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Abstract

Consider a large Boolean network with a feed forward structure. Given a probability distribution on the inputs, can
one find, possibly small, collections of input nodes that determine the states of most other nodes in the network? To
answer this question, a notion that quantifies the determinative power of an input over the states of the nodes in the
network is needed. We argue that the mutual information (MI) between a given subset of the inputs X = {Xj, .., X} of
some node i and its associated function f;(X) quantifies the determinative power of this set of inputs over node i. We
compare the determinative power of a set of inputs to the sensitivity to perturbations to these inputs, and find that,
maybe surprisingly, an input that has large sensitivity to perturbations does not necessarily have large determinative

tolerant to perturbations of its inputs.

power. However, for unate functions, which play an important role in genetic regulatory networks, we find a direct
relation between Ml and sensitivity to perturbations. As an application of our results, we analyze the large-scale
regulatory network of Escherichia coli. We identify the most determinative nodes and show that a small subset of
those reduces the overall uncertainty of the network state significantly. Furthermore, the network is found to be

1 Introduction

A Boolean network (BN) is a discrete dynamical sys-
tem, which is, for example, used to study and model a
variety of biochemical networks such as genetic regu-
latory networks. BNs have been introduced in the late
1960s by Kauffman [1,2] who proposed to study random
BNs as models of gene regulatory networks. Kauffman
investigated their dynamical behavior and a phenomena
called self-organization. Aside from its original purpose,
BNs were also used to model (small-scale) genetic reg-
ulatory networks; for example, in [3-5], it was demon-
strated that BNs are capable of reproducing the under-
lying biological processes (i.e., the cell cycle) well. BNs
are also used to model large-scale networks, such as the
Escherichia coli regulatory network [6] which is analyzed
in Section 6. This network is, in contrast to Kauffman’s
automata and the regulatory networks considered in [3-
5], not an autonomous system, since the gene’s states are
determined by external factors.
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In the literature addressing the analysis of BN, it is
common to consider measures that quantify the effect
of perturbations. Whether a random BN operates in the
so called ordered or disordered regime is determined by
whether a single perturbation, i.e., flipping the state of a
node, is expected to spread or die out eventually. Kauff-
man [2] argues that biological networks must operate at
the border of the ordered and disordered regime; hence,
they must be tolerant to perturbations to some extent.

In contrast to measures of perturbations, determina-
tive power in BNs has not received much attention, even
though there are several settings where such a notion is of
interest. For example, given a feed forward network where
the states of the nodes are controlled by the states of nodes
in the input layer, we might ask whether a possibly small
set of inputs suffices to determine most states, i.e., reduces
the uncertainty about the network’s states significantly.
This can be addressed by quantifying the determinative
power of the input nodes. For example, in the E. coli regu-
latory network, it turns out that a small set of metabolites
and other inputs determine most genes that account for E.
coli’s metabolism (see Section 6).

In this paper, we view the state of each node in the net-
work as an independent random variable. This modeling
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assumption applies for networks with a tree-like topol-
ogy, e.g., a feed forward network, and is often applied
when studying the effect of perturbations. For this setting,
determinative power of nodes and perturbation-related
measures are properties of single functions; hence, the
analysis of the BN reduces to the analysis of single func-
tions. Our main tool for the theoretical results is Fourier
analysis of Boolean functions. Fourier analytic techniques
were first applied to BNs by Kesseli et al. [7,8]. In [7,8],
results related to Derrida plots and convergence of trajec-
tories in random BNs were derived. Ribeiro et al. [9] con-
sidered the pairwise mutual information in time series of
random BNs, under a different setup that we use. Specif-
ically, in [9], the functions are random; whereas here, the
functions are deterministic, but the argument is random.
Finally, note that part of this paper was presented at the
2012 International Workshop on Computational Systems
Biology [10].

1.1 Contributions

Mutual information between a set of inputs to a node
and the state of this node is a measure of the determi-
native power of this set of inputs, as mutual informa-
tion quantifies mutual dependence of random variables.
In order to understand the determinative power and
mutual dependencies in Boolean networks, we system-
atically study the mutual information of sets of inputs
and the state of a node. We relate mutual information
to a measure of perturbations and prove that (maybe
surprisingly) a set of inputs that is highly sensitive to
perturbations might not necessarily have determinative
power. Conversely, a set of inputs which has determina-
tive power must be sensitive to perturbations. To prove
those results, we show that the concentration of weight
in the Fourier domain on certain sets of inputs charac-
terizes a function in terms of tolerance to perturbations
and determinative power of input nodes. Furthermore,
we generalize a result by Xiao and Massey [11], which
gives a necessary and sufficient condition of statistical
independence of a set of inputs and a function’s output
in terms of the Fourier coefficients. This result can for
instance be applied to decide for which classes of func-
tions the algorithm presented in [12], which detects func-
tional dependencies based on estimating mutual infor-
mation, can succeed or fails. For unate functions, we
show that any input and the function’s output are statisti-
cally dependent and provide a direct relation between the
mutual information and the influence of a variable. The
class of unate functions is especially relevant for biologi-
cal networks, as it includes all linear threshold functions
and all nested canalizing functions, and describes func-
tional dependencies in gene regulatory networks well [13].
As an application of the theoretical results in this paper,
we show that mutual information can be used to identify
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the determinative nodes in the large-scale model of the
control network of E. coli’s metabolism [6].

1.2 Outline

The paper is organized as follows. Boolean networks and
Fourier analysis of Boolean functions are reviewed in
Section 2. In Section 3, the influence and average sensi-
tivity as measures of perturbations are reviewed, and their
relation to the Fourier spectrum is discussed. In Section 4,
we study the mutual information of sets of inputs and the
function’s output. Section 5 is devoted to unate functions.
Section 6 contains an analysis of the large-scale E. coli reg-
ulatory network, using the tools and ideas developed in
previous sections.

