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Abstract

Drugs that target specific proteins are a major paradigm in cancer research. In this article, we extend a modeling
framework for drug sensitivity prediction and combination therapy design based on drug perturbation experiments.
The recently proposed target inhibition map approach can infer stationary pathway models from drug perturbation
experiments, but the method is limited to a steady-state snapshot of the underlying dynamical model. We consider
the inverse problem of possible dynamic models that can generate the static target inhibition map model. From a
deterministic viewpoint, we analyze the inference of Boolean networks that can generate the observed binarized
sensitivities under different target inhibition scenarios. From a stochastic perspective, we investigate the generation of
Markov chain models that satisfy the observed target inhibition sensitivities.
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1 Introduction
Personalized medicine based on individual genetic cir-
cuit is a primary goal of Systems Medicine research.
The application of a population-averaged pathway for an
individual cancer patient limits the success of targeted
therapies since there can be huge variations in the regula-
tory pathways of distinct cancer patients [1-5]. Generating
a detailed model of the specific regulatory pathway of
the patient is extremely difficult due to the enormous
experimental data requirements on model parameter esti-
mation. Often, only a specific aspect of the regulatory
system is considered based on the final objective of mod-
eling. For instance, the goal of individual tumor sensitivity
to targeted drugs is frequently based on genetic mutations
[6], gene expression measurements [7], or a combination
of genetic and epigenetic information [8,9]. The approach
of using genetic mutations for predicting the sensitivity
is restricted by the presence of non-functional mutations
and other latent variables. Statistical tests have been used
to show that genetic mutations can be predictive of the
drug sensitivity in non-small cell lung cancers [6], but
the classification rates for the aberrant samples are still
low. In [7], gene expression profiles are used to predict
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the binarized efficacy of a drug over a cell line with the
accuracy of the designed classifiers ranging from 64%
to 92%. In [10], a co-expression extrapolation (COXEN)
approach was used to predict the drug sensitivity for sam-
ples outside the training set with an accuracy of around
80%. [8] uses Elastic Net modeling over multiple genetic
characterizations to achieve Pearson correlation coeffi-
cients in the range of 0.1 to 0.8 between experimental
and predicted drug sensitivities. [11] has used Random
Forests over the NCI 60 cancer cell lines for drugs sen-
sitivity prediction. Tumor sensitivity prediction has also
been considered as (a) a drug-induced topology alteration
[12] using phospho-proteomic signals and prior biological
knowledge of generic pathway and (b) a molecular tumor
profile-based prediction [6,13].
We have considered a functional approach based on

tumor cell viability to multiple kinase inhibitor drugs
[14,15]. The experimental data is generated using a drug
screen consisting of D multi-target kinase inhibitor com-
pounds and subjecting tumor cells to this array. Sensitivity
for the individual drugs is measured after 72 h. The model
developed from this approach is able to predict the steady
state behavior of target inhibitor combinations but does
not provide us with the dynamics of the model or the
directionality (upstream or downstream) of the inferred
target blocks.
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In this article, we analyze the generation of possible
dynamic models satisfying the steady state model repre-
sentation. We first show that the Target Inhibition Map
(TIM) [14,15] approach can generate blocks of targets that
are connected in series to form a pathway but the direc-
tionality of the blocks are unknown. Subsequently, we
establish that a directional pathway can be converted to a
deterministic Boolean network (BN) [16] model. The dis-
crete representation of the TIM as a directional pathway
allows us to select a minimal number of sequential inhibi-
tion experiments for inferring the actual dynamic model.
To incorporate the continuous sensitivity behavior follow-
ing drug inhibition, we consider the inverse problem of
generation of Markov chains that satisfies for every target
inhibition condition: the steady-state probability of non-
tumorous state is equal to the normalized sensitivity. The
set of dynamic models producing the static TIM can be
utilized for robustness analysis of the combination therapy
design and design of time-dependent combination ther-
apies. The approach presented in this paper extends the
static design to incorporate possible dynamics.
The paper is organized as follows. Section 2 provides a

brief description of the TIM approach; Section 3 describes
inference of deterministic BNs from TIM. The generation
of stochastic Markov chains based on the TIM is pre-
sented in Section 4, and the conclusions are included in
Section 5.

2 Target inhibitionmapmodel
In a recently proposed approach (details available in
[14,15]), we considered experimental data on tumor sen-
sitivity for various target inhibition combinations (corre-
sponding to different multi-target inhibitory drugs) and
generated a TIM model. The TIM predicts the steady-
state tumor phenotypes for binary combinations of inhi-
bition of functionally relevant targets (i.e. for n targets,
there will be 2n possible inhibition combinations). An
example TIM for three targets K1,K2,K3 is shown in
Figure 1. The map in Figure 1 shows that inhibition of
K3 alone can inhibit the tumor or inhibition of both K1
and K2 can inhibit the tumor. The current setting of
the TIM approach will consider only those targets that
are functionally relevant in cell death in a new cancer

Figure 1 TIM for mutations inK1 andK2.

sample. These targets are often up-regulated in cancer
either due to their own mutations or activations by some
other enzymes (from now onwards, we will call such acti-
vations by enzyme(s) not considered in the final TIM
as latent activations). The TIM approach has also been
extended to model continuous scaled sensitivity predic-
tions, i.e., the steady state predictions for various binary
target inhibition combinations will be in the range [0, 1].
We should note that the TIM only provides a steady

state snapshot of the regulatory behavior occurring in
a cancer pathway following application of various target
inhibitors. The TIM can be used to arrive at possible
infinite horizon simultaneous combination therapies with
fixed intervention at all-time steps. The next step in the
framework is exploring the possible dynamical models
producing the steady state TIM. The advantages of explor-
ing the dynamics of the TIM include (a) model-based
experimentation, having a constrained set of dynamical
models that can produce the TIM will allow us to algo-
rithmically generate the optimal set of target expression
measurements required to decipher the actual unique
dynamical model, and (b) sequential drug delivery, the
dynamical models can be used to analyze the behavior of
sequential combination drug application.

