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Perfect knowledge of the underlying state transition probabilities is necessary for designing an optimal intervention
strategy for a given Markovian genetic regulatory network. However, in many practical situations, the complex nature
of the network and/or identification costs limit the availability of such perfect knowledge. To address this difficulty, we
propose to take a Bayesian approach and represent the system of interest as an uncertainty class of several models,
each assigned some probability, which reflects our prior knowledge about the system. We define the objective
function to be the expected cost relative to the probability distribution over the uncertainty class and formulate an
optimal Bayesian robust intervention policy minimizing this cost function. The resulting policy may not be optimal for
a fixed element within the uncertainty class, but it is optimal when averaged across the uncertainly class. Furthermore,
starting from a prior probability distribution over the uncertainty class and collecting samples from the process over
time, one can update the prior distribution to a posterior and find the corresponding optimal Bayesian robust policy
relative to the posterior distribution. Therefore, the optimal intervention policy is essentially nonstationary and
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Introduction

A fundamental problem of translational genomics is to
develop optimal therapeutic methods in the context of
genetic regulatory networks (GRNs) [1]. Most previous
studies rely on perfect knowledge regarding the state
transition rules of the network; however, when dealing
with biological systems such as cancer cells, owing to
their intrinsic complexity, little is known about how they
respond to various stimuli or how they function under
certain conditions. Moreover, if there exists any knowl-
edge regarding their functioning, it is usually marginal
and insufficient to provide a perfect understanding of the
full system. To address uncertainty, one can construct an
uncertainty class of models, each representing the system
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of interest to some extent, and optimize an objective func-
tion across the entire uncertainty class. In this way, success
in therapeutic applications is fundamentally bound to the
degree of robustness of the designed intervention method.

Markovian dynamical networks, especially probabilistic
Boolean networks (PBNs) [2], have been the main frame-
work in which to study intervention methods due to their
ability to model randomness that is intrinsic to the inter-
actions among genes or gene products. The stochastic
state transition rules of any PBN can be characterized
by a corresponding Markov chain with known transition
probability matrix (TPM) [3]. Markov decision processes
(MDPs), on the other hand, are a standard framework
for characterizing optimal intervention strategies. Many
GRN optimization problems have been formulated in the
context of MDPs - for instance - infinite-horizon control
[4], constrained intervention [5], optimal intervention in
asynchronous GRNs [6], optimal intervention when there
are random-length responses to drug intervention [7], and
optimal intervention to achieve the maximal beneficial
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shift in the steady-state distribution [8]. Herein, PBNs will
be our choice of reference model for GRNs.

The first efforts to address robustness in the design
of intervention policies for PBNs assumed that the
errors made during data extraction, discretization, gene
selection and network generation introduce a mis-
match between the PBN model and the actual GRN
[9,10]. Therefore, uncertainties manifest themselves in the
entries of the TPM. A minimax approach was taken in
which robust intervention policies were formulated by
minimizing the worst-case performance across the uncer-
tainty class [9]. Thus, the resulting policies were typically
conservative. To avoid the detrimental effects of extreme,
but rare, states on minimax design and motivated by the
results of Bayesian robust filter design [11], the authors
in [10] adopted a Bayesian approach whereby the opti-
mal intervention policy depends on the prior probability
distribution over the uncertainty class of networks. Con-
structing a collection of optimal policies, each being opti-
mal for a member of the uncertainty class, the goal was to
pick a single policy from this collection that minimizes the
average performance relative to the prior distribution. The
corresponding policy provides a model-constrained robust
(MCR) policy. It was noted that this model-constrained
policy may not yield the best average performance among
all possible policies (we will later define the set of all possi-
ble policies for this problem). The authors also considered
a class of globally robust (GR) policies, which are designed
optimally only for a centrality parameter, such as the
mean or median, to represent the mass of the uncertainty
distribution.

Since [10] was concerned only with stationary poli-
cies, it did not consider the possibility of finding non-
stationary policies under a Bayesian updating framework,
where state transitions observed from the system are
used directly to enrich the prior knowledge regarding the
uncertainty class. The resulting nonstationary interven-
tion policy, which we refer to it as the optimal Bayesian
robust (OBR) policy, is our main interest in the present
paper. As our main optimization criterion, we use the
expected total discounted cost in the long run. This choice
is motivated by the practical implications of discounted
cost in the context of medical treatment, where the dis-
counting factor emphasizes that obtaining good treatment
outcomes at an earlier stage is favored over later stages.

Since the early development of MDPs, it was recognized
that when dealing with a real-world problem it seldom
happens that the decision maker is provided with the full
knowledge of the TPM, but rather some prior informa-
tion often expressed in a probabilistic manner. Taking a
Bayesian approach, an optimal control policy may exist in
the expected value sense specifying the best choice of con-
trol action in each state. Since the decision maker’s state
of knowledge about the underlying true process evolves
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in time as the process continues, the best choice of con-
trol action at each state might also evolve. Because the
observations are acquired through a controlled process (a
control action is taken at every stage of the process), the
optimal policy derived through the Bayesian framework
may not necessarily ever coincide with a policy that is
optimal for the true state of nature. In fact, frequently, the
optimal policy is not self-optimizing [12]; rather, optimal
control will provide the best trade-off between exploration
rewards and immediate costs.

Bellman [13] considered a special case of this problem -
the two-armed bandit problem with discounted cost - and
later used the term adaptive control for control processes
with incompletely known transition probabilities. He
suggested transforming the problem into an equivalent
dynamic program with completely known transition laws
for which the state now constitutes both the physical state
of the process and an information state summarizing the
past history of the observed state transitions from the pro-
cess [14]. This new state is referred to as the hyperstate.
Along this line of research, authors in [15-17] developed
the theory of the OBR policy for Markov chains with
uncertainty in their transition probabilities, where there is
a clear notion of optimality defined with respect to all pos-
sible scenarios within the uncertainty class. This approach
is in contrast with the MCR methodology because the
resulting policy may not be optimal for any member of the
uncertainty class but it yields the best performance when
averaged over the entire uncertainty class.