2 Preliminaries

We start with a short introduction to Boolean networks
and Fourier analysis of Boolean functions, and introduce
notation.

2.1 Boolean networks

A (synchronous) BN can be viewed as a collection of #
nodes with memory. The state of a node i is described by
a binary state x;(t) € {—1,+1} at discrete time t € N.
Choosing the alphabet to be {—1, 41} rather than {0, 1} as
more common in the literature on BNs will turn out to be
advantageous later. However, both choices are equivalent.
The state of the network at time ¢ can be described by the
vector x(¢) = [x1(%),...,x,(t)] € {—1,+1}". The network
dynamic is defined by

xi(t+ 1) = fi(x(2)), (1)
where f;: {—1,+1}* — {—1,+1} is the Boolean func-
tion associated with node i. At time ¢ = 0, an initial

state x(0) = x¢ is chosen. In general, not all arguments
x1,...,%, of a function f;(x) need to be relevant. The vari-
ablex;,j € {1,..., n} is said to be relevant for f; if there exists
at least one x € {—1,+1}", such that changing x; to —x;
changes the function’s value. In most of the BN models in
biology, the functions depend on a small subset of their
arguments only. Furthermore, not every state must have
a function associated with it; states can also be external
inputs to the network.

To study the determinative power and tolerance to per-
turbations, a probabilistic setup is needed. In our analysis,
we assume that each state is an independent random
variable X; with distribution P[X; = x;], x; € {—1,+1}.
The assumption of independence holds for networks with
tree-like topology, but is not feasible for networks with
strong local dependencies and feedback loops. However,
in many relevant settings, a BN has a tree-like topology,
for instance the E. coli network analyzed in Section 6.
For a network with few local dependencies, assuming
independence will lead to a small modeling error. Major



Heckel et al. EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:6

http://bsb.eurasipjournals.com/content/2013/1/6

results concerning the analysis of BNs have been obtained
under the assumptions as stated above, e.g., the annealed
approximation [14], an important result on the spread of
perturbations in random BNs. Several important results
on random BN, e.g., [14], let the network size # tend to
infinity; hence, there are no local dependencies.

2.2 Notation

We use [ n] for the set {1, 2, ..., n}, and all sets are subsets of
[n]. With ) ¢4 (-), we mean the sum over all sets S that
are subsets of A. Throughout this paper, we use capital let-
ters for random variables, e.g., X, and lower case letters
for their realizations, e.g., x. Boldface letters denote vec-
tors, e.g., X is a random vector, and x its realization. For a
vector x and a set A C[ #n], x4 denotes the subvector of x
corresponding to the entries indexed by A.

2.3 Fourier analysis of Boolean functions

In the following, we give a short introduction to Fourier
analysis of Boolean functions. Let X = (X,...,X,) be
a binary, product distributed random vector, ie., the
entries of X are independent random variables X;,i € [ n]
with distribution P[X; = x;],x; € {—1,+1}. Throughout
this paper, probabilities P[-] and expectations E[-] are
with respect to the distribution of X. We denote p; £
P[X; = 1], the variance of X; by Var (X)), its standard devi-
ation by o; £ «/Var (X;) and finally u; = E[X;]. The inner
product of f,g : {—1,+1}" — { — 1,41} with respect to
the distribution of X is defined as

(f,8) £ E[f(X)g(X)] =) P[X=x]f()g(x) )

xe{—1,1}

which induces the norm ||f|| = /{f,f). An orthonormal
basis with respect to the distribution of X is

o500 =[[*—H, scin\

ieS !
and

ds(x) =1, S=40.

This basis was first proposed by Bahadur [15]. Thus,
each Boolean function f: {—1,+1}" — {—1,+1} can be
uniquely expressed as

[ =Y f(S)dsx), (3)

Ne)

where f (S) £ (f, ds) are the Fourier coefficients of f. Note
that (3) is a representation of f as a multilinear polynomial.
As an example, consider the AND2 function defined as
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fanp2(x) = lifand onlyifx; =%y = 1,andletp; = p2 =
1/2. According to (3)

Fap(0 = — 5 + S S+
AND(X) = 9 29(31 2962 2x1x2‘

As a second example consider PARITY2, i.e., the XOR
function, defined as fpariTy2(X) = 1ifx; = xy = 1
-1, and fpariTy2(X) = -1
for all other choices of x. Written as a poly-
nomial, fpariTy2(X) = x142. We conclude this
section by listing properties of the basis functions
which are used frequently throughout this paper.

or if X1 = Xy =

Decomposition: Let A C [#] and S C A, and denote S =
A\ S. Then,

P4 (x) = Ps(x)P3(x).

Orthonormality: For A, B C [#],

1,ifA=B

E[®4X)Pp(X)] =
[®4X)25X)] 0, otherwise.

Parseval’s identity: For f: {—1,+1}" — {—1,+1},

E[fX0Y] =If1> = D f9*=1.

Sc[n]

3 Influence and average sensitivity

Next, we discuss measures of perturbations and their rela-
tion to the Fourier spectrum. We start with a measure of
the perturbation of a single input.

Definition 1 ([16]). Define the influence of variable i on
the function f as

L(f) = P[fX) # (X D ep)],

where x @ e; is the vector obtained from x by flipping its
ith entry.

By definition, the influence of variable i is the probability
that perturbing, i.e., flipping, input i changes the func-
tion’s output. Influence can be viewed as the capability of
input i to change the output of /. In BNs, usually, the sum
of all influences, i.e., the average sensitivity is studied.
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Definition 2. The average sensitivity of f to the variables
in the set A is defined as

INGEDIN)

i€A

The average sensitivity of f is defined as as(f) =

I14(f) captures whether flipping an input chosen uni-
formly at random from A affects the function’s output.
Most commonly, all inputs are taken into account, i.e.,
the average sensitivity as(f) is studied. As an example,
as(fpariTy2) = 2 and as(fanpz) = 1; hence, PARITY?2 is
more sensitive to single perturbations than AND2. Influ-
ence and average sensitivity have the following convenient
expressions in terms of Fourier coefficients.