3 Discrete deterministic dynamicmodel inference
The primary contribution of the paper lies in the gen-
eration of stochastic Boolean network models satisfying
the given normalized sensitivities for different inhibition
combinations. We consider the generation of the Markov
models based on altering the deterministic dynamical
models. In this section, a review of the work generating
discrete deterministic dynamical models reported in [14]
is presented to enhance the readability of the subsequent
section on inference of stochastic dynamical models.
To arrive at potential discrete deterministic dynamical

models, we consider the likely directional pathways that
can generate the inferred TIM and map the directional
pathways to deterministic BN models. The TIM can be
used to locate the feasiblemutation patterns and constrain
the search space of the dynamic models generating the
TIM. For instance, mutation or external activation ofK2 or
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Figure 2 Possible directional pathways based on the TIM in
Figure 1 (a, b).
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Figure 3 A general abstract pathway resulting from a TIM.

K1 alone cannot result in the TIM of Figure 1; otherwise,
the inhibition of K2 or K1 should have been able to block
the tumor. Thus, feasible mutations or latent activation
patterns are reduced to the following five sets of combina-
tions, {K1,K2}, {K1,K3}, {K2,K3}, {K3}, {K1,K2,K3}, out of
possible eight combinations. For each mutation or latent
activation pattern, we can arrive at possible directional
pathways producing the required steady state TIM out-
put. For instance, Figure 2 shows two directional pathway
possibilities for mutation or activation patterns {K1,K2}
and {K3}, respectively. The pathways in Figure 2 show
possible tumor survival circuits. In this model, if a left-to-
right tumor survival pathway exists, the cancer survives.
If the path is stopped, the tumor cells stop growing or
involute.

3.1 Optimal set of experiments to infer the directional
pathway structure

In this subsection, we analyze the minimum num-
ber of expression measurement experiments required to
decipher the pathway directionality once the steady state
structure (TIM) has been inferred. Knowledge of target
expressions can be used to narrow down the possible

directional pathways. For instance, expressed K1 follow-
ing inhibition of K3 for our earlier example will denote the
feasibility of directional pathway of Figure 2a and remov-
ing the possibility of the directional pathway shown in
Figure 2b. Note that latent activations and functionally
irrelevant mutations may restrict the usefulness of muta-
tion status in restricting the pathway search space. In the
following paragraphs, we will consider a general path-
way obtained from a TIM having the structure shown in
Figure 3 but with unknown directionalities of the blocks
and target positions. We will consider that the pathway
has L blocks in series (B1,B2, · · · ,BL) and each block Bi
has ai parallel path segments with each segment j contain-

ing bij targets
(
Ki
1,1,K

i
1,2 · · · ,Ki

1,bij

)
. The total number of

targets in the general map is NK = ∑L
i=1

∑ai
j=1 b

i
j .

Assuming that theNK targets are distinct, themaximum
number of distinct discrete dynamic models satisfying the
structure is L!

∏L
i=1

∏ai
j=1(b

i
j)!. If Figure 3 represents a pos-

sible directional orientation, the only targets that will have
initial activations for the target inhibition combination
K1
1,1,K1

2,1 · · ·K1
a1,1 to be effective is K1

1,1,K1
2,1 · · ·K1

a1,1. For
our analysis, we are assuming that we can inhibit specific
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Figure 4 Pathway derived from perturbation experiments.
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Figure 5 Distribution of number of target expression measurements.

targets of our choice and we can measure the steady state
target expression following application of the target inhi-
bitions.We can locate the directionality of the blocks B1 to
BL with respect to each other (downstream or upstream)
with the worst-case scenario of L − 1 steady state mea-
surements. The expected number of experiments required
to detect the directionality of L serial blocks is 2L−1

3 for
L ≥ 2. To infer the directionality of targets in each par-
allel line of the block, one target from each line up to a
maximum of ai − 1 lines will be inhibited for each block
Bi. If we consider a single block Bi, each experiment can
detect the location of ai−1 targets; thus, the total number
of experiments required to decipher the possible direc-
tionalities (upstream or downstream) of the targets in

the block Bi is ≤ max
(
maxj∈Si bij − 2, �

∑
j∈Si b

i
j−ai

ai−1 � − 1
)

where Si = {1, · · · , ai}. Thus for the overall map, the worst
case number of experiments Nw

E required to decipher the
directionalities of all the targets is upper-bounded by [17]

Nw
E ≤ max

i∈S

{
max

(
max
j∈Si

bij − 2, �
∑

j∈Si b
i
j − ai

ai − 1
� − −1

)}
+ L − 1

(1)

where S = {1, · · · , L}. The expected number of experi-
ments Na

E required to decipher the directionalities of all
the targets is upper-bounded by

Na
E ≤ max

i∈S

{
max

(
max
j∈Si

2bij − 4
3

, �
∑

j∈Si 2b
i
j − ai

3(ai − 1)
� − −1

)}
+ 2L − 1

3

(2)

3.1.1 Simulation results on optimal experimental steps
For our simulation results, we consider a pathway derived
from targeted drug perturbation experiments carried
out at Keller Laboratory at Oregon Health and Science
University on canine osteosarcoma cell cultures. Sixty tar-
geted cancer drugs were tested on cell cultures, and a
TIM was generated based on the viability data using the
approach provided in [14,15]. For our simulation results,
we will consider one of the plausible directional path-
ways derived from the TIM to be the actual pathway and
estimate the number of target expression measurements
required to arrive at it if the directional information is not
known. The directional pathway assumed to be the actual
pathway is shown in Figure 4 consisting of 13 targets. If
we compare Figure 4 with the general pathway in Figure 3,
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Figure 6 State transitions of the BN for the directional pathway in Figure 2a.
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Figure 7 BN state transition following inhibition of targetsK1 andK2.

the number of serial blocks L = 6. Similarly, a1 = 4, a2 =
1, a3 = 1, a4 = 2, a5 = 1, a6 = 2, and bij = 1 for all i and
j except b42 = 3. Since there is only one serial block with
bij > 2, we can reduce Equation 1 to Nw

E ≤ maxi∈S,j∈Si bij −
2+ L− 1 = 6 and Equation 2 to Na

E ≤ maxi∈S,j∈Si
2bij−4

3 +
2L−1
3 = 4.33. To compare these numbers with simulation

results, we conducted 10,000 simulation runs to detect the
pathway shown in Figure 4 starting from random inhibi-
tion of serial blocks. The distribution of the number of
steady state experiments required to detect the directional
pathway is shown in Figure 5. We note that the maxi-
mum number of experiments required was 6 as given by
Nw
E in Equation 1, and the expectation of the distribution

is 4.33 which is the same as the bound on Na
E given by

Equation 2.