Following the methodology proposed in [17] and
assuming that the prior probability distribution of a ran-
dom TPM belongs to a conjugate family of distributions
which are closed under consecutive observations, one
can formulate a set of functional equations, similar to
those of fully known controlled Markov chains, and use
a method of successive approximation to find the unique
set of solutions to these equations. In this paper, we adopt
this approach for the robust intervention of Markovian
GRNs and provide a simulation study demonstrating the
performance of OBR policies compared with several sub-
optimal methods, such as MCR and two variations of
GR policies, when applied to synthetic PBNs with vari-
ous structural properties and parameters, as well as to a
mutated mammalian cell cycle network.

The paper is organized as follows. First, we give an
overview of controlled PBNs and review the nominal
MDP problem where the TPMs of the underlying Markov
chain are completely known. We then formulate the OBR
policy for PBNs with uncertainty in their TPMs and
provide the dynamic programming solution to this opti-
mization problem. We demonstrate a conjugate family of
probability distributions over the uncertainty class where
each row of the random TPM follows a Dirichlet distribu-
tion with certain parameters. Assuming that the rows are
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independent, the posterior probability distribution will
again be a Dirichlet distribution with updated parameters.
This provides a compact representation of the dynamic
programming equation and facilitates the computations
involved in the optimization problem. Several related sub-
optimal policies are also discussed in detail. Finally, we
provide simulation results over both synthetic and real
networks, comparing the performance of different design
strategies discussed in this paper.

Methods

Controlled PBNs

PBNs constitute a broad class of stochastic models for
transcriptional regulatory networks. Their construction
takes into account several random factors, including
effects of latent variables, involved in the dynamical
genetic regulation [3]. The backbone of every PBN is laid
upon a collection of Boolean networks (BNs) [18]. A BN
is composed of a set of # nodes, V = {v1,v%,...,v"}
(representing expression level of genes g!,g?,...,¢" or
their products) and a list of Boolean functions F =
{fL.f% ...,f"} describing the functional relationships
between the nodes. We restrict ourselves to binary BN,
where we assume that each node takes on value of 0,
corresponding to an unexpressed (OFF) gene and 1, cor-
responding to an expressed (ON) gene. This definition
extends directly to any finitely discrete-valued nodes. The
Boolean function f* : {0,1Y¢ — {0,1} determines the
value of node i at time k + 1 given the value of its pre-
dictor nodes at time k by V;(+1 = fi(vil,vj;z,...,vzi),
where {v1,v2, ...V} is the predictor set of node Vi In
a BN, all nodes are assumed to update their values syn-
chronously according to F. The dynamics of a BN are
completely determined by its state transition diagram
composed of 2" states. Each state corresponds to a vec-
tor vi = (v,i, v,%, R VZ) known as the gene activity profile
(GAP) of the BN at time k. To make our analysis more
straightforward, we will replace each GAP, vy, with its dec-
imal equivalent denoted by x = 1+ Y 7, 2”‘5/;'(, where
xreS={1,...,2"} forall k.

A PBN is fully characterized by the same set of # nodes,
V, and a set of m constituent BNs, F = {F1,F?,...,F™},
called contexts, a selection probability vector R =
(rLr: ..., r over F (¥ > Ofori = 1,...,m and
>, rl = 1), a network switching probability g > 0,
and a random gene perturbation probability p > 0. At
any updating epoch, depending on the value of a random
variable £ € {0,1}, with P(§ = 1) = g, one of two
mutually exclusive events will occur. If § = 0 then the val-
ues of all nodes are updated synchronously according to
an operative constituent BN; if £ = 1 then another oper-
ative BN, F! € F, is randomly selected with probability r,
and the values of the nodes are updated accordingly. The
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current BN may be selected consecutively when a switch
is called for [1]. PBNs also admit random gene perturba-
tions where the current state of each node in the network
can be randomly flipped with probability p.

A PBN is said to be context-sensitive if ¢ < 1; otherwise,
a PBN is called instantaneously random. The number of
states in a context-sensitive PBN is 712", whereas the state
transition diagram of an instantaneously random PBN is
composed of the same 2” states in S. It is shown in [19]
that averaging over the various contexts, relative to R,
reduces the transition probabilities of a context-sensitive
PBN to an instantaneously random PBN with identical
parameters. PBNs with only one constituent BN, i.e., m =
1, are called BNs with perturbation and are of particular
interest in some applications [8,20]. For the sake of sim-
plicity and reducing the computational time, we will focus
only on instantaneously random PBNs.

Since the nature of transitions from one state to another
in a PBN is stochastic and has the Markov property,
we can model any PBN by an equivalent homogeneous
Markov chain, whose states are members of S and the
TPM of this Markov chain can be calculated as described
in [19]. We denote the TPM of an instantaneously ran-
dom PBN by P and let {Z;y € S,k = 0,1,...} be the
stochastic process of the state transitions for this PBN.
Originating from state i € S, the successor state j € S
is selected randomly according to the transition proba-
bility P;j = P(Zit1 =j | Zx = i), the (i,) element of the
TPM. For every i € S, the transition probability vector
(Pi1, Piz, . .., Pys)) is a stochastic vector such that Pj;; > 0
and Zjes Pij = 1 for every i € S. Random gene pertur-
bation guarantees the ergodicity of the equivalent Markov
chain, resulting in a unique invariant measure equal to its
limiting distribution.

To model the effect of interventions, we assume that
PBNs admit an external control input, A, from a set of
possible inputs signals, .4, that determines a specific type
of intervention on a set of control genes. It is common to
assume that the control input is binary, i.e., A = {0, 1},
where A = 0 indicates no-intervention and A = 1 indi-
cates that the expression level of a single control gene, g¢
(or equivalently v¢), for a given ¢ € {1,2,...,n}, should be
flipped. For this control scheme, A = 0 does not alter the
TPM of the original uncontrolled PBN. However, assum-
ing that the network is in state i, the action A = 1 replaces
the row corresponding to this state by the row that corre-
sponds to the state 7, where the binary representation of i
is the same as i except ¢ being flipped. The effect of this
binary control scheme on any PBN can be easily general-
ized to more than one control gene with more than two
control actions; in this paper, we only consider the binary
control scheme.