Proposition 1 (Lemma 4.1 of [17]). For any Boolean
function f;

h=— Y jer @

Oi s ln): ies

Proposition 2. For any Boolean function f,

n =Y jer Y - )

ScCn] ieSnA i

Proposition 2 follows directly from Proposition 1 and
the definition of I4 (f). From (5), we see that as(f) is large
if the Fourier weight is concentrated on the coefficients
of high degree d = |S|, i.e.,if > . |S\zdf(s)2 is large (i.e.,
close to one). For this case, Parseval’s identity implies that
the f (8)? with |S| < d must be small. Let’s see an exam-
ple: Suppose p1 = p» = p3 = 1/2 and consider the
AND3 function, i.e., fanp3(*1,%2,%3) = 1 if and only if
x1 = xp = x3 = 1. faNDs3 is tolerant to perturbations since
as(fanps) = 0.75, and as Figure 1 shows, its spectrum is
concentrated on the coefficients of low degree. In contrast
for foariTy3 (%1, %2,%3) £ x1x2%3, as(fpariTy) = 3. Hence,
PARITY3 is maximally sensitive to perturbations. Figure 1
shows that its spectrum is maximally concentrated on the
coefficient of highest degree.

According to (5) as(f) is small only if the Fourier weight
is concentrated on the coefficients of low degree. This is
the case either if f is strongly biased (i.e., if f(x) = a4,
for most inputs x, where a € {—1,1} is a constant) or
if f depends on few variables only. This is in accordance
with the results of Kauffman [1]; he found that a random
BN operates in the ordered regime if the functions in the
network depend on average on few variables.

We will state our result for measures of single pertur-
bations. However, these results also apply to other noise
models, specifically to the noise sensitivity of f. That is,
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Figure 1 The Fourier spectrum of AND3 and PARITY3.

because the noise sensitivity of f is small if f is tolerant
to single perturbations. The noise sensitivity of a Boolean
function is defined as the probability that the function’s
output changes if each input is flipped independently with
probability €. For uniformly distributed X, € as(f) is an
upper bound for the noise sensitivity; for small values of ¢,
€ as(f) approximates the noise sensitivity well. For the X;
being equally but possibly nonuniformly distributed and
a slightly different noise model, it was found in [18] that
€ as(f) still upper bounds the noise sensitivity. This result
was generalized to product distributed X in [19].

4 Mutual information and uncertainty

In this section, we study the determinative power of a sub-
set of variables X4, where X4 consists of the entries of
X corresponding to the indices in the set A C [#n], over
the function’s output f(X). As a measure of determina-
tive power, we take the mutual information MI(f(X); X4)
between f(X) and X4, since MI(f(X); X4) quantifies the
statistical dependence between the random variable X4
and f(X). Hence, this section is devoted to the study of
MI(f(X); X ).

Before giving a formal definition of mutual informa-
tion, let us start with an example. Consider the PAR-
ITY2 function and let its inputs Xj,Xp be uniformly
distributed. Intuitively, if X; has determinative power,
knowledge about X; should provide us with informa-
tion about fpariTy2(X). Suppose we know the value
of Xl, say X1 = 1. Since prRITyg(X) = X1X2, We
have with P[X; = 1] = 1/2 that P[fpariry2(X) = 1] =
P[prRITyg =1|X; = 1]. Hence, knowledge of X; does not
help to predict the value of fpariTy2(X). Therefore, X; has
no determinative power over fpariTy2(X). We indeed have
MI(fpariTy2(X); X1) = 0.

We next define mutual information. Mutual information
is the reduction of uncertainty of a random variable Y due
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to the knowledge of X; therefore, we need to define a mea-
sure of uncertainty first, which is entropy. As a reference
for the following definitions, see [20].

Definition 3. The entropy H(X) of a discrete random
variable X with alphabet X’ is defined as

HX) 2 = " P[X =] log, P[X = x].
xeX

Definition 4. The conditional entropy H(Y|X) of a pair
of discrete and jointly distributed random variables (Y, X)
is defined as

H(Y|X) £ Y PIX =] HY|X = x).
xeX

Definition 5. The mutual information MI(Y;X) is the
reduction of uncertainty of the random variable Y due to
the knowledge of X

MI(Y;X) 2 H(Y) — H(Y|X).

For a binary random variable X with alphabet X =
{x1,%} and p = P[X = x1], we have H(X) = h(p), where
h(p) is the binary entropy function, defined as

h(p) & —plog,p — (1 — p)logy (1 — p). ©)

The properties of mutual information are what we intu-
itively expect from a measure of determinative power: If
knowledge of X; reduces the uncertainty of f(X), then X;
determines the state of f(X) to some extent, because then,
knowledge about the state of X; helps in predicting f(X).
Furthermore, we require from a measure of determinative
power that not all variables can have large determina-
tive power simultaneously. This is guaranteed for mutual
information as

n
Y MIFX); X)) < MIFX)X) < 1, (7)

i=1
which follows from the chain rule of mutual information
(as a reference, see [20]) and independence of the X;,i €
[ n]. Hence, if MI(f(X); X;) is large, i.e., close to 1, we can
be sure that X; has determinative power over f(X) since
(7) implies that MI(f (X); X)) for j # i must be small then.

