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Abstract

Copy number variations (CNVs) are abundant in the human genome. They have been associated with complex
traits in genome-wide association studies (GWAS) and expected to continue playing an important role in identifying the
etiology of disease phenotypes. As a result of current high throughput whole-genome single-nucleotide polymorphism
(SNP) arrays, we currently have datasets that simultaneously have integer copy numbers in CNV regions as well as SNP
genotypes. At the same time, haplotypes that have been shown to offer advantages over genotypes in identifying
disease traits even though available for SNP genotypes are largely not available for CNV/SNP data due to insufficient
computational tools. We introduce a new framework for inferring haplotypes in CNV/SNP data using a sequential
Monte Carlo sampling scheme ‘Tree-Based Deterministic Sampling CNV’ (TDSCNV). We compare our method with
polyHap(v2.0), the only currently available software able to perform inference in CNV/SNP genotypes, on datasets
of varying number of markers. We have found that both algorithms show similar accuracy but TDSCNV is an order
of magnitude faster while scaling linearly with the number of markers and number of individuals and thus could
be the method of choice for haplotype inference in such datasets. Our method is implemented in the TDSCNV
package which is available for download at www.ee.columbia.edu/~anastas/tdscnv.
Introduction
Copy number variations (CNVs) are a form of a structural
genomic variation referring to duplications and deletions
of DNA segments larger than 1 kilobase in size. CNVs are
abundant in the human genome, and it is estimated that
they can occupy as much as 4% to 6%.
Recently, large-scale genome-wide studies have shed

light in many aspects and characteristics of CNVs pro-
viding unique insights into the origins, mechanisms,
formation, and population genetics of CNVs [1-3]. At
the same time, CNVs have been associated with complex
traits unexplained by recent genome wide association
studies (GWAS) [2] and are believed to make a substantial
contribution in uncovering the mechanisms and etiology
of disease phenotypes that result from complex patterns
of inheritance [2,4].
A variety of techniques exist for CNV detection. Initially,

experimental studies have been performed primarily
by array CGH, but lately due to improved resolution
and genome coverage of genotyping arrays, a number
* Correspondence: xw2008@columbia.edu
Department of Electrical Engineering, Center for Computational Biology
Bioinformatics and Columbia University, New York, NY 10027, USA

© 2014 Iliadis et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
of methods have been developed relying on whole-genome
single-nucleotide polymorphism (SNP) genotyping arrays
which offer a more sensitive approach and are more suit-
able for high-resolution CNV detection. As a result, there
is currently simultaneously information on the integer
copy number (CN) genotypes along a CNV region and on
SNPs outside these regions, in which we will refer in the
following as CNV-SNP genotypes.
For diploid organisms, theoretical and empirical argu-

ments have been made for the use of haplotypes as opposed
to genotypes. It has been shown that the study of haplo-
types can improve the power of detecting associations
with diseases, and a variety of methods exist in the lit-
erature that use haplotypes to detect causal relationships
between a genetic region and a phenotype. Furthermore,
haplotypes enable unique insides in the study of popula-
tions and are required for many population genetics
analyses. Specifically, methods for inferring selection
[5] for studying recombination [6,7] as well as historical
migration [8,9] build their subsequent analysis on existing
haplotype data.
The statistical determination of haplotype phase from

genotype data is thus potentially very valuable if the estima-
tion can be done accurately and has received an increasing
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amount of attention over recent years. A number of
well-known algorithms have been developed based on
coalescent theory [10], imperfect phylogeny [11], Mar-
kov chain Monte Carlo [10,12], Gibbs sampler [13],
hidden Markov models [14], expectation minimization
algorithm [15], etc. However, only recently, this problem
has drawn attention when haplotypes are inferred in a
CNV-SNP region.
If we focus within a specific CNV region in a sample

of individuals and assume that the ploidy is fixed for
each individual along the region, then the problem of
inferring the haplotypes is identical to the problem of
inferring the haplotypes in polyploid organisms or esti-
mating haplotypes from pooling data. A number of
algorithms have been proposed for frequency estimation
and inference on these settings, and not surprisingly,
many have been applied to the associated CNV haplotype
inference problem described above.
Apart from the previous scenarios, a number of meth-