Let {(Zx, Ax), Zy € S,Ar € Ak = 0,1,...} denote the
stochastic process of a state-action pair. The law of motion



Yousefi and Dougherty EURASIP Journal on Bioinformatics and Systems Biology 2014, 2014:6

http://bsb.eurasipjournals.com/content/2014/1/6

for the controlled network, with binary external control, is
represented by a matrix P(a) with its (i, j) element defined
as

Pij(a) = P(Zit1 = | Zk = i, Ak = a)
Py, ifa=0, 1)
| Py ifa=1.

Pij(a) is the probability of going to statej € S at time k+1
from state i € S, while taking action a € A, at time k.
By this construction, it is clear that the controlled TPM,
‘P(a), can be calculated directly from P.

The nominal problem

External intervention in the context of Markovian net-
works refers to a class of sequential decision making
problems in which actions are taken at discrete time units
to alter the dynamics of the underlying GRN. It is usu-
ally assumed that the decision maker can observe the
state evolution of the network at consecutive time epochs
k = 0,1,...,N, where the horizon N may be finite or
infinite. At each &, upon observing the state, the decision
maker chooses an action from A that will subsequently
alter the dynamics of the network. Hence, the stochastic
movement of the GRN from one state to another is com-
pletely characterized based on the current state and action
taken at this state by (1).

Associated with each state and action, there is an imme-
diate cost functiong : § x A x § — R to be accrued until
the next decision epoch, which we assume is nonnegative
and bounded. This cost may reflect the degree of desir-
ability of different states and/or the cost of intervention
that is applied. Whenever the process moves from state i
to j under action @, a known cost gjj(a) is incurred. We
also assume that A € (0,1) is the discount factor reflect-
ing the present value of the future cost. An intervention
policy, denoted by u, is a prescription for taking actions
from the set A at each point k in time. In general, one
can allow a policy for taking an action at time k to be
a mapping from the entire history of the process up to
time k to the action space. This mapping need not be
deterministic; on the contrary, it might involve a random
mechanism that is a function of the history. However, for
the problem we consider, there exists a deterministic pol-
icy that is optimal. We denote the set of all admissible
policies by M. The TPM P, initial state Zy = i, and any
given policy u© = {uo, 1, ...} in M determine a unique
probability measure, Pf‘ , over the space of all trajectories
of states and actions, which correspondingly defines the
stochastic processes Z; and Ay of the states and actions
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for the controlled network [12]. In the nominal optimiza-
tion problem, we desire an intervention policy u € M
such that the objective function

N-1
Jpli) = lim Ef i 2 )»ngkaH(Ak)} : (2)
k=0

is minimized, i.e., /3 ({) = miny e ]7’;(1') foralli € S.1In
the above equation, E!' denotes expectation relative to the
probability measure P;'.

This optimization problem is usually solved by formu-
lating a set of simultaneous functional equations and a
mapping 7/ : S — R, obtained by applying the dynamic
programming mapping to any functionJ : S — R, for all
i € S defined by

(T = min |y Py(a)gj@) + 1) _Py@] ()

jeSs jes
(3)

The optimal cost function J* uniquely satisfies the above
functional equation, i.e., it is the fixed point of the map-
ping T. One can determine the optimal policy with the
help of convergence, optimality, and uniqueness theorems
for the solution, proven in [21]. These results furnish
an iterative method for successive approximation of the
optimal cost function, which in turn gives the optimal
intervention policy. It can be further shown that the opti-
mal intervention policy belongs to the class of stationary
deterministic policies, meaning that u; = p for all k and
u : 8§ — Ais a single-valued mapping from states to
actions.

OBR intervention policy

In many real-world intervention scenarios, perfect knowl-
edge regarding P may be unavailable or very expensive to
acquire. Therefore, we resort to a probabilistic character-
ization of the elements of P and optimize relative to this
uncertainty. Our results in this section are mainly derived
from the Bayesian treatment of MDPs by [17]. Let

Q={P:Pis|S| x|S|,P; =0,

. (4)
Y Pj=1forallijeSt,

jes
denote the set of all valid uncontrolled TPMs. The uncer-
tainty about the random matrix P is characterized by the

prior probability density 7 (P) over the set Q2. Given 7 (P)
and some initial state i, we define

N-1
]M(i: 77:) = IVILI;HOO Eﬁ;—; { Z )"ngka+1 (Ak)} ’ (5)
k=0
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where the expectation is taken not only with respect to the
random behavior of the state-action stochastic process but
also with respect to the random choice of P according to
its prior distribution, 7 (P). The goal is to find an optimal
policy p* such that (5) is minimized for any i € S and any
prior distribution 7, i.e.,, u* = argmin, /" (i, 7). We
denote the optimal cost by J*(i, 7).

Suppose that we could find optimal intervention policies
for every element of Q. Letting J% (i) denote the optimal
cost for any P € Q and i € S and assuming that the opti-
mal cost J*(i, ) exists, we have E; [J3 (i)] < J*(i, ) for all
i € S and any 7. In other words, E; [J}(§)] is the best that
could be achieved if we were to optimize for every element
of the uncertainty class for fixed i and .

Since at every stage of the problem an observation is
made immediately after taking an action, we can utilize
this additional information and update the prior distribu-
tion to a posterior distribution as the process proceeds
in time. Therefore, we can treat 7 (P) as an additional
state and call (i, ) the hyperstate of the process. From
this point of view, we seek an intervention policy that
minimizes the total expected discounted cost when the
process starts from a hyperstate (i, 7). Suppose the true,
but unknown, TPM is P. At time 0, the initial state 20
is known and P is distributed according to 7. Based on
zo and m, the controller chooses an action g according
to some intervention policy. Based on (zo, 4o, 75) the new
state z; is realized according to the probability transition
rule 752021 (a0) and a cost gz, (ap) is incurred. Based on
(29, 7, ag, z1), the controller chooses an action a; accord-
ing to some (possibly another) intervention policy and
so on [12]. Although the number of states in S and
actions in A4 are finite, the space of all possible hyperstates
is essentially uncountable. Therefore, finding an optimal
intervention policy which provides a mapping from the
space of hyperstates to the space of actions in a sense sim-
ilar to the nominal case is rather difficult. However, as we
will see, it is possible to find an optimal action for a fixed
initial hyperstate using an equivalent dynamic program.