3.2 Deterministic dynamical model from directional
pathway

To generate a BN model of a directional pathway, we will
first consider the starting mutations or latent activations.
The number of states in the BN will be 2n+1 for n targets.
Each state will have n + 1 bits with first n bits referring to
the discrete state of the n targets and the least significant
bit (LSB) will correspond to the binarized phenotype, i.e.,
tumor (1) or normal (0).
The rules of state transition for this special class of BNs

are as follows [17]:

Rule a. A target state at time t + 1 becomes 1 if any
immediate upstream neighbor has state 1 at time t for OR
relationships or all immediate upstream neighbors have
state 1 at time t for AND relationships. Note that the

Table 1 Inhibitionmatrix Tc for inhibition ofK1 andK2

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 8 BN state transitions following inhibition of targetK2.

examples have OR type of relations as they are the most
commonly found relations in biological pathways (based
on illustrated pathways in KEGG).
Rule b. For the BN without any drug, the targets that are

mutated or have latent activations will transition to state 1
within one-time step.
Rule c. For a target with no inherent mutation or latent

activation, the state will become 0 at time t + 1 if the
immediate upstream activators of the target has state 0 at
time t.

The BN construction from directional pathways men-
tioned above is described for targets acting as oncogenes
(activation causing cancers), but it can also be extended
to tumor suppressors (inhibition causing cancers) by con-
sidering the inverse state of the tumor suppressor in the
above framework.
We illustrate the BN construction algorithm using the

example of the pathway shown in Figure 2a. The down-
stream targetK3 can be activated by either of the upstream
activated targets K1 or K2. The corresponding BN tran-
sition diagram for this pathway is shown in Figure 6.
For instance, if we consider the state 1001 at time t,
it denotes K2, K3 being inactive and K1 being active
and the phenotype being tumorous. Based on the direc-
tional pathway in Figure 2a, tumor proliferation is caused
by activated K3 and thus the phenotype will change to
non-tumorous (i.e., 0) at t + 1. The activated K1 will

Figure 9 A probabilistic TIM.

activate K3 at time t+1 and K2 will also be activated in the
absence of continued inhibition as we assumed that muta-
tion or latent activations activate both K1 and K2. Thus,
the next state at time t + 1 will be 1110. Note that we
are considering that the effect of one application of the
drug remains for one-time step and thus the targets K1
and K2 revert back to 1 if the drug is not continued in the
next time step. If the drug effect continues for multi-time
steps, then 1001 will transition to 1010. Note that some
transitions may appear like the tumor state is oscillating
in the transient phase such as the path 0010 → 1101 →
1110 → 1111. The reason is that the network can only be
in the starting state 0010 where K1 and K2 is inactivated
through application of some external intervention and not
through normal transitions as the network has K1 and
K2 mutated. Scenarios following application of drugs can
produce alternating tumor proliferation and inactivation
states in the transient phase.

3.3 Altered BN following target inhibition
The BN in Figure 6 can also be represented by a 16 × 16
transition matrix P representing the state transitions. To
generate the dynamic model after inhibition of s specific
targets I = {K1,K2, · · · ,Ks} (by application of targeted
drugs), the transition i → j in the untreated system will be
converted to i → z in the treated system where z is j with
targets I set to 0. Each target inhibition combination can
be considered as multiplying the initial transitionmatrix P
by an interventionmatrix Tc. Each row of Tc contains only
one non-zero element of 1 based on how the inhibition
alters the state. If we consider n targets, n Tc’s in combi-
nation can produce a total of 2n possible transformation

Table 2 Example PTIM

0 0 0 1 1 1 1 0

0 0 0 0.8 0

1 0.55 0.65 0.9 0.7
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Table 3 Example of Markov chain transition probability matrix

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 0 0.1 0.12 0 0 0 0 0 0 0 0 0 0.78 0 0 0

0 0 0 1 0 0.1 0 0 0 0 0 0 0 0 0 0 0.9 0 0 0

0 0 1 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0.8 0 0

0 0 1 1 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0.8 0 0

0 1 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0.7 0

0 1 0 1 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0.7 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0.35 0 0 0 0 0.65 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0.35 0 0 0 0 0.65 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.45 0.55 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.45 0.55 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

matrices T1,T2, · · · ,T2n . The TIM denotes the state of
the LSB of the attractor for the 2n transition matrices
PT1,PT2, · · · ,PT2n starting from initial state 11 · · · 1 (i.e.,
all targets considered in the TIM and tumor are activated).
For instance, if we consider that our drug inhibits the
targets K1 and K2 (i.e., set S1 = {K1,K2}), the discrete
dynamic model following application of the drug is shown
in Figure 7. The intervention matrix corresponding to the
inhibition of K3 is shown in Table 1. The transition i → j
is 1 only when inhibition of the first and second bits of i
results in j.
We should note that the equilibrium state of the net-

work 0000 has 0 for the tumor state. This is because
the tumor is activated by K3 and inhibition of K1 and
K2 blocks activation of K3 and thus should eradicate the
tumor. On the other hand, since both K1 and K2 can cause
tumor through activation of intermediate K3, inhibition of
only one of K1 and K2 will not block the tumor. The BN
following inhibition of K2 is shown in Figure 8 where the
attractor 1011 denotes a tumorous phenotype.