odologies have been specifically developed and tailored
for CNV data. Kato et al. [16] have developed a method-
ology MOCSphaser based on the EM algorithm to assign
copy numbers in their respective chromosomes in re-
gions that include CN and SNPs. A core limitation of
MOCSphaser as described above is that it takes into
consideration only the total CN and not the alleles
themselves, assigning on each chromosome a raw CN.
As a consequence, even though it provides information
about the total copies on a chromosome that could be
potentially useful, it does not provide information on
the diplotypes themselves.
Another algorithm recently proposed by Kato et al.

[17], CNVphaser uses an EM approach to perform infer-
ence. The core limitation of that method is that the in-
ference is performed within a CNV region and that the
ploidy is considered fixed for an individual within the
region. To address these problems and thus enabling the
phasing of regions where the ploidy of an individual varies
along the region and each individual can have different
breakpoints, Su et al. [18] suggested polyHap(v2.0) in
which they extended the functionality of their original
methodology for pooling data [19]. In their study, they
discern the phasing within a CNV into non-internal
phasing in which the CNV in a chromosome is inferred
as a diplotype and internal phasing in which the specific
haplotypes comprising the CNV in a chromosome are
further identified. We will use these definitions in our
current work.
In their algorithm, Su et al. use an HMM methodology

that has separate emission states for the internal and
non-internal phasing. They treat the transition between
states conceptually in a hierarchical two-level model where
the first level is for the transition among CN states and the
second for the transition among the haplotype states given
the CN states. polyHap(v2.0) is the only currently available
method that can phase complex CNV regions by allowing
arbitrary changes of CN within individuals and along the
genomic sequence.
In this paper, we propose a related new sequential

Monte Carlo algorithm for haplotype phasing of CNV-
SNP data. In our method, samples are processed
sequentially and our method scales linearly with the
number of samples as well as the number of individ-
uals. We demonstrate that using our methodology, we
can achieve state-of-the-art performance while our
method is an order of magnitude faster than polyHap
(v2.0).
Methods
The structure of this section is as follows. In the beginning
of the section, we introduce some notation that we will use
throughout the remaining manuscript. In the subsections
that follow, we present the modified version of our TDS
methodology for the case of CNV-SNP data. For complete-
ness, we develop again our framework in detail as presented
in [20,21]. We first present some modeling results for the
prior and posterior distributions for the population haplo-
type frequencies given the observed data. We then present
the TDS methodology for the cases of known population
frequencies and subsequently extend it to the case of
unknown frequencies. In the derivation of the later, we
use the previously derived results for the prior and
posterior distributions for the haplotype frequencies.
We end the exposition of our method by deriving the
state update equations for the ‘Tree-Based Deterministic
Sampling CNV’ (TDSCNV) estimator and presenting
the modified partition-ligation procedure adjusted for
the CNV-SNP dataset scenario. In the end of the section,
we describe the procedure for creating the datasets which
we have used in the ‘Results’ section to evaluate our
methodology.
Definitions and notation
Suppose we are given a set of CNV-SNP genotypes on L
diallelic loci. We denote the two alleles at each locus by
0 and 1. In the following, we will use the counts of allele
1 as the provided measurement for each allele on each
sample. In our method, we allow in a specific position a
single amplification or deletion. Therefore, if we are within
a CNV region in a chromosome, the allele counts could
range from 0 to 2 but could range from 0 to 1 outside
these regions.
Suppose that we have T individuals and we denote ct ¼
c1t ;…; cLt