Dynamic programming solution

We assume that the rows of P are mutually indepen-
dent. Note that this assumption might not hold true for
a large class of problems; however, the analysis becomes
overwhelmingly complicated if one is willing to relax this
assumption. The posterior probability density of P, when
the process moves from state i to state j under control 4,
is found via Bayes’ rule:

cPim(P), if a =0,

TPRED =N (P, ifa=1,

(6)

where ¢ and ¢’ are normalizing constants depending on i,
a, and j. Under the sequence of events described above,

Page 50of 13

Martin [17] showed that the minimum expected dis-
counted cost over an infinite period, N = oo, exists and
formulated an equivalent dynamic program with a set
of simultaneous functional equations. The dynamic pro-
gramming operator 7, similar to (3) but now with the
hyperstate (i, ), takes the following form:

(T, 7 (P)) = min > Pij(ag(a)

jeS

+1)_Pj@] G, 7' (Pia)) ¢
jesS

@)

foralli € S, where 75,'/(61) = E[Pjj(a)] with respect to the
prior probability density function . It is shown in [17]
that there exists a unique bounded set of optimal costs J*
satisfying

J*(Gm(P)) = min 1 > "Pya)gy(a)

jeS

+1>_Py@J* G (Psi,a ) ¢,

jes

which is the fixed point of the operator T. Since the space
of all possible hyperstates (i, 7) is uncountable, construc-
tion of an optimal intervention policy for all (i, ), except
for some special cases, may not be feasible. However,
given that the process starts at (i, 7), the minimization
argument in the above equation yields an optimal action
to take only for the current hyperstate.

The difficulty in solving (7), which makes it more com-
plicated than (3), is that the total expected discounted
cost when different actions are taken now involves the
difference in expected immediate costs and the expected
difference in future costs due to being in different states at
the next period as well as the effect of different informa-
tion states resulting from these actions [22]. It should be
noted that since the decision maker’s knowledge regard-
ing the uncertainty about P evolves with each transition,
the intervention policy will also evolve over time. In a
sense, the optimal policy will adapt, implying that station-
ary optimal policies as defined for the nominal problem do
not exist. The optimal nonstationary intervention policy
derived through the process discussed above is referred to
as the OBR policy.

Special case: independent Dirichlet priors

Suppose that both prior and posterior distributions
belong to the same family of distributions, i.e., they are
conjugate distributions. Then, instead of dealing with
prior and posterior at every stage of the problem, we will
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only need to keep track of the hyperparameters of the
prior/posterior distributions. A special case of the families
of distributions closed under consecutive observations is
the Dirichlet distribution, which is the conjugate prior of
the multinomial distribution.

Let the initial state zy be known and z, =
(z0,21,22, - - -, 2y) represent a sample path of n indepen-
dent transitions recorded from the network under the
influence of an intervention policy. Then the posterior
probability density of P, 7/ (P), can be found using Bayes’
rule:

7' (P) oc(P) [ [[ [P, ®)

ieS jeS

where B;; denotes the number of transitions in z, from
state i to state j. The right product in (8) is called the like-
lihood function and the constant of proportionality can
be found by normalizing the integral of 7'(P) over Q to
1. Note that although the transitions made in z, result
from an intervention policy, we have formulated the like-
lihood function only in terms of the elements of P (and
not P(a)). This is a consequence of our particular inter-
vention model, where we can substitute for 7;(a) with P;j
whenever a = 1 as shown in (1). To be more precise, we
have B; = B;;(0) + ,&ij(l), where B;j(a) is the number of
transitions in z, from state i to state j under control 4.

For a fixed state i, a transition to state j is an out-
come of a multinomial sampling distribution with param-
eters {Pi1, Pi2, . .., Pis|} constituting the standard (|S| —
1)-simplex. As stated in the beginning of this section,
the conjugate prior for the multinomial distribution is
given by the Dirichlet distribution. By the independence
assumption imposed on the rows of P, one can write the
prior for P as

7(P) = c@) [[[JPp* )

ieS e$S

where a;; > 0 and a = [o;;] is the hyperparameter matrix
with the rows arranged in the same manner as P. The
constant of proportionality is given by

r (Z 0(,“)
=T T 10

€S s Y
where I' is the gamma function. The uniform prior dis-
tribution is obtained if a;; = 1 for all i,j € S. As we
increase a specific aj;, it is as if we bias the posterior dis-
tribution on the corresponding element of P with some
transition samples before ever observing any samples. It
can be verified that

G % _p
EPj)= <= Py

leS

(11)
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and
751"(1 - 7517)
var[Pyl = ~&—2.
Z o+ 1
leS

We also have the following theorem, which is due to
Martin [17].

Theorem 1. Let P have a probability density function
given in (9) and (10) with the hyperparameter matrix o
and suppose that a sample with a transition count matrix
B =By is observed. Then the posterior probability density
function of P will have the same form as in (9) and (10),
but with the hyperparameter matrix o + B.

Assuming « as the hyperparameter representing w (P)
and using Theorem 1, one can rewrite Equation 7 as

(T/) (o) = min § D P (@)gi(a)
jes

+1Y Pi@JG,a+y) ¢,
jeSs
where y is a matrix of all zeros except y;; = 1ifa = 0 or
Vi = lifa=1,and
ﬁl‘,‘, ifa=0,

751” = —
@ Py ifa=1

The optimal cost J* (i, «) is defined by

i o) — min TA(i
T () ;25&/ (6 ),
for a given i € S and prior hyperparameter «. Taking an
approach based on the method of successive approxima-
tion, let Jx(i, ) for k = 0,1, ... be defined recursively for
all i € S and any valid hyperparameter matrix « by

Jisr(ire) = miny 3 Py(@g(a)
jes
1) Pi@iGoe+v) ¢ (12)
jes

with {Jo(i, @)} as a set of bounded initial functions. Under
some mild conditions, the sequence of functions {J; (i, &)}
converges monotonically to the optimal solution J*(i, )
for any i € S and uniformly for all valid o [17]. Faster
rates of convergence can be achieved for smaller values
of A. Assuming that the method of successive approxi-
mation converges in K steps, then for a specific value of
(i,«), one needs to evaluate (JA| x |S|)X terminal val-
ues necessary for the computation of J*(i, «). Therefore,
to minimize computational time, we restrict ourselves to
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small values for A and K. Once the successive approxima-
tion converges, an action 4* that minimizes the RHS of
(12) is optimal.