4.1 Mutual information and the Fourier spectrum

In order to study determinative power, its relation to mea-
sures of perturbations, and statistical dependencies, we
start by characterizing the mutual information in terms of
Fourier coefficients. Our results are based on the follow-
ing novel characterization of entropy in terms of Fourier
coefficients.
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Theorem 1. Let f be a Boolean function, let X be product
distributed, and let X4 = {X;: i € A} be a fixed set of
arguments, where A C[ n). Then,

1+ foosxa | ||

SCA

1
HfX)[Xq) =E | h 3

where h(-) is the binary entropy function as defined in ().

Proof. See Appendix 2. For the special case of uniformly
distributed X, a proof appears in [21], in the context of
designing S-boxes. O

Using the definition of mutual information, an
immediate corollary of Theorem 1 is the following:

Corollary 1. Let f be a Boolean function, X be product
distributed, and X4 = {X;: i € A}. Then,

MI(f(X); Xu) = & (1/2(1 +f((z))>

1 ~
—Eh| 5 (1 ©@s(Xa)

scA
8)

Theorem 1 (and Corollary 1) shows that the condi-
tional entropy H(f(X)|X4) and the mutual information
MI(f (X); X4) are functions of the coefficients {f 8): S C
A} only. This already hints at a fundamental difference
to the average sensitivity, since the average sensitivity
depends on the coefficients {f(S): |SNA| > 0}, according
to (5).

We next discuss MI(f(X); X;) based on (8). First, note
that MI(f(X); X;) has previously been studied under
the notion information gain as a measure of ‘goodness’
for split variables in greedy tree learners [22] and also
under the notion of informativeness to quantify voting
power [23]. According to (8), the mutual information
MI(f (X); X;) just depends onf"({i}),f(@), and p;. In con-
trast, the influence I;(f) is a function of the coefficients
{)A’(S): S €[n],i € S}, according to (4). In Figure 2, we
depict MI(f(X); X;) for p; = 0.3 as a function off({i}) and
f®).

It can be seen that MI(f(X); X;) = 0, i.e., f(X) and X; are
statistically independent if and only if f ({i}) = 0. That can
be formalized as follows: MI(f(X); X;) is convex inf({i}).
This can be proven by taking the second derivative of (8)
and observing that it is larger than zero for all pairs of val-
ues (F(9), f({i})) for which MI(f(X); X;) is defined. Next,
from (8), we see that MI(f(X); X;) =0 iff({i}) = 0; hence,
it follows that MI(f(X); X;) = 0 if and only if f({i}) = 0,
which proves the following result:
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-10
Figure 2 MI(f(X); X;) as a function off({i}) andf(ﬂ) forp; = 0.3.

Corollary 2. Let f be a Boolean function, and X be prod-
uct distributed. X; and f(X) are statistically independent
if and only iff({i}) =0.

Corollary 2 also follows immediately from a more gen-
eral result, namely Theorem 5, which is presented later.
Recall that for PARITY2, MI(fPARITYZ(X);Xl) = 0 and
f ({1}) = 0; hence, Corollary 2 comes at no surprise.

From Figure 2, it can be seen that the larger U?({i})|,
the larger MI(f(X);X;) becomes. Formally, it follows
from the convexity of MI(f(X); X;) and Corollary 2 that
MI(f (X); X;) is increasing in [f({i})|, Hence, X; has large
determinative power, i.e., MI(f(X); X;) is large, if and only
if [f({i})| is large (i.e., close to one). [f({i})| is trivially max-
imized for the dictatorship function, ie., for f(x) = x;,
or its negation, i.e., f(x) = —x;. The output f(X) of the
dictatorship function is fully determined by ;.

Next, let us consider the (trivial) case where A =[ nA] and
hence X4 = X. Then, MI(f(X);X) = h(1/2(1 + f(#)).
It follows that MI(f(X); X) is maximized for f(#) = 0,
ie, P[f(X) =1] = 1/2, ie, if the variance of f(X) is
1. In general, the closer to zero f (@) is, the larger the
mutual information between a function’s output and all
its inputs becomes. Let us finally relate the conditional
entropy H(f(X)|X4) to the concentration of the Fourier
weight on the coefficients {S: S € A}, A C [#].

Theorem 2. Let f be a Boolean function, let X be product
distributed, and let X4 = {X;: i € A} be a fixed set of
arguments, where A C[ n). Then,

1
In(@)

1->"f)?

SCA

> HEX)IXa) = 1= Y f(5)%

SCA

Proof. See Appendix 3. O
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Theorem 2 shows that H(f(X)|X4) can be approx-
imated with 1 — ) ¢y F(S)% 1t further shows that
H(f(X)|X4) is small if the Fourier weight is concentrated
on the variables in the set 4, i.e., if ZSCA]A’(S)2 is close
to one. In contrast, as mentioned previously, for I, (f), it
is relevant whether the Fourier weight is concentrated on
the coefficients with high degree.

4.2 Relation to measures of perturbation
Mutual information and average sensitivity are related as
follows.

Theorem 3. For any Boolean function f, for any product
distributed X,

Ia(f) = min (;2) (MI (f(X); X4) — W (Var (f(X))))

©)

with
W(x) 2 (x)/ @ _ (10)
Proof. See Appendix 4. O

Note that the term W (Var (f (X))) is close to zero.
Specifically, for any f(X) we have 0 < W (Var (f (X))) <
0.12, and for settings of interest, W (Var (f (X))) is very
close to zero, as explained in more detail in the follow-
ing. Theorem 3 shows that if MI(f(X); X4) if large (i.e.,
close to one), f must be sensitive to perturbations of the
entries of X4. Moreover, if I (f) is small (i.e., if f is tolerant
to perturbations of the entries of Xy4), then MI(f(X); X4)
must be small (i.e., the entries of X4 do not have deter-
minative power). For the case that A = [#], Theorem 3
states that the average sensitivity as(f) is lower-bounded
by MI(f(X); X) minus some small term.