� �
to be the observed genotype of the t-th sample

where cit∈ 0; 1; 2; 3; 4f g are the observed counts on the
ith position. Suppose also that Ct = {c1, …, ct} is a set of
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individuals up to and including individual t and let C
denote the full set of individuals.
In terms of haplotypes, we make an initial distinction

in the values that alleles take in internal and non-
internal phasing. The framework that follows however
will be described generically and will be the same in
both cases.
For non-internal phasing, our purpose is to infer haplo-

typic phase on diploid chromosomes as we are interested
in the total copies of an allele at a specific position on a
chromosome. Therefore, the possible values for an allele
at each position are {−,0,1,01,00,11}. On the contrary for
internal phasing, we infer haplotypic phase on polyploid
chromosomes and the possible alleles at each position are
{−,0,1}.
For individual t, we denote the haplotypes occurring in

that individual as ht. In the case of non-internal phasing,
ht = {ht,1, ht,2}. For internal phasing, ht = {ht,1, …, ht,p},
where p is the ploidy of the organism, and p ∈ {1, 2, 3, 4}
as in our methodology, we only consider a single deletion
or a single amplification. Therefore, for the case of
non-internal phasing ht,1, ht,2 are strings of length L in
which ht,i,j ∈ {−, 0, 1, 01, 00, 11} and for internal phasing,
ht,i are strings of length L in which ht,i,j ∈ {−, 0, 1}.
We further denote Ht = {h1, …, ht}, similarly to Ct as the

set of haplotypes for each individual up to and including
individual t.
Let us also define z = {z1, …, zM} as the set containing

all haplotype vectors of length L that are consistent with
any genotype in the set C. To obtain Z from the given
dataset C, we first enumerate for each ci the subset ψi ¼
h1i ;…; hYi

� �
i = 1,…,T that contains all possible haplotype

assignments which are consistent with ci. The set Z is then
given simply as Z ¼ UT

i¼1ψi. A set of population haplotype
frequencies θ = {θ1, …, θM} is also associated with the
set Z of all possible haplotype vectors, where θm is the
probability with which the haplotype zm occurs in the total
population. We note here once again that we have given
the definitions of Z and θ generically for both internal and
not internal phasing, respectively.
Prior and posterior distribution for θ
Assuming random mating in the population, it is clear
that the number of each unique haplotype in H is drawn
from a multinomial distribution based on the haplotype
frequency θ [22]. This leads us to the use of the Dirichlet
distribution as the prior distribution for θ so that θ ~D
(ρ1, …, ρM). It is well known in Bayesian statistics
that the Dirichlet distribution is the conjugate prior
of the multinomial distribution. This implies in our
case that if we assume that the prior distribution for
θ is Dirichlet and we draw haplotypes based on their
frequencies (multinomial distribution), then the posterior
distribution for θ is again a Dirichlet distribution. We
prove this fact below.

pðθ Ct;Ht ;ZÞ∝p ctð jht ¼ ht;1;…; ht;p
� �

; θ;Ct−1;Ht−1
�� �

p

� ht ¼ ht;1;…; ht;p
� �� ��θ;Ct−1;Ht−1;ZÞp θð jCt−1;Ht−1Þ

∝p ht ¼ ht;1;…; ht;p
� �� ��θ;ZÞp θð jCt−1;Ht−1;ZÞ

∝
Yp
i¼1

θht;i
YM
m¼1

θ ρm t−1ð Þ−1
m ∝

YM
m¼1

θ

ρm t−1ð Þ−1þ
Xp
i¼1

I zm−ht;ið Þ
m

∝D
�
ρ1 t−1ð Þ þ

Xp
i¼1

I z1−ht;i
� �

;…; ρM t−1ð Þ þ
Xp
i¼1

I zM−ht;i
� ��

ð1Þ

where we denote ρm(t) m = 1,…,M as the parameters of
the distribution of θ after the t-th pool and Ι(zm − ht,i) is
the indicator function which equals 1 when zm − ht,i is a
vector of zeros, and 0 otherwise. We note here once
again that the number of haplotypes (i.e., the index p in
the assignment) depends on the phasing and is 2 for
non-internal phasing while it ranges for internal phasing.
Furthermore, in the previous calculations for θ, for each
genotype vector, we only consider haplotype configura-
tions that are consistent with that genotype.
We have shown that the posterior distribution for θ is

also Dirichlet with parameters as given in (1) and depends
only on the sufficient statistics, Tt = {ρm(t), 1 ≤m ≤M}
which can be easily updated based on Tt − 1, ht, ct as given
by (1) i.e.,Tt = Tt(Tt − 1, ht, ct).

