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Abstract

Parameter estimation in dynamic systems finds applications in various disciplines, including system biology. The
well-known expectation-maximization (EM) algorithm is a popular method and has been widely used to solve system
identification and parameter estimation problems. However, the conventional EM algorithm cannot exploit the
sparsity. On the other hand, in gene regulatory network inference problems, the parameters to be estimated often
exhibit sparse structure. In this paper, a regularized expectation-maximization (rEM) algorithm for sparse parameter
estimation in nonlinear dynamic systems is proposed that is based on the maximum a posteriori (MAP) estimation and
can incorporate the sparse prior. The expectation step involves the forward Gaussian approximation filtering and the
backward Gaussian approximation smoothing. The maximization step employs a re-weighted iterative thresholding
method. The proposed algorithm is then applied to gene regulatory network inference. Results based on both
synthetic and real data show the effectiveness of the proposed algorithm.

Keywords: Nonlinear dynamic system; Parameter estimation; Sparsity; Expectation-maximization; Forward-backward
recursion; Gaussian approximation; Gene regulatory network

1 Introduction
The dynamic system is a widely used modeling tool that
finds applications in many engineering disciplines. Tech-
niques for state estimation in dynamic systems have been
well established. Recently, the problem of sparse state
estimate has received significant interest. For example,
various approaches to static sparse state estimation have
been developed in [1-4], where the problem is essentially
an underdetermined inverse problem, i.e., the number of
measurements is small compared to the number of states.
Extensions of these methods for dynamic sparse state
estimation have been addressed in [5-7].
The expectation-maximization (EM) algorithm has also

been applied to solve the sparse state estimate problem
in dynamic systems [8-12]. In particular, in [8-10], the
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EM algorithm is employed to update the parameters of
the Bernoulli-Gaussian prior and the measurement noise.
These parameters are then used in the generalized approx-
imate message passing algorithm [8-10]. In [12,13], the
EM algorithm is used to iteratively estimate the param-
eters that describe the prior distribution and noise vari-
ances. Moreover, in [14], the EM algorithm is used for
blind identification, where the sparse state is explored.
Note that in the above works, only linear dynamic systems
are considered.
In this paper, we focus on the sparse parameter esti-

mation problem instead of the sparse state estimation
problem. We consider a general nonlinear dynamic sys-
tem, where both the state equation and the measurement
equation are parameterized by some unknown parameters
which are assumed to be sparse. One particular applica-
tion is the inference of gene regulatory networks. The gene
regulatory network can be modeled by the state-space
model [15], in which the gene regulations are represented
by the unknown parameters. The gene regulatory network
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is known to be sparse due to the fact that a gene directly
regulates or is regularized by a small number of genes
[16-19]. The EM algorithm has been applied to parame-
ter estimation in dynamic systems [20]. However, the EM
algorithm cannot exploit the sparsity of the parameters.
Here, we propose a regularized expectation-maximization
(rEM) algorithm for sparse parameter estimation in non-
linear dynamic systems. Specifically, the sparsity of the
parameters is imposed by a Laplace prior and we consider
the approximate maximum a posteriori (MAP) estimate
of the parameters. It should be emphasized that the pro-
posed method is an approximate MAP-EM algorithm
based on various Gaussian assumptions and quadrature
procedures for approximating Gaussian integrals. Note
that the MAP-EM algorithm may get stuck at local min-
ima or saddle points. Similar to the conventional EM
algorithm, the rEM algorithm also consists of an expecta-
tion step and a maximization step. The expectation step
involves the forwardGaussian approximation filtering and
the backward Gaussian approximation smoothing. The
maximization step involves solving an �1 minimization
problem for which a re-weighted iterative thresholding
algorithm is employed. To illustrate the proposed sparse
parameter estimation method in dynamic systems, we
consider the gene-regulatory network inference based on
gene expression data.
The unscented Kalman filter has been used in the infer-

ence of gene regulatory network [15,21,22]. However, the
methods proposed in [15,21,22] are fundamentally differ-
ent with the method proposed in this paper. Firstly, the
unscented Kalman filter is only used once in [15,21,22],
while it is used in each iteration of the rEM algorithm in
this paper. Secondly, not only the unscented Kalman filter
but also the unscented Kalman smoother is used in our
proposed rEM algorithm. In essence, only the observation
before time k is used to the estimation at time k in the
unscented Kalman filter. However, in our rEM algorithm,
all observation data is used to the estimation at time k (by
the unscented Kalman smoother). The fundamental dif-
ference between the proposed work and that of [9] is that
the proposed work is for the sparse parameter estimation
problemof the dynamic system, while that of [9] is only for
the sparse parameter estimation of the static problem. In
addition, a general nonlinear dynamic system is involved
in our work and only linear system is involved in the work
of [9]. The main difference between the proposed work
and that of [23] is that the sparsity constraint is enforced.
The main contribution of this paper is to use the sparsity-
enforced EM algorithm to solve the sparse parameter
estimation problem. In addition, the reweighted iterative
threshold algorithm is proposed to solve the �1 optimiza-
tion algorithm. To the best knowledge of the authors,
the proposed rEM with the reweighted iterative thresh-
old optimization algorithm is innovative. Furthermore, we

have systematically investigated the performance of the
proposed algorithm and compared the results with other
conventional algorithms.
The remainder of this paper is organized as follows. In