We next discuss the special case that A = {i}. Theorem 3
evaluated for A = {i} yields a lower bound on the influ-
ence of a variable in terms of the mutual information of
that variable, namely

Li(f) > % (MI (f(X); X;) — W (Var ((X)))) .
1

Again, ¥ (Var (f (X))) is close to zero for settings of
interest, as the following argument explains. Equation
(11) will not be evaluated for small Var (f (X)); since then,
f(X) is close to a constant function (i.e., close to f(X) = 1
or f(X) = —1), and [;(f) and MI(f(X); X;) must both be
small (i.e., close to zero) anyway. Hence, (11) is of interest
when Var (f (X)) is large, i.e., close to 1; for this case, the
term W (Var (f(X))) is small (e.g., for Var (f(X)) > 0.8,
v (Var (f (X)) < 0.05). Observe that, according to (11), if

(11)
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MI(f (X); X;) is large, then I;(f) is also large. That proves
the intuitive idea that if an input determines f(X) to some
extent, this input must be sensitive to perturbations. Con-
versely, as mentioned previously, an input i can have large
influence and still MI(f(X); X;) = 0. E.g., for the PARITY2
function, we have [;(f) = 1 and MI(f(X); X;) = 0.

Interestingly, the influence also has an information the-
oretic interpretation. The following theorem generalizes
Theorem 1 in [23].

Theorem 4. For any Boolean function f, for any product
distributed X,

H (O X )

" =—"5x

Proof. See Appendix 5. For uniformly distributed X, a
proof appears in [23]. O

Theorem 4 shows that the influence of a variable is a
measure for the uncertainty of the function’s output that
remains if all variables except variable i are set.

4.3 Statistical independence of inputs to a Boolean
function

Next, we characterize statistical independence of f(X)

and a set of its arguments X4 in terms of Fourier coeffi-

cients. This result generalizes a theorem derived by Xiao

and Massey [11] from uniform to product distributed X.

Theorem 5. Let A C[n] be fixed, f be a Boolean function,
and X be product distributed. Then, f(X) and the inputs
X4 = {X; : i € A} are statistically independent if and only
if

F(S)=0forallS C A\ .

Proof. See Appendix 6. For uniformly distributed X, i.e.,
P[X; =1] = 1/2 for all i € [n], Theorem 5 has been
derived by Xiao and Massey [11]. Note that the proof pro-
vided here is also conceptually different from the proof
for the uniform case in [11], as it does not rely on the
Xiao-Massey lemma. O

Theorem 5 shows that a function and small sets of its
inputs are statistically independent if the spectrum is con-
centrated on the coefficients of high degree d = |[S|.
The most prominent example is the parity function of n
variables, i.e., fpARITYN(X) = Xx1X2...%,: For uniformly dis-
tributed X, each subset of # — 1 or fewer arguments and
feariTyN(X) are statistically independent. Conversely, if a
function is concentrated on the coefficients of low degree
d = |S|, which is the case for functions that are tolerant to
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perturbations, then small sets of inputs and the function’s
output are statistically dependent.

Theorem 5 also has an important implication for algo-
rithms that detect functional dependencies in a BN based
on estimating the mutual information from observations
of the network’s states, such as the algorithm presented in
[12]. Theorem 5 characterizes the classes of functions for
which such an algorithm may succeed and for which it will
fail. Moreover, Theorem 5 shows that in a Boolean model
of a genetic regulatory network, a functional dependency
between a gene and a regulator cannot be detected based
on statistical dependence of a regulator X; and a gene’s
state f;(X), unless the regulatory functions are restricted to

those for which []A"({i})l > 0 holds for each relevant input i.

5 Unate functions
In this section, we discuss unate, i.e., locally monotone
functions.

Definition 6. A Boolean function f is said to be unate in x;
if for each x = (x1, .., x,) € {—1,+1}" and for some fixed
ai € {—=1,41}, f(x1, e Xi = =iy ®y) < f(X1, 0% =
ai, ..,%y) holds. f is said to be unate if f is unate in each
variable x;, i € [n].

Each linear threshold function and nested canalizing
function is unate. Moreover, most, if not all, regulatory
interactions in a biological network are considered to be
unate. That can be deduced from [13,24], and the basic
argument is the following: If an element acts either as
a repressor or an activator for some gene, but never as
both (which is a reasonable assumption for regulatory
interactions[13,24]), then the function determining the
gene’s state is unate by definition. For unate functions, the
following property holds:

Proposition 3. Let f : {—1,+1}" — {—1,+1} be unate.
Then,

FUid) = aioili(f), Vi € [n],

where a; € {—1,+1} is the parameter in Definition 6.

(12)

Proof. Goes along the same lines as the proof for mono-
tone functions in Lemma 4.5 of [17]. O

Note that conversely, if (12) holds for each x;,i € [#], f
is not necessarily unate. Inserting (12) into (8) yields

1 A
MI(f (X); Xi) = h (5(1 +f(”))>

_ E[h (l (1 +70) + aiaili(f)Xi - ’”))] )
2 o
(13)

where the expectation in (13) is over X;. Based on (13),
the discussion from Section 4.1 on MI(f; X;) applies by
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using f ({#}) and a;0:1;(f) synonymously. Hence, for unate
functions, the mutual information MI(f; X;) is increasing
in the influence |I;(f)|. Moreover, if f is unate, and x; is
a relevant variable, i.e., a vgriable on which the functions
actually depend on, then |f({i})| > 0. From this fact and
the same arguments as given in Section 4.1 follows:

Theorem 6. Let f: {—1,+1}" — {—1,+1} be unate. If
and only if x; is a relevant variable, then MI(f (X); X;) # 0.

In a Boolean model of a biological regulatory network,
this implies that if the functions in the network are unate,
then a regulator and the target gene must be statistically
dependent.