The intervention policy optimally adapts to the con-
secutive observations as follows: we start with an initial
hyperstate (zo, ap), with g reflecting our prior knowledge
regarding the unknown network (or equivalently P). We
can calculate P using (11) with respect to g and utilize
the successive approximation method in (12) for a fixed
K to find an optimal action a*. We then apply the action
a* to the network and let it transition from state zg, or zy
depending on the optimal action, to a new random state
z1 according to P. We incorporate the new observation
into our prior knowledge and update the hyperparameter
matrix to o1 by incrementing the entry at (29, z1) or (2o, z1)
of the hyperparameter matrix ag by 1. We repeat the entire
optimization procedure, but now with the new hyperstate
(z1,01), etc. A schematic diagram of this procedure is
demonstrated in Figure 1.

The extreme computational complexity of finding the
OBR intervention policy for MDPs with large state-space
poses a major obstacle when dealing with real-world prob-
lems. It is relatively straightforward to implement the pro-
cedure described above for networks with three or four
genes. However, for larger networks, one should resort
either to clever ways of indexing all possible transitions,
such as hash tables or a branch-and-bound algorithm,
or to approximation methods, such as reinforcement
learning. See [12,22,23] for more details. An alternative
approach, as we will demonstrate, is to implement sub-
optimal methods that, in general, have acceptable per-
formance. Yet another potential approach to circumvent
the explosion of the space of all hyperstates is to reduce
the size of the uncertainty class. For example, we can
assume that some rows of the underlying TPM are per-
fectly known and uncertainty is only on some other rows,
with the implication that the regulatory network is par-
tially known. We will leave the analysis of such approaches
to future research.

Suboptimal intervention policies

Besides the OBR policy, three suboptimal policies are of
particular interest: MCR, GR, and adaptive GR (AGR).
Similar to the previous section, let P be random, having
a probability density 7 (P) over the set of valid TPMs, €2,
defined in (4).

Let Mpcr denote the set of all policies that are optimal
for some element P € Q. Each policy in Mpmcr is
stationary and deterministic (each corresponds to a
problem with known TPM). Because 2 is uncountable
and there exits a finite number of stationary deterministic
policies, one might find policies that are optimal for
many elements of Q. Assuming that the initial state Zo
is randomly distributed according to some probability
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distribution 7, the policy umcr yields the minimum cost,
which is defined by

Jmcr() = min  Ey [E, [J5(Z0)]], (13)

HEMMCR

where ]g (Zp) is defined in (2) for any fixed Zy and P. Since
we are limiting ourselves to policies in Mg, it is sel-
dom the case that a single policy minimizes E, []7’; (Zy)] for
all Zyp € S. Hence, we take the expected value of ]7’; (Zo)
with respect to n in (13) as a single value representing the
expected cost. The resulting MCR intervention policy is
therefore fixed for a given prior distribution in the sense
that it will not adapt to the observed transitions.

We define the GR policy as the minimizing argu-
ment for the optimization problem given by Jgr(i)) =
ming e pm ]g(i), for all i € S, where P € Q is the mean
of the uncertainty class € with respect to the prior dis-
tribution . The optimization method presented for the
nominal problem can be readily applied. Hence, the result-
ing policy, ngr, is stationary and deterministic. In the case
of independent Dirichlet priors, P is given by Equation 11.
Here we are considering the mean as an estimate for
unknown P. However, one can use any other estimate of
‘P and find the optimal policy in a similar fashion. Similar
to the MCR policy, this intervention method is also fixed
for a given prior distribution and it will not adapt to the
observed transitions.

The AGR policy is similar to the GR policy in the sense
that it is optimal for the mean of the uncertainty class
Q. However, instead of taking the mean with respect to
the prior distribution 7 and using the same policy for the
entire process, we update 7 to a posterior 7/, defined in
(6), whenever a transition is made and calculate the mean
of Q with respect to n’. Since the posterior evolves as
we observe more and more transitions, the AGR policy
also evolves - therefore, the name adaptive. We denote the
cost and the corresponding policy resulting from this pro-
cedure, for any initial hyperstate (i, ), by Jagr(i, 7) and
ILAGR, respectively. In the case of independent Dirichlet
priors, we can simply replace 7 with a.

Results

In this section, we provide a comparison study on the
performance of optimal and suboptimal policies based on
simulations on synthetically generated PBNs and a real
network. Since we implement the method of successive
approximation to calculate ©opr, we restrict ourselves to
synthetic networks with n = 3 genes. Given that, as we
will show, pagr yields very similar performance com-
pared to the optimal policy, we can implement pagr for
networks of larger size and use it as the baseline for com-
parison with other suboptimal policies, keeping in mind
that the optimal policy should and will outperform any
suboptimal method.
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Synthetic networks

We first consider randomly generated PBNs with n = 3
genes and m = 3 equally likely constituent BNs (total
number of states being 8) with the maximum number
of predictors for each node set to 2 (j; < 2 for alli €
{1,2,...,n}). The bias of a randomly generated PBN is the
probability that each of its Boolean regulatory functions
takes on the value 1 in its truth table. We assume that
the bias is taken randomly from a beta distribution with
mean 0.5 and standard deviation 0.01. The gene perturba-
tion probability is assumed to be p = 0.001. In the context
of gene regulation, there are some genes associated with
phenotypes (typically undesirable ones). We refer to these
genes as target genes and our goal in controlling the net-
work is to push the dynamics of these genes away from
undesirable states towards desirable ones. Once the set of
target genes is identified, one can partition the state space
S into subsets of desirable and undesirable states, denoted
by D and U, respectively. In our synthetic network simu-
lations, we choose the control and target genes to be the
least and most significant bits in the binary representation
of states, respectively, and assume that downregulation of
the target gene is undesirable. As for the discount factor
and the immediate cost function gjj(a), we set A = 0.2 and

21, ifjeld anda=1,
2.0, ifjelUd anda=0,
0.1, ifjeDanda=1,
0, otherwise,

gij(a) = (14)

the interpretation being that a cost will be incurred if the
future state in undesirable or there is an intervention in
the network.