4 Discrete stochastic dynamic model inference
The analysis so far has considered deterministic discrete
binary states for the targets and tumor phenotype. A

Table 4 Simulated PTIM fromMarkov chain

0 0 0 1 1 1 1 0

0 0.002003 0.002994 0.800463 0.002995

1 0.549716 0.649251 0.89785 0.698992

stochastic modeling approach will be preferred when
we want to take into consideration that tumor pheno-
type (measured in terms of tumor size reduction, IC50
or cell cycle arrest) is a continuous variable. We have
extended our TIM approach to probabilistic target inhi-
bition map (PTIM) where the PTIM provides continu-
ous sensitivity prediction values between 0 to 1 for all
possible kinase inhibition combinations [14,15]. From a
stochastic dynamical model perspective, we can consider
the sensitivity prediction value provided by the PTIM
as the steady state probability of the tumor phenotype
being 0 (a similar approach with deterministic differential
equation models for modeling the tumor sensitivity was
considered in [18] and experimental data was assumed to
reflect the steady state values). For instance, if we consider
that a Markov chain of 16 states explain our dynami-
cal model for the pathway shown in Figure 9, the entry
PTIM (i, j) will reflect the steady state probability for the
LSB = 0 for the model with target inhibitions i, j. For
instance, p5 reflects the sensitivity with target inhibition
K1 and K3.
In this article, the discrete stochastic dynamic behav-

ior will be modeled by a Markov chain where the states
of the Markov chain contain information on the protein

Table 5 Example PTIM 2

0 0 0 1 1 1 1 0

0 0.02 0.01 0.98 0.03

1 0.65 0.89 1 0.9
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Table 6 TIMs for the BN1, BN2, and BN3, respectively

0 0 0 1 1 1 1 0

BN1 0 0 1 0

1 1 1 1

BN2 0 0 1 0

0 1 1 1

BN3 0 0 1 0

0 0 1 0

expressions of the targets and the tumor status. Note that
a detailed stochastic master equation model is a contin-
uous time Markov chain and can be approximated by
a discrete time Markov chain based on a suitable time
step [19]. Also, Boolean networks can be incorporated as
Markov chains where each row of the transition probabil-
ity matrix contains a single 1 with remaining all entries
being 0.
For the subsequent analysis, we will consider that we

have n binarized targets in our model and the states of
the Markov chain will be 0 · · · 0 to 1 · · · 1 where the LSB
will denote the state of the tumor (1 denoting tumor
proliferation and 0 denoting tumor reduction) and the
remaining n bits denote the state of the n targets. The set
of states of the Markov chain, denoted by the set I , is of
size N = 2n+1. Let P denote the N × N transition pro-
bability matrix. Let fc(j) denote the value of the state j
following Boolean intervention equal to the inverse binary
value of decimal c, i.e., under intervention f3(x) = x AND
(0011) denoting intervention of first and second targets
and f5(x) = x AND (0101) denoting intervention of first
and third targets. Let Ic denote the possible set of states
following application of intervention c, i.e., Ic contains
only the states i s.t. fc(i) = i. For the above example, I3 =
{0000, 0001, 0010, 0011}. Let Sc,i denote the set of states j
for which i = fc(j). Here, S3,0 = {0000, 1000, 0100, 1100},

the set of states which, under inhibition f3(·), transition
into state i.
The targeted drugs usually inhibit a set of target proteins

and modeling such a behavior can be approached in one
of the two following ways:

(Ai) If the targeted drugs inhibit the set of proteins I, the
dynamics of the system under drug delivery can be con-
sidered as a new Markov chain with transition probability
matrix P2 where the jth row of P2 is same as the ith row
of P, where j is i with targets I set to 0. For instance, in a
four-target system where I is targets 1 and 2, rows 0000,
1000, 0100, and 1100 of P2 will be the same as row 0000 of
P. This approach refers to resetting the system to the state
obtained by applying the drug and let it evolve from there.
Note that the above described system will still show non-
zero transition probabilities to states where the target set
I may have non-zero values.
(Aii) If we have transition probability P(i, j) of moving

from state i to state j in the uncontrolled system, for the
new system with transition probability matrix P3, we will
add the transition probability P(i, j) to P(i, z) where z is j
with targets I set to 0.This encompasses the behavior that
if the system transitions from i to j, j has been turned to z
by the intervention.

The following theorem proves that the aggregated
steady state probability distribution for both the app-
roaches are equal.

Theorem 4.1. Let π2 and π3 denote the stationary
probability distributions of P2 and P3. If π∗

2 denotes the
aggregration of states after intervention C, i.e., π∗

2 (i) =∑
i1∈Si,c π2(i1) for i ∈ IC and π∗

2 (i) = 0 for i /∈ IC ,
then π∗

2 also satisfies the stationary probability distribu-
tion equations for P3, i.e., π∗

2 = π∗
2P3. If P is ergodic, then

π∗
2 = π3.

Figure 10 BN 1 for example 2.
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Figure 11 BN 2 for example 2.

Proof. Let fc(·) be a Boolean intervention function. We
have ∀ i, j ∈ I

P2(i, j) = P(fc(i), j) (3)

and P3(i, j) = ∑
k∈Sc,j P(i, k). The stationary distribution

for P2 will satisfy

π2(i) =
∑
j∈I

π2(j)P2(j, i)

=
∑
z∈IC

P(z, i)
∑
k∈Sc,z

π2(k) (4)

Similarly, the stationary distribution for P3 will satisfy
π3(i) = 0 for i /∈ IC and for i ∈ IC :

π3(i) =
∑
j∈I

π3(j)P3(j, i)

=
∑
z∈IC

π3(z)P3(z, i)

=
∑
z∈IC

π3(z)
∑
k∈Si

P(z, k) (5)

If π∗
2 denotes the aggregration of states, i.e., π∗

2 (i) =∑
i1∈Sc,i π2(i1) for i ∈ IC , then we have for i ∈ IC :

π∗
2 (i) =

∑
k∈Sc,i

π2(k) =
∑
k∈Sc,i

∑
z∈IC

P(z, k)
∑
j∈Sz

π2(j)

=
∑
z∈IC

∑
k∈sc,i

P(z, k)
∑
j∈Sc,z

π2(j)

=
∑
z∈IC

π∗
2 (z)

∑
k∈Sc,i

P(z, k) (6)

Comparing Equations 5 and 6, we note that π∗
2 also sat-

isfies the stationary probability distribution equation for
P3, i.e., π∗

2P3 = π∗
2 .