TDS estimator with known system parameters θ
Similar to traditional sequential Monte Carlo (SMC)
methods, we assume that by the time we have processed
genotype ct-1, we have a set of K potential solution streams

(commonly termed as ‘particles’) H kð Þ
t−1 (k = 1, …., K) each

associated with its corresponding weight w kð Þ
t−1 , as

H kð Þ
t−1 w kð Þ

t−1Þ; k ¼ 1;…;Kg:
����n

At point t-1, we approximate the real continuous distri-
bution p(Ht − 1|Ct − 1) as a discrete distribution as follows:

p̂ðHt−1jCt−1Þ ¼ 1
Wt−1

XK
k¼1

w kð Þ
t−1I

�
Ht−1−H

kð Þ
t−1

� ð2Þ

where Wt−1 ¼
XK
k¼1

w kð Þ
t−1;

and I (●) is the indicator function such that I (x − y) = 1
for x = y and I (x − y) = 0 otherwise.
Processing the next individual t, we would like to

make an online inference of the haplotypes Ht based
on the genotypes Ct. From Bayes' theorem, we have
pθ Ht CtÞ∝ pθ ctð jHt ;Ct−1j Þpθ Htð jCt−1ð Þ∝ pθ ctð jHt ;Ct−1Þ pθ htð j
Ht−1;Ct−1Þpθ Ht−1ð jCt−1Þ∝ pθ ht Ht−1;Ct−1Þpθ Ht−1ð jCt−1j Þð
where for our purposes, we only consider haplotype
assignments for individual t that are compatible to its
observed genotype.
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Assume further that there are Kext such assignments.
From previous relationships, if we knew the system pa-
rameters θ, we would be able to approximate the distri-
bution of pθ(Ht|Ct) as follows:

p̂θðHtjCtÞ ¼ 1
Wext

t

XK
k¼1

XKext
i¼1

w k;ið Þ
t I Ht− H kð Þ

t−1; h
ið Þ
i

h i� �
ð3Þ

where H kð Þ
t−1; h

ið Þ
t

h i
represents the vector obtained by

appending the element h ið Þ
t to the vector H kð Þ

t−1 and
Wext

t ¼
X
i;k

w k;ið Þ
t with

w k;ið Þ
t ∝w kð Þ

t−1pθ ctjht ¼ ið Þpθðht ¼ ijH kð Þ
t−1Þ:

TDS estimator with unknown system parameters θ
However, the system parameters are not known. In our
model, we use a Dirichlet distribution, as the prior for θ
and as shown, we obtain a posterior distribution for θ
(given Ht and Ct) that is Dirichlet and only depends on a
set of sufficient statistics.
Using Bayes' theorem and similarly to the previous

subsection, we have:

pθðHt Ct ;ZÞ∝pθ ctð jHt;Ct−1j Þpθ
� htð jHt−1;Ct−1Þpθ Ht−1ð jCt−1;ZÞ∝pθ

�
Ht−1jCt−1;ZÞpθ

� ctð jHt ;Ct−1Þ
Z

p
�
ht Ht−1; θ;ZÞp θð jTt−1;Zj Þdθ∝pθ

�ðHt−1jCt−1;ZÞ
Z

p ht Ht−1; θ;ZÞp θð jTt−1;Zj Þdθð

ð4Þ

where again we only consider haplotype assignments
that are compatible with the observed genotype.
Taking into consideration as argued before that if we

know the system parameters θ, then the p(ht|Ht − 1, θ, Z)
term represents sampling from a multinomial distribution
and that the mean of the Dirichlet distribution with re-
spect to an element θk of the vector θ is as follows:

E θkf g ¼ ρkXM
j¼1

ρj

we have from (4) that:

pθðHt Ct;ZÞ∝pθ Ht−1ð jCt−1;Zj Þ
Z

pðht jHt−1; θ;ZÞp

� θð jTt−1;ZÞdθ∝p
�
Ht−1jCt−1;ZÞ

Z
ð
YM
i¼1

θ

Xp
i¼1

I zk−ht;i
� �

k Þp

� θjTt−1;Zð Þdθ∝pðHt−1jCt−1;ZÞ
Z

ð
YM
i¼1

θrkk Þ
1

B ρ t−1ð Þð Þ
YM
i¼1

θ
ρi t−1ð Þ−1
i dθ∝p

�ðHt−1jCt−1;ZÞB ρ t−1ð Þ þ rð Þ
B ρ t−1ð Þð Þ

Z
1

B ρ t−1ð Þ þ rð Þ
YM
i¼1

θ
ρi t−1ð Þþri−1
i dθ∝p

�ðHt−1jCt−1;ZÞB ρ t−1ð Þ þ rð Þ
B ρ t−1ð Þð Þ

ð5Þ
where r ¼
Xp
i¼1

I z1−ht;i
� �

;…;
Xp
i¼1

I zM−ht;i
� �" #

and B ρ t−1ð Þð Þ ¼YM

i¼1
Γ ρi t−1ð Þð Þ

Γ

XM

i¼1
ρi t−1ð Þ

� � :

Assuming that we have approximated p(Ht − 1|Ct − 1) as
in (2), we can approximate p(Ht|Ct) using (5) as follows:

p̂extðHt jCtÞ ¼ 1
Wext

t

XK
k¼1

XKext
i¼1

w k;ið Þ
i I Ht− H kð Þ

t−1; hit;1;…; hit;p
� �h i� �

where the weight update formula is given by:

w k;ið Þ
t ∝w kð Þ

t−1
B ρ kð Þ t‐1ð Þ þ r
� �
B ρ kð Þ t‐1ð Þð Þ ð6Þ

where again r ¼
Xp
i¼1

I z1−h
j
t;i

� �
;…;

Xp
i¼1

I zM−h
j
t;i

� �" #
and

ρ(k)(t − 1) is the parameter vector of the assumed Dirichlet
prior which represents how many times we have en-
countered each haplotype in stream k in the solutions
up to individual t − 1.

Partition-ligation
In the partition phase, the dataset is divided into small
segments of consecutive loci and each of the individual
blocks is phased separately. To ligate the individual blocks,
we have adjusted the original partition-ligation (PL) method
for the case of CNV-SNP data.
In our current implementation, to be able to derive all

possible solution combinations for each pool genotype
efficiently, we have decided to keep the maximum block
length to 5 SNPs. Clearly, the more SNPs are included
in a block, the more information about the LD patterns
we can capture but at the same time, the number of pos-
sible combinations increases and becomes prohibitive for
more than 5 SNPs. For our experiments in a dataset with
L loci, we have considered L/5 blocks of 5 consecutive loci
and the remaining SNPs were treated as a separate block.
The result of phasing for each block is a set of haplotype

solutions for each genotype. Two neighboring blocks are
ligated by creating merged solutions for each genotype
from combinations of the block solutions, each associated
with the product of the individual solution weights called
the ligation weight.
Depending on which haplotypes one from each block

are going to be assigned on the same chromosome for each
individual, a different number of changes in the ploidy of that
individual will occur. In our method, we consider only the
assignments that will produce the minimum number of such
changes. Therefore, if both haplotypes in any block have the
same CN, we examine both alternative assignments but we
otherwise ligate solutions that have the same CN. The TDS
algorithm is then repeated in the same manner as it was for
the individual blocks with the weights of the solutions scaled
by the associated ligation weight for that solution.
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Summary of the proposed algorithm
Dataset creation
Our datasets consisted of SNPs from chromosomes 1
and 2 from HapMap CEU population (HapMap3 re-
lease 2 - phasing data). For our purposes, we have con-
sidered only the parents in each trio which are the
unrelated individuals in our dataset thus resulting in a
total of 88 individuals. We have initially filtered out
SNPs with minor allele frequencies less than 5%, and
we have then considered non-overlapping datasets
with a fixed number of SNPs. To create artificial CNV
regions within each dataset, we have used the following
procedure.
First, in each dataset, we have found all the different