To design an OBR policy for a given network, we need
to assign the prior probability distribution to the set Q2. As
discussed earlier, independent Dirichlet priors parameter-
ized by o constitute a natural choice for this application.
Therefore, we only need to assign values to «. The choice
of prior hyperparameters plays a crucial role in the design
of an optimal policy: the tighter the prior around the true,
but unknown, TPM 7P, the closer the OBR cost is to that
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of P. Since our synthetic networks are generated ran-
domly and not according to some biologically motivated
GRN, it would be difficult to assign prior probabilities for
individual networks. Therefore, we use the randomly gen-
erated PBNs themselves for this purpose and perturb and
scale the elements of the TPMs via the e-contamination
method.

A random PBN, P, is first generated. This network will
serve as the true, but unknown, PBN. Then a contamina-
tion matrix Q of the same size (|S| x |S|) is generated,
where each row is sampled uniformly from the |S — 1]-
simplex. Note that Q is a valid TPM. We now define the
hyperparameter matrix « by

a:x((l—s)ﬁ+sg), (15)
where k > 0 controls the tightness of the prior around the
true PBN and ¢ €[0,1] controls the level of contamina-
tion. For networks with three genes, we assume that ¢ =
0.1 and demonstrate the effect of ¥ on the performance of
intervention policies.

We generate 500 random PBNs, denoted by {N 1y for
I = 1 to 500, for each set of parameters and calculate
their TPMs, denoted by {’ﬁl }. These networks will serve
as the ground-truth for our simulation study. For a given
pair of ¥ and ¢, we then construct hyperparameter matri-
ces, denoted by a using (15), each corresponding to
a random network. To compare the performance of dif-
ferent intervention policies, for each randomly generated
network A/, we take a Monte Carlo approach and gener-
ate 500 random TPMs, denoted by {75“/} for I’ = 1 to 500,
from the o’-parameterized independent Dirichlet priors.
The set {P"'} will essentially represent € and the prior
distribution.

To design and evaluate the performance of pupmcr for
each random PBN N7, we proceed as follows: We find
the optimal intervention policy for each P, apply this
policy to every element in the set {PH}, and calculate
the average over all equally likely initial states, Zp € S,
of the infinite-horizon expected discounted cost using (2)
for that element. The expected performance of the each

“n+1, Antl Optimization .
f E......................................t..........E observatlon
Start with | i | Calculate SUCC(?SS'V? ia, Zn+1
—P = | approximation <—»| Network
Zns Qn : P :
/ : for k= K |:
Update to posterior

Figure 1 Optimization procedure for an OBR policy. We start with a hyperstate (z,, ). We calculate P using e, and utilize the successive
approximation method for a fixed K to find an optimal action a. We then apply the action a?; to the network and let it transition from state z,, or Z,
depending on the optimal action, to a new random state z,4+; according to P.We incorporate the new observation into our prior knowledge and
update the hyperparameter matrix to a,4+1 by incrementing the entry at (2, Zn4+1) Or (Zn, Zn+1) of the hyperparameter matrix o, by 1. We repeat the
entire optimization procedure, but now with the new hyperstate (zn+1, @n+1).
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policy optimal for P relative to the prior distribution,
can be computed by taking the average of the resulting
costs over all PH', We repeat this procedure for every ele-
ment of {P*'} and declare a policy MCR if it yields the
minimum expected performance. We denote the expected
cost function for a random PBN A/ obtained via an MCR
policy by ]Ilv[CR'

Finding pgr for each PBN V' !, on the other hand, is eas-
ier and it requires only the value of the hyperparameter o’.
Once found, the performance of this policy is evaluated
by applying it to all elements of (P} and taking the aver-
age of the resulting costs. Similar to the MCR policy, we
assume that the initial states are equally likely and calcu-
late the average over all possible initial states. We denote
the expected cost function corresponding to the GR policy
derived for N by ]lGR.

To quantify the performance of the OBR policy for
each random PBN A7, we directly evaluate the cost func-
tion defined in (5) relative to the independent Dirichlet
prior distribution, 7/, parameterized by . This is accom-
plished using the sample set of 500 random TPMs, {PHy.
Starting from a hyperstate and a TPM P, we derive
an optimal action from (12) using the method of succes-
sive approximations with K = 5 and some initial cost
function. We then observe a transition according to P
and find the incurred discounted immediate cost accord-
ing to (14), depending on the new observed state and the
optimal action just taken. We update our prior hyperpa-
rameter and carry out the optimization problem again, but
now with the updated hyperparameter and the recently
observed state, and accumulate the newly incurred dis-
counted immediate cost. We iterate this for seven epochs,
thus observing seven different hyperstates for a sampling
path, and record the total accumulated discounted cost
over this period. We then repeat this entire process, for
the same P’ for 100 iterations (although the same TPM
is used, different sampling paths will result due to random
transitions), and take the average of all 100 total accumu-
lated discounted cost values. This will represent the cost
associated with %’ and the initial state. We implement a
similar procedure for all initial states (assuming all equally
likely) and all elements of {75”/} and take the average of
the resulting costs, yielding the expected optimal cost,
E,[J*(Zo, 7)), with respect to the uniform probability
distribution 7 over the initial states in S. Since we use the
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same hyperparameter o in our Monte Carlo simulation

for a given random PBN A, we denote the expected
optimal cost obtained from a OBR policy by ]é)BR.