Section 2, the problem of the sparse parameter estima-
tion in dynamic systems is introduced and the regularized
EM algorithm is formulated. In Section 3, the E-step
of rEM that involves forward-backward recursions and
Gaussian approximations is discussed. Section 4 discusses
the �1 optimization problem involved in the maximization
step. Application of the proposed rEM algorithm to gene
regulatory network inference is discussed in Section 5.
Concluding remarks are given in Section 6.

2 Problem statement and theMAP-EM algorithm
We consider a general discrete-time nonlinear dynamic
system with unknown parameters, given by the following
state and measurement equations:

xk = f (xk−1, θ) + uk , (1)
and yk = h(xk , θ) + vk , (2)

where xk and yk are the state vector and the observation
vector at time k, respectively; θ is the unknown param-
eter vector; f (·) and h(·) are two nonlinear functions;
uk ∼ N (0,Uk) is the process noise, and vk ∼ N (0,Rk) is
the measurement noise. It is assumed that both {uk} and
{vk} are independent noise processes and they are mutu-
ally independent. Note that the nonlinear functions f and
h are assumed to be differentiable.
Define the notation Y k �[ y1, · · · , yk]. The problem

considered in this paper is to estimate the unknown sys-
tem parameter vector θ from the length-K measurement
data YK . We assume that θ is sparse. In particular, it has a
Laplacian prior distribution which is commonly used as a
sparse prior,

p(θ) =
m∏
i=1

λi
2
e−λi|θi|. (3)

In the EM algorithm and the MAP-EM algorithm [23],
given an estimate θ ′, a new estimate θ ′′ is given by

θ ′′ = arg max
θ

Q(θ , θ ′), (4)

and

θ ′′ = arg max
θ

[
Q(θ , θ ′) + log p(θ)

]
, (5)

respectively.
Note that the regularized EM can be viewed as a spe-

cial MAP-EM. To differentiate the sparsity-enforced EM
algorithm from the general MAP-EM algorithm, rEM is
used. In this paper, the following assumptions are made.
(1) The probability density function of the state is assumed
to be Gaussian. The Bayesian filter is optimal; however,
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exact finite-dimensional solutions do not exist. Hence,
numerical approximation has to be made. The Gaussian
approximation is frequently assumed due to the relatively
low complexity and high accuracy [24-26]. (2) The inte-
grals are approximated by various quadrature methods.
Many numerical rules, such as Gauss-Hermite quadra-
ture [25], unscented transformation [27], cubature rule
[24], and the sparse grid quadrature [26], as well as the
Monte Carlo method [28], can be used to approximate
the integral. However, the quadrature rule is the best
when computational complexity and accuracy are both
considered [29].
We next consider the expression of the Q-function in

(5). Due to the Markovian structure of the state-space
model (1) to (2), we have

p(XK ,YK |θ ) = p(x1|θ )

K∏
k=2

p(xk|xk−1, θ)

K∏
k=1

p(yk|xk , θ).

(6)

Therefore,

Q(θ , θ ′)=
∫
log p(XK ,YK |θ)p(XK |YK , θ ′)dXK

=
∫
log p(x1|θ)p(x1|YK , θ ′)dx1

+
K∑

k=2

∫
log p(xk |xk−1, θ)︸ ︷︷ ︸

− 1
2 (xk−f (xk−1,θ))TU−1

k (xk−f (xk−1,θ))−ck

p(xk , xk−1|YK , θ ′)dxk−1dxk

+
K∑

k=1

∫
log p(yk |xk , θ)︸ ︷︷ ︸

− 1
2 (yk−h(xk ,θ))TR−1

k (yk−h(xk ,θ))−dk

p(xk |YK , θ ′)dxk ,

(7)

where ck � 1
2 [log |Uk| + dim(xk) log(2π)] and dk �

1
2 [log |Rk| + dim(yk) log(2π)]. We assume that the initial
state x1 is independent of the parameter θ . Hence, with the
prior given in (3), the optimization in (5) can be rewritten
as

θ ′′ = arg max
θ

[
Q(θ , θ ′) + log p(θ)

]

= arg min
θ

K∑
k=2

{
2ck +

∫ [
(xk − f (xk−1, θ)TU−1

k (xk − f (xk−1, θ)
]

× p (xk , xk−1|YK , θ ′)dxk−1dxk
}

+
K∑

k=1

{
2dk +

∫ [
(yk − h(xk , θ)TR−1

k (yk − h(xk , θ)
]
p(xk |YK , θ ′)dxk

}

+ 2‖λ ◦ θ‖1,
(8)

where λ = [λ1, λ2, · · · , λm]T , and ‘◦’ denotes the point-
wise multiplication.
Note that in many applications, the unknown parame-

ters θ are only related to the state equation, but not to the
measurement equation. Therefore, the second term in (8)

can be removed. In the next section, we discuss the proce-
dures for computing the densities p(xk , xk−1|YK , θ ′) and
p(xk |YK , θ ′), the integrals, and the minimization in (8).