haplotypes appearing in the dataset. In order to retain as
much of the LD structure and also the property that
most of the CNVs could be flagged by neighboring SNPs
[2], we have randomly replaced specific areas of randomly
chosen haplotypes with a CNV haplotype. To perform
that procedure, we randomly selected haplotypes based on
their frequency in the population and modified them
inserting CNV regions sequentially as follows. Each pos-
ition was considered as the beginning of a CNV region
with a probability of 0.1. For each position flagging the
beginning of a CNV, we assigned the length of the CNV
region uniformly between three to eight SNPs. We then
progressed along the haplotype from the end of the
CNV region in a similar fashion until we reached the
end of a given haplotype.



Table 1 Switch error rate Switch error rates for non-internal
phasing

Number of markers

30 50 100

TDSCNV 0.115 0.127 0.14

polyHap(v2.0) 0.128 0.135 0.138

The switch error rate presented for each number of markers is the average on
100 datasets.
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Results
Measurement of phasing accuracy
We have used a number of different measures to evaluate
the performance of our methodology. First, the switch
error rate [23,24] is defined as the percentage of switches
among all possible switches in haplotype orientation used
to recover the correct phase in an individual.
In the case of a small number of loci where haplotype

vectors can be expected to be reconstructed exactly, we
have used two figures of merit namely the × 2 and l1 dis-
tance to evaluate the accuracy of frequency estimation.
Suppose that f are the predicted haplotype frequencies from
an algorithm and g are the gold standard population level
haplotype frequencies. The × 2 distance between the two
distributions is simply the result of the × 2 statistic, i.e.,

χ2 f ; gð Þ ¼
Xd
i¼1

f i−gi
� �2

=gi where d is the number of gold

standard haplotypes whereas the l1 distance between the

two distributions is defined as l1 f ; gð Þ ¼
Xd
i¼1

f i−gi
�� �� [25].
Figure 1 Switch error rate. Estimating the switch error rate for non-intern
polyHap(v2.0) and TDSCNV.
Switch error rate
We have compared the performance of our method with
polyHap(v2.0) for haplotypic phase inference using the
switch error rate. In this section, the evaluation was done
on non-internal haplotypes. In the evaluation of the switch
error rate, we consider only CN and SNP positions that
are ambiguous. For a marker genotype to have ambiguous
phasing, there should be at least two alternative orienta-
tion assignments. As an example, all 3CN genotypes are
ambiguous positions. This is easy to see, as the choice
alone of the chromosome that would have the duplication
creates two distinct possible assignments.
The performance of our method when considering the

full set of individuals in each dataset is shown in Table 1.
We have considered three marker sizes namely 30, 50,
and 100 markers. For each marker size, we have simu-
lated 100 datasets and the result presented is the average
error rate on these 100 datasets. We can see that for 30
and 50 markers, our method was marginally better than
polyHap(v2.0), whereas for the 100 marker datasets, it
was marginally worse.
We further demonstrate the accuracy of our approach

when ranging the number of individuals in each dataset.
The results for a fixed number of 30 and 50 markers are
shown in Figure 1. As expected, the performance for both
methods improves with increasing number of individuals
per dataset.
Finally, we have broken down and calculated the switch

error rates based on the CN of the ‘from’ and ‘to’ sites as
shown in Table 2. Similarly, to Su et al., we observe the
al phasing on datasets having a varying number of individuals with



Table 3 Timing results

Number of markers

30 50 100

TDSCNV 2.1 3.7 5.7

polyHap (v2.0) 262.3 431.5 892.1

For each method and each marker size, the computational time is the average
time on the 100 datasets used in the switch error rate calculation. Time is
given in seconds.