We will model the target intervention based on per-
spective Ai. We next analyze whether every PTIM can be
represented by a Markov chain. Theorem 4.2 shows that
there always exists a Markov chain construction that can
satisfy the PTIM steady state sensitivities.

Theorem 4.2. For any given PTIM, ∃ at least one
Markov chain satisfying the PTIM.

Proof. Consider a PTIM with n targets K1,K2, · · · ,Kn
and thus 2n PTIM entries p0, p1, · · · p2n−1, where pi

Figure 12 BN 3 for example 2.
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denotes the PTIM-predicted steady state probability of
tumor reduction when the active targets in the binary
representation of i are inhibited. Denote the treatments
corresponding to each pi as gi. A trivial Markov chain
satisfying the PTIM can be generated as follows: ∀i ∈
[ 0, · · · , 2n − 1], we can generate a unique pair of n + 1
dimensional states D1 = 2(2n − i − 1) and D2 = 2(2n −
i − 1) + 1. D1 and D2 differ only in the last bit indicat-
ing tumor proliferation status. Here, LSB of D1 = 0 and
LSB of D2 = 1. The first n bits of the binary representa-
tion of D1 and D2 are 0 where the representation of i has
value 1. Consider a 2n+1 × 2n+1 Markov chain with tran-
sition probability matrix P. ∀i ∈[ 0, · · · , 2n − 1] , let us
assign probabilities as P(D1,D1) = pi, P(D1,D2) = 1− pi,
P(D2,D1) = pi, and P(D2,D2) = 1 − pi. This particular
Markov chain will satisfy our given PTIM. Since, there are
2n closed classes of 2 states each, the stationary probabil-
ity for inhibiting i can be calculated from considering the
steady state probabilities of the Markov chain

∣∣∣∣ pi 1 − pi
pi 1 − pi

∣∣∣∣
which is pi for the state with tumor = 0 and 1 − pi for the
state with tumor = 1.

4.1 Generation of Markov chains based on pathway
constraints

In this section, we will discuss two algorithms to gen-
erate Markov chains satisfying the PTIM steady state
sensitivities while incorporating the directional pathway
structures as emphasized in Section 3.
Each target inhibition combination can be considered

as multiplying a matrix Tc to the initial Markov chain P.
Each row of Tc contains only one non-zero element of 1
based on how the inhibition alters the state. If we con-
sider n targets, n Tc’s in combination can produce a total
of 2n possible transformation matrices T1,T2, · · · ,T2n .
The PTIM denotes the stationary state probability of the
LSB = 0 for the 2n Markov chains PT1,PT2, · · · ,PT2n
starting from initial state 11 · · · 1 (i.e., all kinases consid-
ered in the PTIM and tumor are activated). The transition
probability matrix has 2n+1×2n+1 variables to be inferred
and the number of equations available is 2n. To narrow
down the constraints, we will consider the possible BNs
that can be generated for each set of possible mutations
or outside activations of the thresholded PTIM. Each BN
corresponding to a different mutation or initial activation
pattern can provide information on possible alterations
producing the required PTIM.

4.1.1 Algorithm 1
The first algorithm to generate Markov chains satisfying
the PTIM sensitivities is presented in Algorithm 1.

Algorithm 1 Algorithm to generate a Markov chain P
from PTIM �
Step 1. Convert the PTIM � to a TIM ψ using a threshold
of α.
Step 2. Based on the genetic mutation information or
sequential protein expression measurements, generate the
BN � corresponding to the TIM ψ using approach of
Section 3.
Step 3. If we have n targets, the TIM has n levels 0 to n repre-
senting the number of target inhibitions. Consider each level,
starting from level n. For the inhibition Bn,1 =[ 1 1 · · · 1], if
PTIM �(Bn,1) < 1, then we should consider a latent vari-
able that may be responsible for tumor growth. Thus, the
dynamic model should allow a transition from 0 0 · · · 0 0 to
0 0 · · · 0 1 and 0 0 · · · 0 1 to 0 0 · · · 0 1. The probabilities of
this transition should be equal to 1 − �(Bn,1) .
Step 4. Consider level n−1. There are n possibilities of inhi-
bition at this level 011111..1, 10111..1.,...,11....10 denoted by
Bn−1,1,Bn−1,2, · · ·Bn−1,n, respectively. For the invition Bn−1,i,
removing inhibition of target i has opened up another
tumor proliferation pathway with a steady state mass of
1 − �(Bn−1,i). To capture this behavior, we will assign
the following transition probability 0 0 · · · 0 1 0 · · · 0 →
0 0 · · · 0 1 0 · · · 1 = 1 − �(Bn−1,i) and 0 0 · · · 0 1 0 · · · 1 →
0 0 · · · 0 1 0 · · · 1 = 1 − �(Bn−1,i). The 1 is in position i.
Step 5. The next step is to consider level n − 2.
There are n(n − 1)/2 possibilities of inhibition at
this level 001111..1, 01011..1.,...,11....00 denoted by
Bn−2,[1,1],Bn−2,[1,2], · · ·Bn−2,[n−1,n], respectively. For inhibi-
tion Bn−2,[i,j] in this level, it means that removing inhibition
of the targets i and j has opened up another tumor prolifera-
tion pathway with a steady state mass of 1 − �(Bn−2,[i,j]). To
capture this constraint, we will assign the following transi-
tion probability 00..10..1..00→ 00..10..1..01 = 1−�(Bn−2,[i,j])
and 00..10..1..01 → 00..10..1..01 = 1−�(Bn−2,[i,j]). Note that
any of these transitions will not affect the inhibitions of its
supersets in levels n− 1 and n. This is because state Bn−2,[i,j]
will not be reached if one of its supersets in levels n − 1 or n
is inhibited.
Steps 6 to n + 3. Repeat the above process till level 0.
Step n + 4. Finally, we have to consider the cases where
activation cannot be sustained based on our initial muta-
tion assumptions. As an example, let us consider that
p1, p3, p7, p5, p6 ≥ 0.5 and p0, p2, p4 = 0 for the PTIM in
Figure 9. Using a threshold of 0.5, we will arrive at the TIM
of Figure 1 that has Figure 6 as the deterministic dynamic
model assuming K1 and K2 as initial mutations. Thus, for the
case of inhibition of K1 and K2, the system may not return
to 0010 and 0011 once it leaves the states. An approach to
tackle this is to allow transition back from 0000 to 0010 and
the transition probability is based on the value of p6 and p7.