3 The E-step: computing theQ-function
We first discuss the calculation of the probability density
functions of the states p(xk , xk−1|YK , θ ′) and p(xk |YK , θ ′)
in (8), which involves a forward recursion of a point-based
Gaussian approximation filter to compute p(xk |Y k , θ ′) and
p(xk+1|Y k , θ ′), k = 1, 2, ...,K , and a backward recursion of
a point-based Gaussian approximation smoother to com-
pute p(xk , xk−1|YK , θ ′) and p(xk |YK , θ ′), k = K ,K −
1, ..., 1. For notational simplicity, in the remainder of this
section, we drop the parameter θ ′.

3.1 Forward recursion
The forward recursion is composed of two steps: pre-
diction and filtering. Specifically, given the prior proba-
bility density function (PDF) p(xk−1|Y k−1) at time k −
1, we need to compute the predicted conditional PDF
p(xk |Y k−1); then, given the measurement yk at time k,
we update the filtered PDF p(xk |Y k). These PDF recur-
sions are in general computationally intractable unless the
system is linear and Gaussian. The Gaussian approxima-
tion filters are based on the following two assumptions:
(1) Given Y k−1, xk−1 has a Gaussian distribution, i.e.,
xk−1|Y k−1 ∼ N (x̂k−1|k−1,Pk−1|k−1); and (2) (xk , yk) are
jointly Gaussian, given Y k−1.
It then follows that the predictive PDF is Gaussian, i.e.,

xk |Y k−1 ∼ N (x̂k|k−1,Pk|k−1), with [24,26,27]

x̂k|k−1 � E{xk |Y k−1} = Exk−1|Y k−1
{f (xk−1)

}
, (9)

Pk|k−1 � Cov{xk |Y k−1} = Exk−1|Y k−1{
(f (xk−1) − x̂k|k−1)(f (xk−1 − x̂k|k−1)

T
}

+ Uk−1,
(10)

where Exk−1|Y k−1
{g(xk−1)

} = ∫ g(x)φ(x; x̂k−1|k−1,
Pk−1|k−1)dx, and φ

(x; x̂,P) denotes the multivariate
Gaussian PDF with mean x̂ and covariance P.
Moreover, the filtered PDF is also Gaussian, i.e., xk |Y k ∼

N (x̂k|k ,Pk|k) [24,26,27], where

x̂k|k � E{xk|Y k} = x̂k|k−1 + Lk(yk − ŷk|k−1),
(11)

and Pk|k � Cov{xk |Y k} = Pk|k−1 − LkPxy
k , (12)

with

ŷk|k−1 = Exk |Y k−1 {h(xk)} , (13)

Lk = Pxy
k (Rk + Pyy

k )−1, (14)
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Pxy
k = Exk |Y k−1

{
(xk − x̂k|k−1)(h(xk) − ŷk|k−1)

T
}
,
(15)

Pyy
k = Exk |Y k−1

{
(h(xk) − ŷk|k−1)(h(xk) − ŷk|k−1)

T
}
.

(16)

3.2 Backward recursion
In the backward recursion, we compute the smoothed
PDFs p(xk , xk+1|YK ) and p(xk |YK ). Here, the approxi-
mate assumption made is that conditioned on yk , xk and
xk+1 are jointly Gaussian [30], i.e.,

[ xk
xk+1

]
| Y k ∼ N

([ x̂k|k
x̂k+1|k

]
,

×
[ Pk|k Ck
CT
k Pk+1|k

])
, (17)

with Ck � Cov{xk , xk+1|Y k}
= Exk |Y k

{
(xk − x̂k|k)(f (xk) − x̂k+1|k)T

}
.
(18)

Due to the Markov property of the state-space model,
we have p(xk |xk+1,YK ) = p(xk|xk+1,Y k). Therefore, we
can write [30]

p(xk , xk+1|YK ) = p(xk|xk+1,YK )p(xk+1|YK )

= p(xk|xk+1,Y k)p(xk+1|YK ).
(19)

Now, assume that

xk+1|YK ∼ N (x̃k+1, P̃k+1), with x̃K = x̂K |K , P̃K = PK |K .
(20)

It then follows from (17) and (19) that [30]

[ xk
xk+1

]
|YK ∼ N

([ x̃k
x̃k+1

]
,
[ P̃k DkP̃k+1
P̃k+1DT

k P̃k+1

])
,

(21)

where

x̃k = x̂k|k + Dk(x̃k+1 − x̂k+1|k), (22)

P̃k = Pk|k + Dk(P̃k+1 − Pk+1|k)DT
k , (23)