Table 2 Switch error rate for non-internal phasing
according to the CN of the respective consecutive
ambiguous markers

CN on second site

CN on first site 1 2

1 0.117 0.227

2 0.229 0.012
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highest switch error rates appearing when the transitions
happen between different CNs.

Haplotype frequency estimation
We have examined the accuracy of our method and
compared it against polyHap(v2.0) on datasets of 8
and 10 markers in which individuals had a fixed
ploidy. We have evaluated two appropriate figures of
merit as described above, the × 2 and l1 distance. We
should note here that in order to determine how
good frequency estimations with a given method are,
a small number of markers should be used. The rea-
son is that for a large number of markers, it would
be unlikely that the exact same haplotypes would ap-
pear or reconstructed with appreciable frequency. The
results for both figures of merit on an increasing num-
ber of individuals are shown in Figure 2. Our method
demonstrates superior performance for both figures of
merit, and again as expected, both methods produced
superior performance with an increasing number of
individuals.
Figure 2 Frequency estimation. Estimating the × 2 and l1 distance on da
and TDSCNV.
Internal phasing
We have further evaluated the performance of our method
using the switch error rate inside duplicated regions. In this
subsection, the evaluation was done on internal phasing
and particularly in duplicated segments of a chromosome
as the scope was to detect how good the specific haplotypes
comprising the duplicated chromosomal region could be
recovered. The switch error rate evaluation within such
duplicated regions is exactly the same as the evaluation on
a genotype with only SNPs.
We have used the same 100 datasets for each of the

three dataset sizes, namely 30, 50, and 100 markers, as in
the evaluation of the switch error rate for non-internal
phasing described in a previous subsection. We found, as
expected, that the results were similar irrespectively of the
dataset size, and the average across all datasets was 0.183.

Timing results
The computational times for the 30, 50, and 100 marker
datasets used for the calculation of the switch error rate
are displayed in Table 3. We can see that TDSCNV is an
tasets having a varying number of individuals with polyHap (v2.0)
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order of magnitude faster than polyHap(v2.0) for all
marker sizes examined.

Discussion
We present an algorithm for haplotypic inference in
regions of CNV-SNP genotypes. We compare our
method with polyHap(v2.0) on a variety of marker sizes
and evaluate the accuracy and computational time of
each method. Our method has similar accuracy to
polyHap(v2.0) but is an order of magnitude faster in all
datasets examined.
In all instances of haplotype inference problems, it

becomes increasingly significant that methods are able
to incorporate prior knowledge in the form of haplo-
types or genotypes from the same population as that
from which the target samples were drawn. HapMap is a
striking example of such database knowledge that could
be used for haplotype inference. Furthermore, it is also
important for researchers that samples that are phased
at some point in time could be used efficiently for the
phasing of samples presented at some later point. Our
methodology offers a unique framework that can easily
incorporate such prior knowledge. Haplotypes can be
introduced in the form of a prior for the counts in the
TDSCNV algorithm. From our experience with our
framework and as expected, the presence of the extra
information will improve the phasing accuracy of the
target samples.

Conclusions
In this paper, we propose a new sequential Monte Carlo
algorithm for haplotype phasing of CNV-SNP data. In
our method, samples are processed sequentially and our
method scales linearly with the number of samples as
well as the number of individuals.
To demonstrate the performance of our method, we

have compared it against polyHap(v2.0), the only currently
available software able to perform inference in CNV/SNP
genotypes, on datasets of varying number of markers. We
have initially compared the accuracy of both methods
for haplotypic phase inference on non-internal haplo-
types, on datasets of 30, 50, and 100 markers. We have
then examined the accuracy of frequency estimation
with both methods on datasets with a small number of
markers (8 and 10 markers). Finally, we have evaluated
the performance of our methodology inside duplicated
regions for internal phasing.
We have found that our method demonstrates com-

parable or better accuracy than polyHap(v2.0) and at the
same time is an order of magnitude faster in all datasets
and marker sizes examined while scaling linearly with
the number of markers and number of individuals. We
therefore believe that our method could be the method
of choice for haplotype inference in such datasets.
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