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Abstract

unnecessary clustering fragments.

Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In
this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering
introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in
biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese
restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network
segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering
algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the
HDP result to the standard result and show that the HDP algorithm provides more information and reduces the

1 Introduction

The microarray technology has enabled the possibility to
monitor the expression levels of thousands of genes in
parallel under various conditions [1]. Due to the high-
volume nature of the microarray data, one often needs
certain algorithms to investigate the gene functions, reg-
ulation relations, etc. Clustering is considered to be an
important tool for analyzing the biological data [2-4]. The
aim of clustering is to group the data into disjoint subsets,
where in each subset the data show certain similarities
to each other. In particular, for microarray data, genes in
each clustered group exhibit correlated expression pat-
terns under various experiments.

Several clustering methods have been proposed, most of
which are distance-based algorithms. That is, a distance
is first defined for clustering purpose and then the clus-
ters are formed based on the distances of the data. Typical
algorithms in this category include the K-means algo-
rithm [5] and the self-organizing map (SOM) algorithm
[6]. These algorithms are based on simple rules, and they
often suffer from robustness issue, i.e., they are sensitive to
noise which is extensive in biological data [7]. For exam-
ple, the SOM algorithm requires user to provide number
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of clusters in advance. Hence, incorrect estimation of the
parameter may provide wrong result.

Another important category of clustering methods is
the model-based algorithms. These algorithms employ a
statistical approach to model the structure of clusters.
Specifically, data are assumed to be generated by some
mixture distribution. Each component of the mixture cor-
responds to a cluster. Usually, the parameters of the mix-
ture distribution are estimated by the EM algorithm [8].
The finite-mixture model [9-11] assumes that the num-
ber of mixture components is finite and the number can
be estimated using the Bayesian information criterion [12]
or the Akaike information criterion [13]. However, since
the estimation of the number of clusters and the estima-
tion of the mixture parameters are performed separately,
the finite-mixture model may be sensitive to the different
choices of the number of clusters [14].

The infinite-mixture model has been proposed to cope
with the above sensitivity problem of the finite-mixture
model. This model does not assume a specific number
of components and is primarily based on the Dirichlet
processes [15,16]. The clustering process can equivalently
be viewed as a Chinese restaurant process [17], where
the data are considered as customers entering a restau-
rant. Each component corresponds to a table with infinite
capacity. A new customer joins a table according to the
current assignment of seats.
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Hierarchical clustering (HC) is yet another more
advanced approach especially for biological data [18],
which groups together the data with similar features based
on the underlying hierarchical structure. The biological
data often exhibit hierarchical structure, e.g., one clus-
ter may highly be overlapped or could be embedded
into another cluster [19]. If such hierarchical structure is
ignored, the clustering result may contain many fragmen-
tal clusters which could have been combined together.
Hence, for biological data, such HC has its advantages to
many traditional clustering algorithms. The performances
of such HC algorithms depend highly on the quality of the
data and the specific agglomerative or divisive ways the
algorithms use for combining clusters.

Traditional clustering algorithms for microarray data
usually assign each gene with a feature vector formed
by the expressions in different experiments. The cluster-
ing is carried out for these vectors. It is well known that
many genes share different levels of functionalities [20].
The resemblances of different genes are commonly repre-
sented at different levels of perspectives, e.g., at the cluster
level instead of individual gene level. In other words, The
relationships among different genes may vary during dif-
ferent experiments. In Figure 1, we illustrate the gene
hierarchical structures for microarray data. Genes group
A and B may show close relationship to genes group C in
some experiments. While the genes group D shows corre-
lations to groups A, B, and C in other experiments. The
group D obviously has a hierarchical relationships to other
gene groups. In this case, we desire to have a HC algorithm
recognizing the gene resemblances not at the single gene
level but at the higher cluster level, to avoid unnecessary
fragmental clusters that impede the proper interpretation

Figure 1 lllustration of gene hierarchical structures in
microarray data.
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of the biological information. Such a HC algorithm may
also provide new information by taking the hierarchical
similarities into account.

In this article, we propose a model-based clustering
algorithm for gene expression data based on the hier-
archical Dirichlet process (HDP) [21]. The HDP model
incorporates the merits of both the infinite-mixture model
and the HC. The hierarchical structure is introduced to
allow sharing data among related clusters. On the other
hand, the model uses the Dirichlet processes as the non-
parametric Bayesian prior, which do not assume a fixed
number of clusters a priori.

The remainder of the article is organized as follows.
In Section 2, we introduce some necessary mathematical
background and formulate the HC problem as a statis-
tical inference problem. In Section 3, we derive a Gibbs
sampler-based inference algorithm based on the Chinese
restaurant metaphor of the HDP model. In Section 4, we
provide experimental results of the proposed HDP algo-
rithm for two applications, regulatory network segmen-
tation and gene expression clustering. Finally, Section5
concludes the article.