Dk = CkP−1
k+1|k . (24)

3.3 Approximating the integrals
The integrals associated with the expectations in the
forward-backward recursions for computing the approx-
imate state PDFs, i.e., (9), (10), (13), (15), (16), and
(18), as well as the integrals involved in computing the
function Q(θ , θ ′) in (8), are integrals of Gaussian type

that can be efficiently approximated by various quadra-
ture methods. Specifically, if a set of weighted points{
(γ i,wi), i = 1, . . . ,N

}
can be used to approximate the

integral

EN (0,I){g(x)} =
∫

g(x)φ (x; 0, I) dx ≈
N∑
i=1

wig(γ i),

(25)

then the general Gaussian-type integral can be approxi-
mated by

EN (x̂,P){g(x)} =
∫

g(x)φ (x; x̂,P) dx ≈
N∑
i=1

wig(Sγ i + x̂),

(26)

where P = SST and S can be obtained by Cholesky
decomposition or singular value decomposition (SVD).
By using different point sets, different Gaussian approx-

imation filters and smoothers can be obtained, such as
the Gauss-Hermite quadrature (GHQ) [25], the unscented
transform (UT) [27], the spherical-radial cubature rule
(CR) [24], the sparse grid quadrature rule (SGQ) [26], and
the quasi Monte Carlo method (QMC) [28]. Both the UT
and the CR are the third-degree numerical rules which
means the integration can be exactly calculated when g(x)
is a polynomial with the degree up to three. In addition,
the form of the CR is identical to the UT with a specific
parameter. The main advantage of the UT and the CR is
that the number of points required by the rule increases
linearly with the dimension. However, one problem of the
UT and the CR is that the high-order information of the
nonlinear function is difficult to capture so that the accu-
racy may be low when g(x) is a highly nonlinear function.
The GHQ rule, in contrast, can capture arbitrary degree
information of g(x) by using more points. It has been
proven that GHQ can provide more accurate results than
the UT or the CR [25,26]. Similarly, the QMC method
can also obtain more accurate results than the UT. How-
ever, both the GHQ rule and the QMC method require
a large number of points for the high-dimensional prob-
lem. Specifically, the number of points required by the
GHQ rule increases exponentially with the dimension. To
achieve a similar performance of the GHQ with a small
number of points, the SGQ is proposed [26], where the
number of points increases only polynomially with the
dimension.
For the numerical results in this paper, the UT is used in

theGaussian approximation filter and smoother, wherewe
have N = 2n + 1, with n being the dimension of the state
vector xk . The quadrature points and the corresponding
weights are given, respectively, by
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γ i =

⎧⎪⎪⎨
⎪⎪⎩
0, i = 1,√

(n + κ)ei−1, i = 2, · · · , n + 1,

−√
(n + κ)ei−n−1, i = n + 2, · · · , 2n + 1,

(27)

and

wi =

⎧⎪⎨
⎪⎩

κ

n + κ
, i = 1,

1
2(n + κ)

, i = 2, · · · , 2n + 1,
(28)

where κ is a tunable parameter, and ei is the ith n dimen-
sional unit vector. Note that κ = 0 is used as the default
value in this paper, as in the cubature Kalman filter [24].
In addition, κ = −3 can also be used as in the unscented
Kalman filter [27].

4 TheM-step: solving the �1 optimization
problem

Solving the �1 optimization problems in (8) is not trivial
since |θi| is nondifferentiable at θi = 0. The �1 optimiza-
tion is a useful tool to obtain sparse solutions.Methods for
solving linear inverse problemswith sparse constraints are
reviewed in [1]. Some more recent developments include
the projected scaled subgradient [31] method, the gradi-
ent support pursuit method [32], and the greedy sparse-
simplex method [33]. In this paper, for the maximization
step in the proposed rEM algorithm, due to the simplicity
of implementation, we will employ a modified version of
the iterative thresholding algorithm.

4.1 Iterative thresholding algorithm
Denote Q̃(θ , θ ′) as the two summation terms in (8). We
consider the optimization problem in (8)

arg min
θ

J(θ ) = Q̃(θ , θ ′) + 2‖λ ◦ θ‖1. (29)

The solution to (29) can be iteratively obtained by
solving a sequence of optimization problems [34]. As in
the Newton’s method, the Taylor series expansion of the
Q̃(θ , θ ′) around the solution θ t at the tth iteration is given
by

Q̃(θ t+�θ , θ ′) ∼= Q̃(θ t , θ ′)+�θT∇Q̃(θ t , θ ′)+αt
2

‖�θ‖22,
(30)

where ∇Q̃ is the gradient of the negative Q-function and
αt is such that αtI mimics the Hessian ∇2Q̃. Then, θ t+1 is
given by

θ t+1=arg min
z

(z−θ t)T∇Q̃(θ t , θ ′)+αt
2

‖z−θ t‖22+2‖λ◦z‖1,
(31)

where z denotes the variable to be optimized in the objec-
tive function.