We take a similar approach for evaluating the perfor-
mance of uagr. Instead of using the method of successive
approximations at every epoch, we use the current value
of the hyperparameter to calculate the mean of €2 and use
this to find the optimal action to take at that hyperstate.
Every other step of the process is essentially the same to
those of the OBR policy. We denote the expected optimal
cost obtained from this policy by jzl\GR'

We also evaluate three other cost functions for each
PBN N Jip == Ex [E)UJp 2], Jp = EylJ5,(Z0)],
and ]éT = E; [En[]é,(Zo)] ] , where ]é; is the cost of
applying an optimal intervention policy corresponding to
P! to an element P of Q. The first cost function, ]{B,
is a lower bound on the performance of the OBR pol-
icy, ]]é A+ The second cost function, ]é, corresponds to the
cost of applying an optimal intervention policy as if we
knew the true network, P, to the true network itself. The
third cost function, ]JIET’ is the expected cost, relative to
the prior, of applying an intervention policy that is opti-
mal for the true network. We can calculate these cost
functions assuming that  and the prior distribution 7
are represented by the set ! corresponding to each
PBN A/

All cost functions discussed above are defined relative
to a given random PBN AN, Since we have 500 such net-
works, for each parameter value, we report the average
performance across all random networks and provide a
statistical comparison on the performance of different
intervention policies. The results are presented in Table 1.
As seen in the table, the optimal policy performance, in
the average sense, is consistently better than all subop-
timal policies. The closest performance to the optimal
method is achieved by the AGR policy, which is not sur-
prising, since this policy adapts to the process over time by
updating the prior distribution to a posterior distribution
and optimizes with respect to the mean of the posterior.

As it has been reported in the previous studies [7,8,24],
the performance of an optimal policy might not signifi-
cantly exceed those of suboptimal policies when averaged
across random PBNs; nonetheless, there are networks for
which the optimal policy notably outperforms the sub-
optimal ones. To demonstrate this, we use the difference

Table 1 Average costs across all 500 randomly generated PBNs with n = 3 genes and ¢ = 0.1

L] EL) L] Elpycs) EL/gg) Elp gl Ly
k=01 0.7626 1.0803 1.0998 1.0948 1.0991 1.0816 1.0812
k=10 0.8078 1.0296 1.0531 1.0520 1.0526 1.0458 1.0457
k=50 0.9417 1.0209 1.0525 1.0518 1.0513 1.0502 1.0501
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Figure 2 Empirical CCDF of A! for different intervention policies across randomly generated PBNs with three genes. (A) « = 0.1. (B)
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between the optimal and suboptimal costs to quantify the
gain made by implementing an optimal policy. We define
percent decrease by

1 1
Al =100 x 2=,

° J:
where ]cl) and ]f denote two different intervention poli-
cies. Since PBNs are randomly generated, A/ will also be
a random variable with a probability distribution. We esti-
mate the complementary cumulative distribution func-
tion (CCDF) of this distribution for different values of Ai
using its empirical distribution function.

For networks with three genes, we assume that ]f =
]éBR and J! is any suboptimal policy. Figure 2 shows the
empirical CCDF of Al for 500 random PBNs for different
values of k and different intervention policies. The graphs
illustrate that as the prior distribution gets tighter around
the true TPM by increasing «, the difference between the
optimal and suboptimal policies vanishes. Again, the best
performance among the suboptimal policies is achieved
by ]11\GR‘

As suggested by these results, we may use the subopti-
mal AGR policy instead of an optimal method for larger
networks without a significant lose of optimality. For this

purpose, we carry out a similar set of simulations with
500 randomly generated PBNs of size n = 4 genes. We
assume that each PBN consists of m = 3 equally likely
constituent BNs with the maximum number of predictors
for each node set to 2, the total number of states being
16. The network bias is drawn randomly from a beta dis-
tribution with mean 0.5 and standard deviation 0.01. The
gene perturbation probability is p = 0.001. We generate
prior distributions using (15) for each network and differ-
ent parameter values for ¥ and &. To model €2, we draw
5,000 random TPMs from each prior distribution. We
assume that each random sampling path has length 10 and
set the discounting factor A to 0.2. We emulate different
sampling paths during the calculation of ]AGR by repeat-
ing the entire process for each randomly generated TPM
for 1,000 iterations and take the average. The results aver-
aged over 500 random PBNs are presented in Table 2. The
AGR policy yields the best performance relative to other
suboptimal policies.

We graph the empirical CCDF of Al for these networks
in Figure 3 for different values of the pair («,¢)
and different suboptimal policies. Here, we have that
Jb = ]AGR and J! are any other suboptimal policy. Similar
to networks with three genes, as the prior distributions
get more concentrated around the true parameters, the

Table 2 Average costs across all 500 randomly generated PBNs with » = 4 genes

ELSg) EL4) ELUL] Elppcn) EUJG) El Sy e
(k,&) = (0.1,0.0) 0.7559 1.0878 1.0869 1.0856 1.0869 1.0773
(k,&) = (1.0,0.0) 0.8702 1.0888 1.0888 1.0918 1.0888 1.0854
(k,&) = (5.0,0.0) 0.9510 1.0579 1.0578 1.0612 1.0578 1.0572
(k,&) = (0.1,0.1) 0.7711 1.1099 1.1260 1.1248 1.1258 1.1156
(k,e) =(1.0,0.1) 0.8722 1.1106 1.1278 1.1314 1.1276 1.1236
(k,&) = (5.0,0.1) 09714 1.0826 1.1011 1.1049 1.1009 1.1002
(k,&) =(0.1,025) 0.7177 1.0796 1.1289 1.1234 1.1248 1.1133
(k, &) =(1.0,025) 0.8307 1.0853 1.1348 1.1325 1.1305 1.1257
(k,&) = (5.0,025) 0.9729 1.0629 1.1178 1.1157 1.1137 1.1130
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Figure 3 Empirical CCDF of A! for different suboptimal intervention policies across randomly generated PBNs with four genes. (A)
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(0.1,025). (H) (k, &) = (1.0,0.25). () (k, &) = (5.0,0.25).

difference between these suboptimal policies gets smaller
and smaller. However, it can be seen that the GR pol-
icy outperforms MCR for larger «, which could be due to
the fact that GR and AGR policies differ very little when
the effect of observations on the posterior distribution is
dominated by the prior hyperparameters.