A simulation example for the application of Algorithm 1
is shown next based on the PTIM in Table 2. If we consider
a threshold of α = 0.5 and assuming K1 and K2 as ini-
tial mutations, the inferred deterministic BN is as shown
in Figure 6. Note that the threshold α is selected based
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Table 7 Simulated PTIM based on Algorithm 2with
p = 0.001 and q = 0.001

0 0 0 1 1 1 1 0

0 0.0017 0.0029 0.9964 0.0029

1 0.6495 0.8982 0.9981 0.8982

on the minimum sensitivity considered significant from
the perspective of intervention. Since a drug is often con-
sidered effective if the concentration to reduce the tumor
volume by 50% is within approved dosage, we considered a
threshold of 0.5 for normalized sensitivity to denote effec-
tiveness. The threshold should be decreased if we want
to incorporate low sensitivity inhibitions in our modeling.
To achieve the probabilities shown in Table 2, we apply
steps 3 to 7 of Algorithm 1 to generate the Markov chain
shown in Table 3. Note that the Markov chain shown in
Table 3 is not ergodic and thus the stationary distribution
may depend on the starting state. To make the Markov
chain ergodic, we can add a small perturbation probability
to the Markov chain [20]. The corresponding steady state
sensitivities generated by the Markov chain for a pertur-
bation probability p = 0.001 is shown in Table 4 which
closely reflects the PTIM steady state sensitivities shown
in Table 2.

4.1.2 Algorithm 2
Another perspective on this issue is based on consider-
ing that the tumor is heterogeneous and the observed
PTIM response is the aggregate effect of inhibition on
multiple clones. The dynamics of each clone can be rep-
resented by a BN and there is a small probability q of
one clone converting to another clone. Thus, the overall
system can be represented by a context-sensitive prob-
abilistic Boolean network with perturbation probability
p and network transition probability q [21]. The algo-
rithm to generate a context-sensitive PBN satisfying the
observed PTIM behavior is presented as Algorithm 2.

Note that based on collapsed steady state probabilities
of context-sensitive PBNs [21], Algorithm 2 will always
achieve the desired PTIM response within an error of ε

when p and q are selected to be small.

Algorithm 2 Algorithm to generate a Markov chain P
from PTIM � based on context-sensitive PBN approach
Let ε denote theminimum change in PTIM values that needs
to be differentiated.
Initialize Lmax = ε, Llast = 0, count = 0
while Lmax < 1 do

Let Lmin = minimum among the PTIM values > Lmax
if Lmin �= ∅ then

Let Lmax = min(1, Lmin + ε)
Binarize the PTIM using Lmin as the threshold.
count = count + 1
This provides BN count with selection probability
Lmax − Llast.
Llast = Lmax

else
increase selection probability of BN count by 1 − Lmax
Lmax = 1

end if
end while

As an example of application of Algorithm 2, let us con-
sider the PTIM shown in Table 5. Based on Algorithm 2
with ε = 0.05, we will have three individual BNs
BN1, BN2, BN3 with selection probabilities of 0.65, 0.25,
and 0.1 respectively. The TIMs corresponding to the BNs
are shown in Table 6. The BNs satisfying the TIMs in
Table 6 are shown in Figures 10, 11 and 12. Using a p =
0.001 and q = 0.001, we arrive at the simulated PTIM
shown in Table 7 which closely reflects the starting PTIM
shown in Table 5.
Note that the dynamical models allow us to gener-

ate further insights on possible outcomes with sequential
application of drugs. For instance, if we consider the pre-
vious example with the inferred context-sensitive PBN

Table 8 PTIM generated from a 60 drug screen data for canine tumor sample Sy [14]

IGF1R IGF1R IGF1R IGF1R

PSMB5 PSMB5 PSMB5 PSMB5

TGFBR2 TGFBR2 TGFBR2 TGFBR2

0.11 0.38 1 1 1 1 0.68 0.60

HDAC1 0.55 0.64 1 1 1 1 0.76 0.68

EGFR HDAC1 0.64 0.64 1 1 1 1 0.76 0.76

EGFR 0.17 0.52 1 1 1 1 0.68 0.68

AKT2 EGFR 0.58 0.64 1 1 1 1 0.76 0.76

AKT2 EGFR HDAC1 0.73 0.76 1 1 1 1 0.88 0.84

AKT2 HDAC1 0.64 0.73 1 1 1 1 0.84 0.76

AKT2 0.47 0.57 1 1 1 1 0.76 0.68
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Table 9 TIM generated from the PTIM in Table 8 using a threshold of 0.3