The equivalent form of (31) is given by

θ t+1 = arg min
z

1
2
‖z − ut‖22 + 2

αt
‖λ ◦ z‖1, (32)

with ut = θ t − 1
αt

∇Q̃(θ t , θ ′), (33)

αt ≈ (st)T rt
‖st‖2 , (34)

st = θ t − θ t−1, (35)
rt = ∇Q̃(θ t , θ ′) − ∇Q̃(θ t−1, θ ′). (36)

Note that Equation 34 is derived as follows. Because we
require that αtI mimics the Hessian ∇2Q̃, i.e., αtst ≈ rt ,
solving αt in the least-squares sense, we have

αt ≈ arg min
α

‖αst − rt‖22 = (st)T rt
st)T st . (37)

The solution to (32) is given by θ t+1 = ηS(ut , 2λ
αt

), where

ηS(ut , a) = sign(ut)max
{|ut| − a, 0} (38)

is the soft thresholding function with sign(ut) and
max

{|ut| − a, 0} being component-wise operators.
Finally, the iterative procedure for solving (29) is given

by

θ t+1 = sign
(

θ t − 1
αt

∇Q̃(θ t , θ ′)
)

max
{∣∣∣∣θ t − 1

αt
∇Q̃(θ t , θ ′)

∣∣∣∣− 2λ
αt

, 0
}
. (39)

And the iteration stops when the following condition is
met:

|J(θ t+1) − J(θ t)|
|J(θ t)| ≤ ε, (40)

where ε is a given small number.

4.2 Adaptive selection of λ
So far, the parameters λi in the Laplace prior are fixed.
Here, we propose to adaptively tune them based on
the output of the iterative thresholding algorithm. The
algorithm consists of solving a sequence of weighted �1-
minimization problems. λi used for the next iteration are
computed from the value of the current solution. A good
choice of λi is to make them counteract the influence of
the magnitude of the �1 penalty function [35]. Following
this idea, we propose an iterative re-weighted threshold-
ing algorithm. At the beginning of the maximization step,
we set λi = 1, ∀i. Then, we run the iterative thresholding
algorithm to obtain θ . Next, we update λi as λi = 1

|θi|+ε
, ∀i,

where ε is a small positive number, and run the iterative
thresholding algorithm again using the new λ. The above
process is repeated until it converges at the point where
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the maximization step completes. Note that for the iter-
ative re-weighted thresholding algorithm, the assumption
that θ has a Laplacian prior no longer holds.

5 Application to gene regulatory network
inference

The gene regulatory network can be described by a graph
in which genes are viewed as nodes and edges depict
causal relations between genes. By analyzing collected
gene expression levels over a period of time, one can
find some regulatory relations between different genes.
Under the discrete-time state-space modeling, for a gene
regulatory network with n genes, the state vector xk =
[ x1,k , . . . , xn,k]T , where xi,k , denotes the gene expression
level of the ith gene at time k.
In this case, the nonlinear function f (x) in the general

dynamic Equation (1) is given by [15]

f (xk−1, θ) = Ag(xk−1), (41)

with

g(x) =
⎡
⎢⎣
g(x1)
...

g(xn)

⎤
⎥⎦ , (42)

and

gi(x) = 1
1 + e−x , ∀i = 1, · · · , n. (43)

In (41), A is an n × n regulatory coefficient matrix with
the element aij denoting the regulation coefficient from
gene j to gene i. A positive coefficient aij indicates that
gene j activates gene i, and a negative θij indicates that gene
j represses gene i. The parameter to be estimated is θ = A
which is sparse.
For the measurement model, we have

yk = xk + vk . (44)

5.1 Inference of gene regulatory network with four genes
In the simulations, we consider a network with four genes.
The true gene regulatory coefficients matrix is given by

A =

⎡
⎢⎢⎣

3 0 0 −4.5
−2.9 0 5 0
−6 4 0 0
0 −5 2 0

⎤
⎥⎥⎦ . (45)

To compare the EM algorithm with the proposed rEM
algorithm, the simulation was conduced ten times. In
each time, the initial value of A(θ ) is randomly generated
from a Gaussian distribution with mean 0 and variance
2. The EM, rEM, and rEMw, as well as the basis pursuit
de-noising dynamic filtering (BPDN-DF) method and the
�1 optimization method, are tested. Here, rEMw denotes
the version of the rEM algorithm with the iterative re-
weighted thresholding discussed in Section 4.2.