6 E. coliregulatory network

In [6], the authors presented a complex computational
model of the E. coli transcriptional regulatory network
that controls central parts of the E. coli metabolism.
The network consists of 798 nodes and 1160 edges. Of
the nodes, 636 represent genes and of the remaining
162 nodes, most (103) are external metabolites. The rest
are stimuli, and others are state variables such as inter-
nal metabolites. The network has a layered feed-forward
structure, i.e., no feedback loops exist. The elements in the
first layer can be viewed as the inputs of the system, and
the elements in the following seven layers are interacting
genes that represent the internal state of the system. Our
experiments revealed that all functions are unate; there-
fore, the properties derived in Section 5 apply. Note that
all functions being unate is a special property of the net-
work, since if functions are chosen uniformly at random,
it is unlikely to sample a unate function, in particular if the
number of inputs # is large.

6.1 Determinative nodes in the E. coli network

We first identify the input nodes that have large determi-
native power (we will define what that means in a network
setting shortly) and then show that a small number thereof
reduces the uncertainty of the network’s state significantly.
Specifically, we show that on average, the entropy of the
node’s states conditioned on a small set of determinative
input nodes, is small.

To put this result into perspective, we perform the same
experiment for random networks with the same and dif-
ferent topology as the E. coli network. We denote by X =
{X1,..., Xn}, n = 145 the set of inputs of the feed forward
network and assume that the X; are independent and uni-
formly distributed. The remaining variables are denoted
by Y = {Y1,.., Y;u},m = 653 and are a function of the
inputs and the network’s states, ie., ¥; = f/(X,Y). For
our analysis, the distributions of the random variables
Y1, ... Yy, need to be computed, since some of those vari-
ables are arguments to other functions. This can be cir-
cumvented by defining a collapsed network, i.e., a network
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where each state of a node is given as a function of the
input nodes only, i.e., Y; = fi(X). The collapsed network
is obtained by consecutively inserting functions into each
other, until each function only depends on states of nodes
in the input layer, i.e., on X. The collapsed network reveals
the dependencies of each node on the input variables.
Interestingly, in the collapsed network, it is seen that the
variables chol_xt>0, salicylate, 2ddglcn_xt>0, mnnh>0,
altrh>0, and his-1_xt>0 (here, and in the following, we
adopt the names from the original dataset), which appear
to be inputs when considering the original E. coli network,
turn out to be not. Consider, for example, the node sali-
cylate. The only node dependent on salicylate is mara =
((NOT arca OR NOT fnr) OR oxyr OR salicylate). How-
ever, arca = (far AND NOT oxyr), and it is easily seen that
mara simplifies to mara = 1.

Next, we identify the determinative nodes. As argued in
Section 4, MI(f;(X); Xj) is a measure of the determinative
power of X; over Y; = f;(X). This motivates the definition
of the determinative power of input X; over the states in
the network as

D(j) £ Y MI(fi(X); X)).

i=1

Note that a small value of D(j) implies that X; alone does
not have large determinative power over the network’s
states, but X; may have large determinative power over
the network states in conjunction with other variables.
In principle Y ;" ; MI(f;(X); Xj, Xi) can be large for some
j,k € [n], even though D(j) and D(k) are equal to zero.
This is, however, not possible in the E. coli network since
the functions are unate. Specifically, MI(f;(X); Xj, X)) # 0
implies that x; or x; are relevant variables, and according
to Theorem 6, MI(f;(X); X;) # 0 or MI(f;(X); Xi) # 0. We
computed D(j) for each input variable and found that D(j)
is large just for some inputs, such as 02_xt (37 bit), leu-
1_xt (20.9 bit), gle-d_xt (19.3 bit), and glen_xt>0 (17 bit),
but is small for most other variables. Partly, this can be
explained by the out-degree (i.e., the number of outgoing
edges of a node) distribution of the input nodes. How-
ever, having a large out-degree does not necessarily result
in large values of D(j). In fact, in the E. coli network, glc-
d_xt, glen_xt>0, and 02_xt have 99, 93, and 73 outgoing
edges, respectively. On the other hand, D(glc-d_xt) = 19.3
bit and D(glcn_xt>0) = 17 bit, whereas D(02_xt) = 37 bit.

Denote 7 as a permutation on [ n], such that D(X; (1)) >
D(X:(2)) = ... = D(X;(»), i.e,, T orders the input nodes
in descending order in their determinative power. We
next consider H(Y|X¢(1),..,X7(;) as a function of / to
see whether knowledge of a small set of input nodes
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reduces the entropy of the overall network state signif-
icantly. H(Y|X:(1),..,Xz@)) has an interesting interpre-
tation which arises as a consequence of the so called
asymptotic equipartition property [20] (as discussed in
greater detail in [25]): Consider a sequence yi, ..., yix of k
samples of the random variable Y. For ¢ > 0 and k suf-
ficiently large, there exists a set Agk) of typical sequences
Y1, - Yk such that

(k)| < Qk(H(Y)+e)
A7 =2

and

P[Y c Agk)] >1—¢

where |A£k) | denotes the cardinality of the set Aék). This
shows that the sequences obtained as samples of Y are
likely to fall in a set of size determined by the uncer-
tainty of Y. Since the output layer consists of 653 nodes,
the network’s state space has maximal size 2°°3. Since Y
is a function of X, H(Y) < H(X) = 145bit, where for
the last equality, we assume uniformly distributed inputs.
Thus, without knowing the state of any input variable,
the network’s state is likely to be in a set of size roughly
2145, Given the knowledge about the states X;(1), .. Xz (1),
the state of the network is likely to be in a set of size
roughly 27MXe@»-X:0) For a large network, however,
H(Y|X: ), ... X¢()) is expensive to compute as by defini-
tion:

H(Y|X4) = ) P[X4=xX4]

