
can see in Figure 2 that there is considerable variation
in the value of w∗ and it can be far from the heuristic
0.632 weight; however, as the sample size increases, w∗
appears to settle around an asymptotic fixed value. In con-
trast to the univariate case, these asymptotic values here
appear to be strongly dependent on the Bayes error and
are significantly smaller than the heuristic 0.632 except for

very small Bayes errors. As in the univariate case, con-
vergence to the apparent asymptotic value is faster for
smaller Bayes errors. These facts again help explain the
good performance of the original convex 0.632 bootstrap
error estimator for moderate sample sizes and small Bayes
errors.

Gene expression classification example
Here we demonstrate the application of the previous the-
ory in comparing the performance of the bootstrap error
estimator using the optimal weight versus the use of the
fixed w = 0.632 weight, using gene expression data from
the well-known breast cancer classification study in [42],
which analyzed expression profiles from 295 tumor spec-
imens, divided into N0 = 115 specimens belonging to the
‘good-prognosis’ population (class 1 here) and N1 = 180
specimens belonging to the ‘poor-prognosis’ population
(class 0).
Our experiment was set up in the following way. We

selected two genes among the previously published 70-
gene prognosis profile [43]. These genes were selected
for their approximate homoskedastic Gaussian distribu-
tions (see Figure 3). Since the real prior probabilities c0
and c1 for the good- and poor-prognosis populations are
unknown, we assumed three different scenarios corre-
sponding to c0 = 1/3, c0 = 1/2, and c0 = 2/3 and
downsampled randomly one or the other set of speci-
mens to obtain new sample sizes (90, 180), (115, 115),
and (115, 68), respectively, so as to reflect the assumed
prior probabilities. In each of the three cases, we then
drew 2,000 random samples of size n = 30 from the
pooled data, computed for each the true error, resubsti-
tution, basic bootstrap, and convex bootstrap error rates.
Bias and root-mean-square (RMS) error for each estima-
tor were estimated by averaging over the 2,000 repetitions.
We considered both the fixed 0.632 weight and the opti-
mal weight prescribed by our analysis. For the latter, we
estimated for each value of c0 the Bayes error using the
full data set and read off Table 2 the optimal weight cor-
responding to the estimated Bayes error and sample size
n = 30. The results are displayed in Table 3. Despite the
approximate nature of the results, given that the simulated
training samples are not independent from each other,
we can see that the bias and RMS were always smaller
for the estimator using the optimal weight than using
the fixed 0.632 weight (all bootstrap estimators vastly
outperforming resubstitution).

Conclusions
Exact expressions were derived for the required weight for
unbiased convex bootstrap error estimation in the finite
sample case, for linear discriminant analysis of Gaus-
sian populations. The results not only provide the prac-
titioner with a recommendation of what weight to use
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Figure 2 Bivariate case. Required weight w∗ for unbiased convex bootstrap estimation plotted against (a) sample size and (b) Bayes error.

given the sample size and problem difficulty, but also offer
insight into the choice of the 0.632 weight for the clas-
sic 0.632 bootstrap error estimator. It was observed that
the required weight for unbiasedness can deviate signif-
icantly from the 0.632 weight, particularly in the multi-
variate case, where the required weight for unbiasedness
appears to settle on an asymptotic value that is strongly
dependent on the Bayes error, being as a rule smaller
than 0.632. The results were illustrated by application to
gene expression data from a well-known breast cancer
study.

Appendix
Proof of Theorem 1
Following the same technique used in [40], we write

E
[
ε0C |C] = P

(
ψC
n (X) = 1 | X ∈ �0,C

)
= P

(
μ̂C
1 > μ̂C

0 ,X >
μ̂C
0 + μ̂C

1
2

| X ∈ �0,C
)

+ P
(

μ̂C
1 ≤ μ̂C

0 ,X ≤ μ̂C
0 + μ̂C

1
2

| X ∈ �0,C
)

= P(UV > 0 | X ∈ �0,C) , (41)
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Table 2 Bivariate case: required weightw∗ for unbiased convex bootstrap estimation