2 System model and problem formulation

As in any model-based clustering method, it is assumed
that the gene expression data are random samples from
some underlying distributions. All data in one cluster are
generated by the same distribution. For most existing clus-
tering algorithms, each gene is associated with a vector
containing the expressions in all experiments. The cluster-
ing of the genes is based on their vectors. However, such
approach ignores the fact that genes may show different
functionalities under various experiment conditions, i.e.,
different clusters may be formed under different experi-
ments. In order to cope with this phenomenon, we treat
each expression separately. More specifically, we allow
different expressions of the same individual gene to be
generated by different statistical models.

Suppose that for the mircoarray data, there are N genes
in total. For each gene, we conduct M experiments. Let
gji denote the expression of the ith gene in the jth experi-
ment, 1 <i < N,and1 < j < M. For each gj;, we associate
a latent membership variable zj;, which indicates the clus-
ter membership of gj;. That is, if genes i and i’ are in the
same cluster under the conditions of experiments j and f/,
we have zj; = zyy. Note that z;; is supported on a countable
set such as N or Z. For each gj;, we associate a coefficient
0> whose index is determined by its membership variable
zj;. In order to have a Bayesian approach, we also assume
that each coefficient 6y is drawn independently from a
prior distribution Go

Ok ~ Go, (1)

where k is determined by z;;.
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The membership variable z = {zj;};; has a discrete joint
distribution

Z~ 7. (2)

Note that in this article, the bold-face letter always refers
to a set formed by the elements with specified indices.

We assume that each gj; is drawn independently from a
distribution F (Gzﬁ)

gji ~F (GZ,‘,') ’ (3)
where 60;; is a coefficient associated with g;; and F is a
distribution family such as the Gaussian distribution fam-
ily. In summary, we have the following model for the
expression data

Ok~ Go
z ~ T
gji|zji,9k ~F (921‘,') . (4)

The above model is a relatively general one which
can induce many previous models. For example, in
all Bayesian approaches, all variables are assigned with
proper priors. It is very popular to use the mixture model
as the prior, which models the data generated by a mixture
of distributions, e.g., a linear combination of a family of
distributions such as Gaussian distributions. Each cluster
is generated by one component in the mixture distribution
given the membership variable [14]. The above approach
corresponds to our model if we assume that 7 is finitely
supported and F is Gaussian.

The aim for clustering is to determine the posterior
probability of the latent membership variables given the
observed gene expressions

P(z|g), (5)

where g = {gji}; ;.

As a clustering algorithm, the final result is given in the
forms of clusters. Each gene has to be assigned to one and
only one cluster. Once we have the inference result in (5),
we can apply the maximum a posterior criterion to obtain
an estimate of membership variable z.; for the ith gene as

z;=arg, maxZP(zji = alg). (6)
j

We note that in case one is interested in finding other
related clusters for one gene, we can simply use the
inferred distribution to membership variable to obtain
this information.

2.1 Dirichlet processes and infinite mixture model

Instead of assuming a fixed number of clusters a priori,
one can assume infinite number of clusters to avoid the
estimation accuracy problem on the number of clusters as
we mentioned earlier. Correspondingly in (4), the prior &
is an infinite discrete distribution. Again as in the Bayesian
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fashion, we will introduce priors for all parameters. The
Dirichlet process is one such prior. It can be viewed as
a random measure [15], i.e., the domain of this process
(viewed as a measure) is a collection of probability mea-
sures. In this section, we will give a brief introduction to
the Dirichlet process which serves as the vital prior part in
our HDP model.

Recall that the Dirichlet distribution D(uy,...,ug) of
order K on a (K — 1)-simplex in RX~! with parameter
ui, ..., ux is given by the following probability density
function

K
F( =1 Lt,') £ ui—1
e [T

HLK:1 Pu) 3
(7)

where X x; = 1L,u; > 0,i = 1,...,K, and ['(-) is the
Gamma function. Since every point in the domain is a dis-
crete probability measure, the Dirichlet distribution is a
random measure in the finite discrete probability space.

The Dirichlet processes are the generalization of the
Dirichlet distribution into the continuous space. There
are various constructive or non-constructive definitions of
Dirichlet processes. For simplicity, we use the following
non-constructive definition.

Let (X, 0, o) be a probability space. A Dirichlet process
D(ay, o) with parameter og > 0 is defined as a random
measure: for any non-trivial finite partition (3, ..., x») of
X with x; € o, we have the random variable

G- -

D15 XK—13 U1y - . . UK) =

,G(xr) ~ D(aopo(x1),- - - copo(xr))s (8)

where G is drawn from D(ao, (L0).

The Dirichlet processes can be characterized in various
ways [15] such as the stick-breaking construction [22] and
the Chinese restaurant process [23]. The Chinese restau-
rant process serves as a visualized characterization of the
Dirichlet process.