Real network
We construct a PBN corresponding to a reduced network
from a mutated mammalian cell cycle network proposed

Table 3 Boolean regulatory functions of a mutated
mammalian cell cycle

Gene Node Predictor functions

CycD Vi Extracellular signal

Rb V2 (V1 AVa A V5 A Vo)

E2F v3 (V2 AVs Avg)

CycE v (3 AV2)

CycA vs (V3 AV AVEA (V7 AVg))V (Vs A
V2 AVe A (V7 Avg))

Cdc20 Ve Vo

Cdh1 % (Vs AVg) V vg

UbcH10 Vg V7V (vz Avg A (Vg V V5 V Q)

CycB vy (V6 AV7)

in [25]. The original GRN is a BN with ten genes. Three
key genes in the model are Cyclin D (CycD), retinoblas-
toma (Rb), and p27, where cell division is coordinated with
the overall growth of the organism through extracellular
signals controlling the activation of CycD in the cell. A
proposed mutation for this network is that p27 can never
be activated (always OFF), creating a situation where both
CycD and Rb might be inactive [25]. Under these condi-
tions, the cell can cycle in the absence of any growth factor,
thereby causing undesirable proliferation. Table 3 lists the
Boolean functions for this real network.

Since the size of the network is too large for the Bayesian
treatment, we need to first reduce the number of genes
to a more manageable size while preserving important

Table 4 Boolean regulatory functions of a reduced
mutated mammalian cell cycle

Gene Node Predictor functions

CycD 2 Extracellular signal

Rb %) (Vi AVa AV3 AVs)

CycA V3 (V2 AV3 AV5) V (V2 AV V Vs)
UbcH10 Vg (V4 AVs) V (V3 AVs)

CycB Vs V3 A Vs
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Table 5 Total discounted cost of different suboptimal policies for the reduced cell cycle network

Jis Jr Jer Imcr Jer JaGr
(x,&) = (0.1,0.0) 0.7507 0.9685 0.9326 0.9465 09326 09316
(k,e) = (1.0,0.0) 0.4990 0.9685 0.9675 0.9614 0.9675 0.9571
(x,e) = (5.0,0.0) 0.6136 0.9685 0.9658 09774 0.9658 0.9605
(k,&) = (0.1,0.1) 0.4501 0.9685 0.9239 0.9268 0.9239 09144
(k,&) =(1.0,0.1) 05752 0.9685 0.9340 0.9526 0.9340 0.9294
(k,e) =(5.0,0.1) 0.7507 0.9685 0.9326 0.9465 09326 09316
(k,&) = (0.1,0.25) 0.3885 0.9685 0.8643 0.8674 0.8623 0.8550
(k,e) = (1.0,0.25) 0.5140 0.9685 0.8728 0.8860 0.8730 0.8694
(k,&) = (5.0,0.25) 0.7014 0.9685 0.8864 0.9002 0.8864 0.8861

dynamical properties of the network. We have imple-
mented the methodology proposed in [26] and reduced
the size of the network to the five genes shown in Table 4.
Even for a network of this size, finding the OBR policy is
computationally too expensive. Therefore, we only report
results for suboptimal policies.

We first construct an instantaneously random PBN for
the reduced network. The PBN consists of five genes,
CycD, Rb, CycA, UbcH10 and CycB, ordered from the
most significant bit to the least significant bit in the binary
representation. In the mutated network, depending on the
state of the extracellular signal determining the state of
CycD as being ON or OFF, we obtain two BNs. These
two will serve as two equally likely constituent BNs. It
is also assumed that the gene perturbation probability is
0.01. Since cell growth in the absence of growth factors
is undesirable, we define undesirable states of the state
space to be those for which CycD and Rb are both down-
regulated. We also choose CycA as the control gene. The
immediate cost function is defined similarly to that of
the synthetic network simulations (Equation 14). The dis-
counting factor is A = 0.2. We calculate the TPM of this
network and construct prior hyperparameter matrices «
using (15) for various pairs of k and ¢. We generate 10, 000
random TPMs from the prior distribution to represent
the uncertainty class 2. We also generate 10,000 differ-
ent sampling paths of length 10 for each random TPM.
The total costs are reported in Table 5, where we can see
that the results are consistent with those obtained from
synthetic networks.

Conclusions

Due to the complex nature of Markovian genetic regula-
tory networks, it is commonplace not to possess accurate
knowledge of their parameters. Under the latter assump-
tion, we have treated the system of interest as an uncer-
tainty class of TPMs governed by a prior distribution. The

goal is to find a robust intervention policy minimizing
the expected infinite-horizon discounted cost relative to
the prior distribution. We have taken a Bayesian approach
and formulated the intervention policy optimizing this
cost, thereby resulting in an intrinsically robust policy.
Owing to extreme computational complexity, the result-
ing OBR policy is, from a practical sense, infeasible. Using
only a few genes, we have compared it to several sub-
optimal polices on synthetically generated PBNs. In this
case, although there are PBNs where the OBR policy sig-
nificantly outperforms the suboptimal AGR policy, on
average there is very little difference. Hence, one can feel
somewhat comfortable using the AGR policy while los-
ing only negligible performance. Unfortunately, even the
AGR policy is computationally burdensome. Hence, when
applying it to the mammalian cell cycle network, we are
restricted to five genes.

The twin issues of uncertainty and computational com-
plexity are inherent to translational genomics. Here we
have examined the problem in the context of therapy,
where the uncertainty is relative to network structure. It
occurs to also in the other major area of translational
genomics, gene-based classification. Whereas here the
prior distribution is over an uncertainty class of networks,
in classification it is over an uncertainty class of feature-
label distributions and one looks for a classifier that is
optimal, on average, across that prior distribution [27,28].
There is no doubt, however, that the complexity issue
is much graver in the case of dynamical intervention.
Hence, much greater effort should be placed on gaining
knowledge regarding biochemical pathways and thereby
reducing the uncertainty when designing intervention
strategies [29]. This means more attention should be paid
to classical biological regulatory experiments and less
reliance on blind data mining [30].
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