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = 90 n = 100

ε∗ = 0.025 0.664 0.667 0.679 0.685 0.690 0.693 0.695 0.697 0.698 0.699

ε∗ = 0.050 0.666 0.637 0.638 0.639 0.641 0.642 0.642 0.643 0.644 0.644

ε∗ = 0.075 0.670 0.617 0.610 0.608 0.606 0.606 0.605 0.605 0.605 0.605

ε∗ = 0.100 0.675 0.604 0.590 0.584 0.581 0.578 0.577 0.576 0.575 0.574

ε∗ = 0.125 0.682 0.594 0.573 0.564 0.559 0.555 0.553 0.551 0.550 0.548

ε∗ = 0.150 0.691 0.588 0.560 0.547 0.539 0.534 0.530 0.528 0.526 0.524

ε∗ = 0.175 0.699 0.586 0.554 0.539 0.530 0.524 0.520 0.517 0.515 0.513

ε∗ = 0.200 0.718 0.586 0.544 0.524 0.512 0.504 0.498 0.493 0.490 0.487

ε∗ = 0.225 0.738 0.592 0.542 0.517 0.502 0.492 0.485 0.479 0.475 0.471

ε∗ = 0.250 0.759 0.603 0.545 0.515 0.497 0.485 0.476 0.469 0.464 0.460

ε∗ = 0.275 0.784 0.620 0.553 0.518 0.497 0.482 0.471 0.463 0.457 0.452

ε∗ = 0.300 0.815 0.647 0.572 0.530 0.503 0.485 0.472 0.462 0.454 0.448

ε∗ = 0.325 0.847 0.681 0.598 0.550 0.518 0.496 0.480 0.468 0.458 0.450

ε∗ = 0.350 0.882 0.728 0.639 0.584 0.546 0.520 0.500 0.484 0.472 0.462

ε∗ = 0.375 0.915 0.784 0.695 0.635 0.592 0.560 0.535 0.516 0.500 0.487

ε∗ = 0.400 0.943 0.842 0.763 0.702 0.655 0.619 0.590 0.566 0.546 0.530

ε∗ = 0.425 0.971 0.914 0.859 0.811 0.769 0.732 0.701 0.673 0.650 0.629

ε∗ = 0.450 0.987 0.960 0.933 0.905 0.879 0.853 0.830 0.807 0.786 0.766

n = 110 n = 120 n = 130 n = 140 n = 150 n = 160 n = 170 n = 180 n = 190 n = 200

ε∗ = 0.025 0.700 0.701 0.701 0.702 0.702 0.703 0.703 0.704 0.704 0.704

ε∗ = 0.050 0.644 0.645 0.645 0.645 0.645 0.645 0.645 0.646 0.646 0.646

ε∗ = 0.075 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604

ε∗ = 0.100 0.574 0.573 0.573 0.573 0.573 0.572 0.572 0.572 0.572 0.572

ε∗ = 0.125 0.548 0.547 0.546 0.546 0.545 0.545 0.544 0.544 0.544 0.543

ε∗ = 0.150 0.523 0.522 0.521 0.520 0.519 0.518 0.518 0.517 0.517 0.517

ε∗ = 0.175 0.511 0.510 0.509 0.508 0.507 0.506 0.506 0.505 0.505 0.504

ε∗ = 0.200 0.485 0.483 0.482 0.480 0.479 0.478 0.477 0.477 0.476 0.475

ε∗ = 0.225 0.469 0.466 0.464 0.463 0.461 0.460 0.459 0.458 0.457 0.456

ε∗ = 0.250 0.457 0.454 0.452 0.449 0.448 0.446 0.445 0.443 0.442 0.441

ε∗ = 0.275 0.448 0.444 0.442 0.439 0.437 0.435 0.433 0.432 0.430 0.429

ε∗ = 0.300 0.443 0.438 0.435 0.432 0.429 0.426 0.424 0.422 0.420 0.419

ε∗ = 0.325 0.444 0.439 0.434 0.430 0.426 0.423 0.421 0.418 0.416 0.414

ε∗ = 0.350 0.454 0.447 0.441 0.435 0.431 0.427 0.423 0.420 0.417 0.415

ε∗ = 0.375 0.476 0.467 0.459 0.452 0.446 0.441 0.436 0.432 0.428 0.424

ε∗ = 0.400 0.516 0.504 0.493 0.484 0.476 0.469 0.462 0.457 0.451 0.447

ε∗ = 0.425 0.611 0.594 0.580 0.567 0.555 0.544 0.535 0.526 0.518 0.511

ε∗ = 0.450 0.748 0.731 0.715 0.700 0.687 0.674 0.662 0.650 0.640 0.630

whereU = μ̂C
1 −μ̂C

0 and V = X− μ̂C
0 +μ̂C

1
2 . From (303), it is

clear that, given C, μ̂C
0 and μ̂C

1 are independent Gaussian
random variables, such that μ̂C

i ∼ N(μi, siσ 2
i ), for i = 0, 1,

where s1 and s2 are defined in (27). It follows thatU and V
are jointly Gaussian random variables, with the following
parameters:

E[U |X∈�0,C]=μ1−μ0,Var(U |X∈�0,C)= s0σ 2
0 +s1σ 2

1 ,

E[V | X ∈ �0,C]= μ0 − μ1
2

,

Var(V | X ∈ �0,C) =
(
1 + s0

4

)
σ 2
0 + s1

4
σ 2
1 , (42)

Cov(U ,V | X ∈ �0,C) = s0σ 2
0 − s1σ 2

1
2

.
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Figure 3 Data used in the gene expression experiment. The plot shows the optimal (linear) classifier superimposed on the sample for the genes
OXCT and WISP1, from the breast cancer study in [42]. We can see that both populations are approximately Gaussian with equal dispersion. Bad
prognosis = red. Good prognosis = blue.

The result then follows after some algebraic manipula-
tion. By symmetry, to obtain E[ ε1C |C], one needs only to
interchange all indices 0 and 1. �

Proof of Theorem 2
Following the same technique used in [32], we write

E[ ε0C |C] = P(ψC
n (X) = 1 | X ∈ �0,C)

= P
(

(μ̂C
1 − μ̂C

0 )T�−1
(
X − μ̂C

0 + μ̂C
1

2

)

>0 | X ∈ �0,C
)

= P
(
UTV > 0 | X ∈ �0,C

)
= P((U + V )T (U + V ) − (U − V )T (U − V )

> 0 | X ∈ �0,C)

= P
(

(U + V )T (U + V )

(U − V )T (U − V )
> 1 | X ∈ �0,C

)
,

(43)

where U = (s0 + s1)−
1
2 �− 1

2 (μ̂C
1 − μ̂C

0 ) and V = 2 (s0 +
s1 + 4)− 1

2 �− 1
2

(
X − μ̂C

0 +μ̂C
1

2

)
. It can be readily checked

that U +V and U −V are independent Gaussian random
vectors, such that

E [U + V | X ∈ �0,C] =
[
(s0 + s1)−

1
2 − (s0 + s1 + 4)−

1
2
]

× �−1/2(μ1 − μ0),

E [U − V | X ∈ �0,C] =
[
(s0 + s1)−

1
2 + (s0 + s1 + 4)−

1
2
]

× �−1/2(μ1 − μ0) ,

�U+V | X ∈ �0,C = 2(1 + ρc)I , �U−V | X ∈ �0,

C = 2(1 − ρc)I ,
(44)

Table 3 Bias and RMS of estimators considered in the experiment with expression data from genes ‘OXCT’ and ‘WISP1’

c0 n ε∗ E[ εn] Resub Basic boot Opt boot 0.632 boot

Bias RMS Bias RMS Bias RMS Bias RMS

0.33 30 0.4043 0.4206 −0.0702 0.1061 0.0008 0.0820 −0.0161 0.0803 −0.0253 0.0817

0.50 30 0.3969 0.4266 −0.0719 0.1060 0.0072 0.0830 −0.0116 0.0798 −0.0219 0.0806

0.67 30 0.3893 0.4131 −0.0914 0.1185 −0.0181 0.0878 −0.0355 0.0885 −0.0451 0.0909

Also displayed are the assumed values for the prior probability c0, sample size n, the estimated value of the Bayes error ε∗ , and the expected classification error E[εn].
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where ρc is defined as in (35) and I denotes the identity
matrix of dimension d. It follows that

W5 = 1
2(1 + ρc)

(U + V )T (U + V ) ,

W6 = 1
2(1 − ρc)

(U − V )T (U − V )

(45)

are independent noncentral chi-squared random variables
with d degrees of freedom and noncentrality parame-
ters λ5 and λ6 defined in (35). The result then follows
from (62). Following along the same lines, one can show
that E[ ε1C | C] is obtained by interchanging s0 and s1
in the result for E[ ε0C | C] (the details are omitted for
brevity). �
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