IGF1R IGF1R IGF1R IGF1R

PSMB5 PSMB5 PSMB5 PSMB5

TGFBR2 TGFBR2 TGFBR2 TGFBR2

0 1 1 1 1 1 1 1

HDAC1 1 1 1 1 1 1 1 1

EGFR HDAC1 1 1 1 1 1 1 1 1

EGFR 0 1 1 1 1 1 1 1

AKT2 EGFR 1 1 1 1 1 1 1 1

AKT2 EGFR HDAC1 1 1 1 1 1 1 1 1

AKT2 HDAC1 1 1 1 1 1 1 1 1

AKT2 1 1 1 1 1 1 1 1

generating the PTIM shown in Table 5 and continuously
apply a drug D1 that inhibits K2 and K3, we achieve a sen-
sitivity of 0.9. Similarly, continuous application of a drug
D2 that inhibits K1 and K3 will generate a sensitivity of
0.9. However, if we alternate the application of D1 and
D2, we achieve a sensitivity 0f 0.94. It shows that alternate
inhibition of these pathways allows us to lower the steady
state mass of tumorous states. On the other hand, differ-
ent sequence of inhibitions can negatively affect the final
sensitivity. For instance, if a drug D3 that inhibits K1 and
K2 and another drugD4 that inhibits K3 is applied alterna-
tively, we achieve a sensitivity of 0.50. Note that D3 alone
produces a sensitivity of 0.99 and D4 produces a sensitiv-
ity of 0.65. This shows that stopping the inhibition of D3
or D4 at every alternate step causes the tumor to grow
back again. For instance, if no inhibition is applied at every
alternate time step, we achieve a sensitivity of 0.49 for D3
and 0.01 for D4.
In this section, we presented two algorithms for gener-

ation of Markovian models that have inhibition profiles
(termed model generated PTIM) similar to our starting
PTIM. The motivation behind the two algorithms is based
on two widely accepted evolution models of cancer (can-
cer stem cell model and clonal evolution model [22])
since the primary application of this study is in the con-
text of modeling tumor proliferation pathways. A cancer
stem cell model assumes that observed heterogeneity in
cancer is due to tumorigenic cancer cells that can differ-
entiate into diverse progeny of cells forming the bulk of
tumor [22]. Thus, Algorithm 1 tries to capture this idea of

starting with a single network model and altering parts of
the model to generate the observed inhibition response.
The clonal evolution of cancer model assumes that tumor
can consist of multiple clones without hierarchical orga-
nization [22]. Thus, Algorithm 2 considers the inhibition
response to be based on diverse multiple clones (modeled
as separate Boolean networks) with different responses to
target inhibitions. The PTIM sensitivity values are used
to estimate the network selection probabilities that are
similar to proportions of each clone in the heterogeneous
tumor. Similar to clonal evolution of cancer model, no sin-
gle starting network model and its alterations is assumed
in Algorithm 2 to generate the stochastic model.

4.2 Biological example
In this example, we consider a PTIM generated from
actual biological data and infer a stochastic dynamic net-
work model that produces inhibition responses similar to
the experimental PTIM. We consider a canine osteosar-
coma tumor sample perturbed with 60 targeted drugs
with unique target inhibition profiles to generate steady
state cell viability values [14]. Note that available time
series data for perturbation studies are mostly for sin-
gle gene knockouts/knockdowns [23] which are unable
to provide the sufficient information to estimate the cell
viability response for all possible target inhibition com-
binations. Thus, due to the absence of time series data
and ground truth dynamic networks for drug inhibition
studies, our model design criteria is to generate dynamic
models that can create the experimentally inferred

Figure 13 Directional pathway satisfying TIM of Table 9.
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Table 10 TIM generated from the PTIM in Table 8 using a threshold of 0.55

IGF1R IGF1R IGF1R IGF1R

PSMB5 PSMB5 PSMB5 PSMB5

TGFBR2 TGFBR2 TGFBR2 TGFBR2

0 0 1 1 1 1 1 1

HDAC1 1 1 1 1 1 1 1 1

EGFR HDAC1 1 1 1 1 1 1 1 1

EGFR 0 0 1 1 1 1 1 1

AKT2 EGFR 1 1 1 1 1 1 1 1

AKT2 EGFR HDAC1 1 1 1 1 1 1 1 1

AKT2 HDAC1 1 1 1 1 1 1 1 1

AKT2 0 1 1 1 1 1 1 1

PTIM while satisfying structural constraints of cancer
pathways.
The PTIM generated from experimental 60 drug screen

data and satisfying biological constraints [14] for canine
tumor sample Sy is shown in Table 8. There are 6 target
kinases (IGF1R, PSMB5, TGFBR2, AKT2, EGFR, HDAC1)
in this model and the 64 entries in Table 8 refers to the
26 = 64 possible target inhibitions of the kinases. For
instance, second row and seventh column entry of 0.76
refers to sensitivity of 0.76 when the tumor culture is
inhibited by IGFR1, TGFBR2, and HDAC1.
Considering the overall idea of generation of context-

sensitive PBNs, we arrive at the TIM shown in Table 9
using a threshold of 0.3. One of the possible directional
pathways that will produce the TIM of Table 9 is shown
in Figure 13. Note that there can be multiple other pos-
sible directional pathway combinations that can produce
the above TIM and we are selecting only one of them with
assumedmutation in PSMB5. Further biological data such
as gene mutation and expression data and analysis pre-
sented in Section 3.1 can be used to narrow down the
possible combinations.
Subsequently, to select the next level of differences in

sensitivities, we considered a threshold of 0.55 which
introduces three more possible combinations that fail to

stop proliferation (i.e., binarized sensitivity of 0). The TIM
is shown in Table 10 and a corresponding directional
pathway that produces the TIM is shown in Figure 14.
Note that the pathway in Figure 14 requires inhibition of
multiple targets as compared to the previous pathway in
Figure 13 for stopping tumor proliferation. The first three
kinases are the same for the two pathways but the next
possibilities are combinations of two kinases rather than
single kinase inhibitions.
We next consider a threshold of 0.8 that differentiates

the cluster of sensitivity values {0.84, 0.84, 0.88} from the
remaining values. The TIM for this threshold is shown in
Table 11, and a corresponding directional pathway that
produces the TIM is shown in Figure 15. The directional
pathway is more constrained than the previous pathways
in having blocks of targets that require more number of
inhibitions to stop tumor proliferation.
Note that the thresholds can be selected in various

ways. For instance, we considered equal intervals of 0.25
following the starting threshold of 0.3 resulting in thresh-
olds of 0.3, 0.55, and 0.8. Another approach can be using
unequal increment thresholds tomaintain sensitivity clus-
ters. Since the experiments conducted to generate the
sensitivity information can contain noise, it is preferable
to ignore small sensitivity differences.