XA
x Y P[Y=y|X4=x4]log, P[Y=y|X4=x4].
y
(14)
Hence, the number of terms in the sum is exponential in
nand |A|. An estimate of (14) can be obtained by sampling
uniformly at random over x4 and y. Instead, we will con-

sider the following upper bound which is computationally
inexpensive to compute:

HXY (X 1)s o0 Xz ) < AQD)
with

m
A = ZH(Yiera), s X (1))
i=1

The bound above follows from the chain rule for entropy
[20]. H(Y;|X7(1),..» X)) is computationally inexpensive
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Figure 3 The upper bound A(}) on H(Y|X; (1), ..., Xz (1)) @s @
function of / for the E. coli network and random networks.

to compute, since Y; depends on few variables only (in
the E. coli network, on < 8). For the E. coli network,
A(l) is depicted in Figure 3 as a function of /. Figure 3
shows that knowledge of the states of the most determi-
native nodes reduces the uncertainty about the network’s
states significantly. In fact, the upper bound A(/) is loose;
hence, we even expect H(Y|X;(1),... X)) to lie signif-
icantly below A(l). Also, note that when A(J) is small,
H(Y;|X¢)s .., Xrq)) must be small on average; hence,
P[Yi = 11Xz 1), ...,X,(l)] is close to one or zero on average.

To put A(!) for the E. coli network in Figure 3 into per-
spective, we compute A(/) for random networks. First,
we took the E. coli network and exchanged each func-
tion with one chosen uniformly at random from the set
of all Boolean functions of corresponding degree. We also
exchanged each function with one chosen uniformly at
random from all unate functions. We performed the same
experiment for the original E. coli network for 25 choices
of random and random unate functions, respectively. The
mean of A([), along with one standard deviation from the
mean (dashed lines), is plotted in Figure 3 for random
and random unate functions. It is seen that fewer inputs
determine the output of the original E. coli network, com-
pared to its random counterparts. For example, to obtain
A(l) = 50, about twice as many inputs need to be known
if the functions in the E. coli network are exchanged for
functions chosen uniformly at random.

Next, we generated at random feed forward networks
with m = 653 outputs and n = 145 inputs, each with
out-degree 8, i.e., the average out-degree of the inputs in
the collapsed E. coli network. Again, we computed A(/)
for 25 choices of random and random unate functions,
respectively. The mean and one standard deviation from
the mean are depicted in Figure 3. The results show that,
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Figure 4 Average sensitivity in the E. coli network. Pairs of values
(as(f), Prf(X) = 1]) of each function in the E. coli network for
different in-degrees K and uniformly distributed X. Moreover, a lower
bound on the average sensitivity as(f), i.e, Poincare’s inequality, is
plotted.

as expected, for a random feed forward network, there
seems to be no small set of inputs that determines the
outputs.

6.2 Tolerance to perturbations

Finally, we discuss the average sensitivity of individual
functions in the E. coli network. In Section 3, we found
that the average sensitivity is small if the Fourier spec-
trum is concentrated on the coefficients of low degree.
This appears to be the case for functions that are highly
biased and for functions that depend on few variables only.
Figure 4 shows pairs of values (as(f), Pr[f(X) = 1]) for
each function in the E. coli network, again assuming that
the X; are independent and uniformly distributed. We can
see from Figure 4 that the average sensitivity of all func-
tions is close to the lower bound on the average sensitivity.
Note that the functions with high in-degree K (i.e., num-
ber of relevant input variables), which could have average
sensitivity up to K, also have small average sensitivity,
because those functions are highly biased. We, therefore,
can conclude that the functions have small average sen-
sitivity either because they depend on few variables only
or because they are highly biased. For other input distri-
butions, i.e., other values of p = P[X; = 1],Vi € [n], we
obtained the same results.

7 Conclusion

In a Boolean network, tolerance to perturbations, deter-
minative power, and statistical dependencies between
nodes are properties of single functions in a probabilis-
tic setting. Hence, we analyzed single functions with
product distributed argument. We used Fourier analy-
sis of Boolean functions to study the mutual information
between a function f(X) and a set of its inputs Xy, as
a measure of determinative power of X4 over f(X). We
related the mutual information to the Fourier spectrum
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and proved that the mutual information lower bounds the
influence, a measure of perturbation. We also gave neces-
sary and sufficient conditions for statistical independence
of f(X) and X4. For the class of unate functions, which
are particularly interesting for biological networks, we
found that mutual information and influence are directly
related (not just via an inequality). We also found that
MI(f(X); X;) > O for each relevant input i, which, as an
application, implies that in a unate regulatory network,
a gene and its regulator must be statistically dependent.
As an application of our results, we analyzed the large-
scale regulatory network of E. coli. We identified the most
determinative input nodes in the network and found that
it is sufficient to know only a small subset of those in order
to reduce the uncertainty of the overall network state sig-
nificantly. This, in turn, reduces the size of the state space
in which the network is likely to be found significantly.

A possible direction for future work is to provide an
analysis similar to that of the E. coli regulatory network
for other Boolean models of biological networks, and see
if similar conclusions as in Section 6 can be reached.
One of the main assumptions in our work is the inde-
pendence among the input variables of the network. It
would be interesting to provide methods that can be used
beyond this setup. However, deriving such results is chal-
lenging because for dependent inputs, the basis functions
ds(x) do not factorize as in (3), and many results cited
and derived in this paper make use of this particular
form of the basis functions. In this paper, we focused
on generic properties of information-processing networks
that may help identify possible principles that underly bio-
logical networks. Assessing our findings from a biological
perspective would be an interesting next step.

Appendices

Appendix 1

Lemma 1

For the proof of Theorems 1 and 5, we will need the
following lemma:

Lemma 1. Let f be a Boolean function, let X be prod-
uct distributed, and let A C[n) and some fixed x5 €
(=1, +1}4! be given. Then,

E[f(X)|Xa = x4]= Y_f($)Ps(xa)- (15)

SCA

Proof. Inserting the Fourier expansion of f(X) given by (3)
in the left-hand side of (15) and utilizing the linearity of
conditional expectation yields

E[f(X)[Xa =xal= Y f(S) E[®s(X)[X4 = Xa].
SCin)
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ForS C A,

E[®s(X)|Xa = x4] = Ps(x4).