As a performance metrics, the receiver operating char-
acteristic (ROC) curve is frequently used. However, for
this specific example, with the increasing of the false-
positive rate, the true-positive rate given by rEM and
EM is always high (close to 1) which makes the dis-
tinguishment of the performance of rEM algorithm and
EM algorithm difficult. Hence, the root mean-squared
error (RMSE) and the sparsity factor (SF) are used in this
section. The RMSE is defined by

RMSE =
√√√√ 1

N2

N∑
i=1

N∑
j=1

(Aij − Āij)2, (46)

where Ā denotes the estimated A. The SF is given by

SF = φ0
φ
, (47)

where φ0 and φ are the number of zero values of the esti-
mated parameter and the number of zero values of true
parameter, respectively. It can be seen that the estimation
is over sparse if the sparsity factor is greater than 1.
In addition, to test the effectiveness of the proposed

method at finding the support of the unknown param-
eters, the number of matched elements is used and can
be obtained by the following procedures: (1) Compute
the support of A using the true parameters (denoted by
As) and the support of A using the estimated parameters
(denoted by Ās). Note that we assign [As]ij = 1 if Aij 
= 0
and [As]ij = 0 if Aij = 0. Similarly, we assign [Ās]ij = 1 if
Āij 
= 0 and [Ās]ij = 0 if Āij = 0. (2) Compute the num-
ber of zero elements of As − Ās as the matched elements.
It is easy to see that it is effective at finding the support
of the unknown parameters when the number of matched
elements is large.

5.1.1 The effect of differentλ
The performance of rEM using different λ (10, 5, 1,
0.5, 0.1) is compared with the EM algorithm and the
rEMw. The RMSE and SF are shown in Figures 1 and 2,
respectively. The RMSE does not increase monotonously
with the decreasing of parameter λ. It can be seen that the
rEM with λ = 5 has better performance than that using
other λ. In addition, the rEM with all λ except λ = 10 out-
performs the EM algorithm. It provides smaller RMSE and
sparser result. The rEMw provides the smallest RMSE and
sparsest parameter estimation. The number of matched
elements of test algorithms with different λ is given in
Figure 3. It can also be seen that rEMw provides more
matched elements than the EM algorithm.

5.1.2 The effect of noise
Two different cases are tested. In the first case, the covari-
ance of the process noise and measurement noise are
chosen to be 0.01. In the second case, they are chosen
to be 0.1. The performance of two test cases is shown in
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Figure 1 RMSE of rEMwith different λ and rEMw.

Figures 4, 5, 6. It can be seen that the RMSE of rEMw with
U ,R = 0.01I is smaller than that with U ,R = 0.1I. In
addition, the rEMw with U ,R = 0.01 provides a larger
number of matched elements than that with U ,R = 0.1
as shown in Figure 6. Hence, the estimation accuracy
is better when the process noise and measure noise are
small.

5.1.3 The effect of the number of observations
In order to test the effect of the number of observa-
tions, the rEMw algorithmwith 10 and 20 observations are
tested. The simulation results are shown in Figures 7, 8, 9.
It can be seen that rEMw with more observations gives
less RMSE. In addition, as shown in Figure 9, rEMw with
more observations gives slightly better result for finding
the support of the unknown parameters.
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Figure 3 The number of matched elements of rEMwith different
λ and rEMw.

5.1.4 The effect of κ
In order to test the performance of κ , the rEMw algo-
rithm with different κ (0,-1,-3) is tested. The performance
results are shown in Figures 10, 11, 12. Note that the
cubature rule corresponds to κ = 0, and the unscented
transformation corresponds to κ = −1. Roughly speak-
ing, the performance of rEMw with different κ is close.
Specifically, it can be seen that the RMSE of rEMw using
κ = −1 and rEMw using κ = −3 is less than that of rEMw
using κ = 0. The sparsity factor of rEMw using κ = −1
is more close to 1 than that of rEMw using κ = −3 and
κ = 0. Moreover, the number of matched elements of
rEMw using κ = −1 is more than that of rEMw using
κ = −3 and κ = 0. Hence, the performance of rEM using
κ = −1 is the best in this case.
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5.1.5 Effect of sparsity level
The performance comparison of the rEMw and the con-
ventional EM with different sparsity levels of A is shown
in Figures 13, 14, 15. In this subsection, another A which
is denser than the previously used A is given by

A =

⎡
⎢⎢⎣

3 −1 0 −4.5
−2.9 0 5 1
−6 4 0 −1
1 −5 2 0

⎤
⎥⎥⎦ . (48)

Note that ‘(Denser)’ is used to denote the result using
A shown in Equation 48. It can be seen that the RMSE of
rEMw(Denser) is comparable to that of the EM(Denser).
However, the sparsity factor of rEMw(Denser) is closer
to 1 than that of the EM(Denser) which means that
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different noise levels.
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the rEMw(Denser) is better. In addition, the number of
matched elements of the rEMw(Denser) is large than that
of the EM(Denser), which means that the rEMw(Denser)
is better than the EM(Denser) in finding the support
of the unknown parameters. The performance of the
rEMw(Denser), however, is worse than that of the rEMw
in terms of the improvement of the RMSE. Hence, the
rEM algorithm may have close performance with the EM
algorithm when the sparsity is not obvious.