Figure 14 Directional pathway satisfying TIM of Table 10.
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Table 11 TIM generated from the PTIM in Table 8 using a threshold of 0.8

IGF1R IGF1R IGF1R IGF1R

PSMB5 PSMB5 PSMB5 PSMB5

TGFBR2 TGFBR2 TGFBR2 TGFBR2

0 0 1 1 1 1 0 0

HDAC1 0 0 1 1 1 1 0 0

EGFR HDAC1 0 0 1 1 1 1 0 0

EGFR 0 0 1 1 1 1 0 0

AKT2 EGFR 0 0 1 1 1 1 0 0

AKT2 EGFR HDAC1 0 0 1 1 1 1 1 1

AKT2 HDAC1 0 0 1 1 1 1 1 0

AKT2 0 0 1 1 1 1 0 0

Once we have the three directional pathways, we used
the directional pathway to BN approach of Section 3.2 to
generate the Boolean networks BN1, BN2, and BN3 cor-
responding to the directional pathways of Figures 13, 14,
15, respectively. Based on the limits of the thresholds, we
assigned a selection probability of 0.5 for BN1 ( 0.25 <

0.5 < 0.55), 0.25 for BN2 (0.55 < 0.5 + 0.25 < 0.8), and
remaining 0.25 for BN3. Using a value of p = 0.001 and
q = 0.001, we generated a context-sensitive PBN and cal-
culated the PTIM for the model by generating the steady
state probabilities of tumor state = 0 for each target inhi-
bition combination. The generated PTIM for the designed
model is shown in Table 12 (up to two decimal digits).
The model generated PTIM is similar to our initial exper-
imental PTIM shown in Table 8. The mean and maximum
absolute errors of the entries between the experimental
andmodel generated PTIM are 0.043 and 0.2, respectively,
which is low considering that only three BNs were used

Figure 15 Directional pathway satisfying TIM of Table 11.

to generate the context-sensitive PBN. Further reduction
in the differences between the experimental and model-
generated PTIM can possibly be achieved by increas-
ing the number of BNs and optimizing the thresholds
and network selection probabilities to reduce the mean
error.

5 Conclusions
In this article, we analyzed the inference of dynamical
models from static target inhibition map models. We
showed that the inferred blocks from the TIM approach
could be converted to directional pathways based on dif-
ferent mutation scenarios and subsequently converted to
dynamic BN models. In terms of stochastic model infer-
ence, we presented two algorithms where (i) the first
technique was based on altering the BN generated from
binarizing the PTIM based on a single threshold and (ii)
the second approach considered as generation of multiple
BNs based on different thresholds and integrating them in
the form of a context-sensitive PBN. We provided exam-
ples to show the application of the algorithms to generate
Markovian models whose steady state inhibition profiles
are close to the experimental PTIMs.
Note that the inference algorithms designed in this arti-

cle are primarily focused on dynamic models of tumor
proliferation. The number of targets considered is small as
they are a subset of the targets of targeted drugs (usually
tyrosine kinase inhibitors) that are required to faithfully
capture the tumor proliferation of a particular system
without overfitting. Consequently, any properties of large-
scale genetic regulatory networks [23,24] such as adher-
ence to power law [25] were not incorporated in these
studies. Future studies will try to explore the incorpora-
tion of characteristics of large-scale networks in inference
of dynamic models from PTIMs. The PTIM can be con-
sidered as a model expressing the relative sensitivity of the
tumor proliferation following inhibition. If we consider
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Table 12 PTIM generated from context-senstive probabilistic Boolean networkmodel based on Algorithm 2

IGF1R IGF1R IGF1R IGF1R

PSMB5 PSMB5 PSMB5 PSMB5

TGFBR2 TGFBR2 TGFBR2 TGFBR2

0.00 0.50 0.99 0.99 0.99 1.00 0.75 0.75

HDAC1 0.75 0.75 1.00 0.99 0.99 1.00 0.75 0.75

EGFR HDAC1 0.75 0.75 1.00 0.99 0.99 1.00 0.75 0.75

EGFR 0.00 0.50 0.99 0.99 0.99 1.00 0.75 0.75

AKT2 EGFR 0.75 0.75 1.00 0.99 0.99 1.00 0.75 0.75

AKT2 EGFR HDAC1 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00

AKT2 HDAC1 0.75 0.75 1.00 0.99 0.99 1.00 1.00 0.75

AKT2 0.50 0.75 1.00 0.99 0.99 1.00 0.75 0.75

the definition of relative expression level variation (RELV)
[26] as ηij

xwti
where ηij is the steady state expression level

variation of gene i after the knockout/knockdown of gene
j and xwti is the expression level of gene i in wild type, a cor-
responding analogous sensitivity mapping can be derived
by replacing xwti by cell viability without any inhibition and
ηij being replaced by change in cell viability following inhi-
bition j. Here, j consists of 2T combinations for T targets
as compared to T + 1 knockouts usually considered in
RELV analysis. For individual protein targets in the binary
deterministic BN models, the RELVs can be mapped to
the relative change in the attractor states of P and PTj
where P denotes the transition matrix for the BN without
inhibition and PTj denotes the transition matrix following
inhibition j. The binarization of the different proteins will
be based on different thresholds based on their relative
behavior. Similarly, for the Markov chain model, the rel-
ative change in the steady state probabilities of expressed
protein i in P and PTj will be analogous to RELV. Note
that the binary deterministic and stochastic formulation
employed in our analysis incorporates the relative sensi-
tivity behavior that has been earlier observed to be more
appropriate for regulatory network inference [26].
Future research will involve analyzing mutation data

to restrict the possible directional pathways along with
time series experimentation for inference of the unique
dynamic model.
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