Conversely, for S Z A,
E[®s(X)[X4 =x4] =0

To see this, assume without loss of generality that S = AU
{/} and j ¢ A. Using the decomposition property of the
basis function as given in Section 2.3,

E[®s(X)[Xa =x4] =E [n O, X) X4 = XA:|

ieS

=] ]El

ieS

O (X) X4 =x4]

which is equal to zero as

E[®;X) X4 =x4] = E[P3(X)]=0

Appendix 2
Proof of Theorem 1
First,

P[f(X) = 11X4 =x4] = = (L + E[f(X)|Xa = x4])

N =

1 A
=5 |1+ 2/ ©Psxa) |, (16)

SCA

q(x4)

where (16) follows from an application of Lemma 1. By
definition of the conditional entropy,

HFXOXa) = Y

xq€{—1,1}14l

= Y PXa=x4lhP[f(X)=1Xa=x4])

xq€{—1,1}}4

- ¥

xq€{—1,1}1l

=E[h(@Xa)], (18)

P[X4 = x4l HFf (X)|Xa = x4)

P[X4 = x4l h(q(x4)) 17)

where /() is the binary entropy function as defined in (6).
To obtain (17), we used (16). The expectation in (17) is
with respect to the distribution of X4. Inserting g(X,4) as
given by (16) in (18) concludes the proof.
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Appendix 3
Proof of Theorem 2
First, note that with g(-) as defined in (16), we have

2
E[4g(Xa)(1 — q(Xa)] =E | 1 - (Zf(S)cbs(xA>)

SCA

=3 FOFUDEDRs(Xa) P (Xa)]

SCAUCA
=1-) f©)” (19)
SCA

where (19) follows from the orthogonality of the basis
functions.

We start with proving the lower bound in Theorem 2.
Applying the lower bound on the binary entropy function
h(p) = 4p(1 — p), given in Theorem 1.2 of [26], on (18)
yields

H(f (X)|Xa) = E[h(q(Xa))] = E[49(X4)(1—-g(Xa))],

and the lower bound in Theorem 2 follows using (19).
Next, we prove the upper bound in Theorem 2. Applying
the upper bound on the binary entropy function h(p) <

(p(1 —p))l/ln(4), given in Theorem 1.2 of [26], on (18)
yields
H{f(X)|Xa) = E[h(g(Xa)]
< E[(49(X0) (1 — g(X))Y @], (20)
Y

The term Y in (20) is a random variable, and the
function (Y)Y/"® js concave in Y. An application of
Jensen’s inequality (see e.g. [20]) yields E[ (Y)Y In(®)] <
(E[Y])/!"®; hence, the right-hand side of (20) can be
lower as

H(f(X)1X4) < (E[4¢(Xa)(1 — g(Xa )Y@ (21)

Finally, the upper bound in Theorem 2 follows from
combining (21) and (19).

Appendix 4
Proof of Theorem 3
According to Proposition 2,

G -

SCln] ieSNA

Ia(f) =

> > f(8)? S 1 Almin

SCn]\@

> min f(S)2
ied (G ) SCZA\(A

(@)
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Next, we rewrite the lower bound on H(f(X)|X4) given
by Theorem 2 as

Y FS = 1-F®)? — HEX)IXa).
SCA\@

By adding H(f (X)) — H(f(X)) on the right-hand side of
(23) and using the definition of mutual information, (23)
becomes

3 F () = MI(F(X); X4) —H(f (X)) +1—f (4). (24)

SCA\P

(23)

With Var (f (X)) =1- f’ (#)? and by using the inequality
H(f (X)) < (Var (f(X)))l/ln(4), given in Theorem 1.2 of
[26], (24) becomes

3 F$)? = MIFX); Xa) — ¥ (Var (F(X))),
SCA\@

with W(-) as defined in (10). Finally, Theorem 3 follows by
combining (22) and (25).

(25)

Appendix 5

Proof of Theorem 4

For notational convenience, let A =[] \{i}. By definition
of the conditional entropy,

HEQOX) = Y PXa =xal HFX)Xa = x4)
xa€{—1,1}}4l
= Y PXa=xalh(P[f(X)=1X4=x4]),
xq€{—1,1}}4

(26)

where /(-) is the binary entropy function as defined in (6).
Observe that

h(P[f(X) = 11X4 = xa]) = K(P[X; = 1))
if
fXi=%1,...Xi=1,..,X, =x,)
£ f X1 =K1 00 Xi = —1, 00 Xyt = %)
and
hP[f(X) = 11Xa =x4]) =0

otherwise. Hence, (26) becomes

HEX)Xa)= Y

xa€{—1,1}}4

P[Xa = xa]l h(p) Vi) 2f Xever)»

where x @ e; is the vector obtained from x by flipping its
ith entry, and Theorem 4 follows by using the definition of
the influence.

Appendix 6

Proof of Theorem 5

By definition, f(X) and X4 are statistically independent if
and only if for all x4 € {—1, +1}|A‘

P[f(X) = 1|X4 =x4] = P[f(X) =1]. (27)
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With
1 1
Pf(X) =1Xa =x4] = 5+ S OXa = x4]

and application of Lemma 1 given in Appendix 1, (27)
becomes

Y F©S)@sxa) = f@)

SCA

& Y f(S)Ps(xa) =0.

SCA\Y

(28)

It follows from the Fourier expansion (3) that (28) holds
for all x4 € {—1,+1}Ml if and only if f(S) = O forall S
A\ ¥, which proves the theorem.
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