5.1.6 Comparisonwith �1 optimization
We compare the proposed rEM algorithm and the �1
optimization-based method, as well as the conventional
EM algorithm. The �1 optimization is a popular approach
to obtain the sparse solution. For the problem under
consideration, it obtains an estimate of θ by solving the
following optimization problem:
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θ̂ =arg min
θ

K∑
k=2

[ yk−A(θ)g(x̂k−1)]T [ yk−A(θ)g(x̂k−1)]+λ‖θ‖1,

(49)

where x̂1 = x1 and x̂k+1 = g(x̂k).
We also compare the �1 optimization method with the

proposed rEMw algorithm, and the results are shown in
Figures 16, 17, 18. Seven different λ (5, 2, 1, 0.5, 0.1, 0.05,
and 0.01) are used in the �1 optimization method. The
RMSE does not decrease monotonously with the decreas-
ing of the parameter λ. Among all tested values, the �1
optimization method with λ = 0.1 gives the smallest
RMSE. However, the sparsity factor of the �1 optimization
with λ = 0.1 is far from the ideal value 1. The �1 optimiza-
tion with λ = 5 gives the best support detection as shown

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

#th simulation

R
M

S
E

rEM (κ=−1)

rEM (κ = 0)

rEM (κ = −3)
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Figure 11 SR of rEMw with different κ .

in Figure 18. The re-weighted �1 optimization algorithm is
also used in the simulation. However, all �1 optimization-
based methods cannot achieve better performance than
that of using the rEMw.

5.1.7 Comparisonwith BPDN-DF
To solve the problem using BPDN-DF, the model in (41)
and (44) are modified as

x̃k = f̃ (x̃k−1)

[A(θk−1)g(xk−1)
θk−1

]
+
[vk
0
]

(50)

and

h(x̃k) = H̃k + nk = [I4 016
] x̃k + nk , (51)
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respectively. Note that x̃k =
[
xTk , θTk

]T
. Then, ˆ̃xk is given

by [36]

ˆ̃xk = arg min
x̃

[
‖yk − H̃kx̃‖22 + λ‖x̃‖1 + ‖x̃ − f̃ (x̃k−1)‖22

]
,

(52)

where λ = [λ1, · · · , λ20] with λi = 0, i = 1, 2, 3, 4 since
our objective is to explore the sparsity of the parameter
θ . The exact same initial values used in testing EM and
rEM are used to test the performance of the BPDN-DF.
The simulation results are shown in Figures 19, 20, 21. It
can be seen that although the sparsity factor of BPDN-
DF is comparable with that of the rEMw, the RMSE of the
BPDN-DF is much larger than that of the rEMw. In addi-
tion, as shown in Figure 21, the rEMw is better than the
BPDN-DF in finding the support of the unknown param-
eters. The possible reason is that the BPDN-DF does not
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consider the noise in the dynamic system, and the mea-
surement matrix H̃k is an ill-conditioned matrix. In the
simulation, λj = 0.1, j = 5, · · · , 20. Based on our tests by
using other values of λ, there is no obvious improvement.

5.2 Inference of gene regulatory network with eight
genes

In this section, we test the proposed algorithm using
a larger gene regulatory network which includes eight
genes; the performances of the EM, the rEM, the rEMw,
the �1 optimization method, and BPDN-DF are given.
Forty data points are collected to infer the structure of
the network. The system noise and measurement noise
are assumed to be Gaussian-distributed with means 0 and
covariances Uk = 0.01I8 and Rk = 0.01I8, respectively.
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The connection coefficient matrix is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2.4 3.2
0 0 0 4.1 0 −2.4 0 4.1

−5.0 2.1 −1.5 0 4.5 0 2.1 0
0 1.3 2.5 −3.7 1.8 0 0 −3.1
0 0 0 −2.6 −3.2 0 −1 4

−1.5 −1.8 0 3.4 1.4 1.1 0 1.7
−1.8 0 0 −3 1.1 2.4 0 0
−1.3 0 −1 0 2.1 0 0 2.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(53)
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For testing, each coefficient in Â is initialized from aGaus-
sian distribution with mean 0 and variance 1. The system
state is initialized using the first measurement.
The metric used to evaluate the inferred GRN is the

ROC curve, in which the true-positive rate (TPR) and the
false-positive rate (FPR) are involved. They are given by

TPR = TP#
TP# + FN#

, (54)

FPR = FP#
FP# + TN#

, (55)

where the number of true positives (TP#) denotes the
number of links correctly predicted by the inference algo-
rithm, the number of false positives (FP#) denotes the
number of incorrectly predicted links. The number of
true negatives (TN#) denotes the number of correctly
predicted non-links, and the number of false negatives

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

#th simulation

S
pa

rs
ity

 F
ac

to
r 

(S
F

)

BPDN−DF
rEM

Figure 20 SF of BPDN-DF and rEMw.



Jia and Wang EURASIP Journal on Bioinformatics and Systems Biology 2014, 2014:5 Page 12 of 15
http://bsb.eurasipjournals.com/content/2014/1/5

1 2 3 4 5 6 7 8 9 10
6

7

8

9

10

11

12

13

14

15

16

#th simulation

# 
of

 M
at

ch
ed

 E
le

m
en

ts BPDN−DF
rEM

Figure 21 The number of matched elements of BPDN-DF and
rEMw.

(FN#) denotes the number of missed links by the inference
algorithm [15].
The ROC curves of the EM, the rEM, and the rEMw are

compared in Figure 22. The rEMwith different λ is tested.
In Figure 22, the curves of rEM with four typical values of
λ are shown. There is no obvious improvement by using
other λ. From the figure, it can be seen that the rEMw
performs better than the rEM and the convectional EM
algorithms.
In addition, the sparse solution is obtained by using rEM

and rEMw while it cannot be obtained by using the EM
algorithm. The sparsity factor of rEM and rEMw is shown
in Figure 23; the sparsity of the solution given by rEMw
is closer to the ground truth than that given by the EM
algorithm.
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Figure 23 Sparsity factor of the rEM and the rEMw .

In Figure 24, the ROC curves of the rEMw, �1 optimiza-
tion method, and BPDN-DF are compared. Similarly, the
�1 optimizationmethod with different λ is tested, and only
four curves are shown in the figure. By using other val-
ues, there is no obvious improvement. The BPDN-DFwith
different λ has no obvious difference in the test. From
Figure 24, it can be seen that the rEMw performs much
better than the �1 optimization method and BPDN-DF
algorithm. Hence, the sparsity factor of �1 optimization
method and BPDN-DF is not shown.

5.3 Inference of gene regulatory network frommalaria
expression data

The dataset with the first six gene expression data of
malaria is given in reference [37] and is used in this
section. The initial covariance for the algorithm is P0 =
0.5I. The process noise and measurement noise are
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Figure 24 ROCs of the rEMw, �1 optimizationmethod, and
BPDN-DF.
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assumed to be Gaussian noise with zero mean and covari-
ance 0.32I and 0.42I, respectively. In the following, we
show the inference results of the parameter and the state
estimation provided by the unscented Kalman filter (UKF)
based on the model using the inferred parameters.
The inferred A by the EM algorithm is

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎣

2.2120 −7.9443 2.3843 6.1800 −3.5269 2.8300
−0.6585 −0.5319 0.5987 4.0023 −2.8684 1.1167
1.9022 −9.1935 3.0504 7.9274 −5.0037 3.4825
1.8157 −8.8003 3.4441 9.4813 −7.1284 3.4345
1.8413 −8.3515 2.2789 5.3726 −1.6722 2.5999
2.1053 −3.3850 3.4007 10.2753 −12.3170 2.1100

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(56)

The inferred A by the rEM with λ = 1 is

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.8448 −6.3169 0.8943 3.9423 0 2.8387
0 −0.2422 0 0.5051 0 1.3407

0.1424 −7.1799 0.7461 5.2535 0.3607 2.9298
0.0048 −8.1010 0.7851 5.3300 0 4.2157
0.4022 −6.9358 2.0375 4.0332 0 2.7372

0 −5.6613 0 4.3934 −2.9426 6.3350

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(57)

The inferred A by the rEMw is

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3662 −7.5033 0 9.6020 0 0
−2.0531 −1.1905 0 5.1439 −0.0011 0

0 −9.0526 0 11.6504 0 0
0 −9.3419 0 14.4056 −3.5361 1.0739

0.0034 −8.5250 0 11.0732 0 0
0 −3.8773 0.0025 13.1848 −8.3610 1.4877

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(58)

The state estimation provided by the UKF based on
the model using the inferred parameters of the EM, the
rEM, the rEMw, and the true gene expression is shown
in Figure 25. The left top and right top panels are the
expression of the first gene and the second gene, respec-
tively. The left center and right center panels are the
expression of the third gene and the fourth gene, respec-
tively. The left bottom and right bottom panels are the
expression of the fifth gene and the sixth gene, respec-
tively. It can be seen that the estimate gene expression
using the UKF and parameters given by the EM, the
rEM, and the rEMw is close to the true gene expression
data. In addition, The rEMw algorithm provide sparser
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Figure 25 True malaria gene expression and estimated gene expression by different algorithms.
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solution than the rEM algorithm. Both the rEM and the
rEMw algorithms give sparser solutions than the EM algo-
rithm which validates the effectiveness of the proposed
method.

6 Conclusions
In this paper, we have considered the problem of sparse
parameter estimation in a general nonlinear dynamic sys-
tem, and we have proposed an approximate MAP-EM
solution, called the rEM algorithm. The expectation step
involves the forward Gaussian approximation filtering
and the backward Gaussian approximation smoothing.
The maximization step employs a re-weighted iterative
thresholding method. We have provided examples of the
inference of gene regulatory network based on expres-
sion data. Comparisons with the traditional EM algo-
rithm as well as with the existing approach to solving
sparse problems such as the �1 optimization and the
BPDN-DF show that the proposed rEM algorithm pro-
vides both more accurate estimation result and sparser
solutions.
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