Let x1, %2, .. . be a sequence of random variables drawn
from the Dirichlet process D(wy, jt0). Although we do
not have the explicit formula for D, we would like to
know the conditional probability of x; given x1,...,%;_1.
In the Chinese restaurant model, the data can be viewed
as customers sequentially entering a restaurant with infi-
nite number of tables. Each table corresponds to a cluster
with unlimited capacity. Each customer x; entering the
restaurant will join in the table already taken with equal
probability. In addition, the new customer may sit in a new
table with probability proportional to «g. Tables that have
already been occupied by customers tend to gain more
and more customers.

One remarkable property of the Dirichlet process is that
although it is generated by a continuous process, it is dis-
crete (countably many) almost surely [15]. In other words,
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almost every sample distribution drawn from the Dirich-
let process is a discrete distribution. As a consequence, the
Dirichlet process is suitable to serve as a non-parametric
prior of the infinite mixture model.

The Dirichlet mixture model uses the Dirichlet process
as a prior. The model in (4) can then be represented as
follows:

gji'zjix O ~ F(GZ]'L‘); (9)

Ok is generated by the measure 1o

Ok ~ 105 (10)
{zi} is generated by a Dirichlet process D(ay, o)
{zji} ~ D(ao, po)- (11)

Recall that D(«, (o) is discrete almost everywhere, which
corresponds to the indices of the clusters.

2.2 HDP model

Biological data such as the expression data often exhibit
hierarchical structures. For example, although clusters can
be formed based on similarities, some clusters may still
share certain similarities among themselves at different
levels of perspectives. Within one cluster, the genes may
share similar features. But on the level of clusters, one
cluster may share some similar feature with some other
clusters. Many traditional clustering algorithms typically
fail to recognize such hierarchical information and are not
able to group these similar clusters into a new cluster, pro-
ducing many fragments in the final clustering result. As a
consequence, it is difficult to interpret the functionalities
and meanings of these fragments. Therefore, it is desirable
to have an algorithm that is able to cluster among clusters.
In other words, the algorithm should be able to cluster
based on multiple features at different levels. In order
to capture the hierarchical structure feature of the gene
expressions, we now introduce the hierarchical model to
allow clustering at different levels. The clustering algo-
rithm based on the hierarchical model not only reduces
the number of cluster fragments, but also may reveal more
details about the unknown functionalities of certain genes
as the clusters sharing multiple features.

Recall that in the statistical model (11), the clustering
effect is induced by the Dirichlet process D(«xg, o). If we
need to take into account different level of clusters, it is
natural to introduce a prior with clustering effect to the
base measure . Again in this case, the Dirichlet process
can serve as such prior. The intuition is that given the base
measure, the clustering effect is represented through a
Dirichlet process on the single gene level. By the Dirichlet
process assumption on the base measure, the base mea-
sure also exhibits the clustering effect, which leads to
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clustering at cluster level. We simply set the prior to the
base measure 1 as

o ~ D1(a1, (1), (12)

where Dj(a1, 1) is another Dirichlet process. In this
article, we use the same letter for the measure, the distri-
bution it induces, and the corresponding density function
as long as it is clear from the context. Moreover, we could
extend the hierarchies to as many levels as we wish at
the expense of complexity of the inference algorithm. The
desired number of hierarchies can be determined by the
prior biological knowledge. In this article, we focus on a
two-level hierarchy.

As a remark, we would like to point out the connec-
tion and difference on the “hierarchy” in the proposed
HDP method and traditional HC [4]. Both the HDP and
HC algorithms can provide HC results. The hierarchy in
the HDP method is manifested by the Chinese restaurant
process which will be introduced later, where the data sit
in the same table can be viewed as the first level and all
tables sharing the same dish can be viewed as the second
level. While the hierarchy in the HC is obtained by merg-
ing existing clusters based on their distances. However,
its specific merging strategy is heuristic and is irreversible
for those merged clusters. Hierarchy formed in this fash-
ion often may not reflect the true structure in the data
since various hierarchical structures can be formed by
choosing different distance metrics. However, the HDP
algorithm captures the hierarchical structure at the model
level. The merging is carried out automatically during the
inference. Therefore, it naturally takes the hierarchy into
consideration.

In summary, we have the following HDP model for the
data:

mo ~ Dier, p1)
{zji} o, 0 ~ D(ao, o)
ap, a1 ~ I'(a, b)

O ~ u1

gji|2jir9k ~ F(QZ/'Z'): (13)

where a and b are some fixed constants. We assume that F
and w1 are conjugate priors. In this article, F is assumed to
be the Gaussian distribution and 1 is the inverse Gamma
distribution.

3 Inference algorithm

It is intractable to get the closed-form solution to the
inference problem (5). In this section, we develop a Gibbs
sampling algorithm for estimating the posterior distribu-
tion in (5). At each iteration /, we draw a sample Z}(il)
sequentially from the distribution:

(OIS OR0) 0 (1)
P(zji 1211, 219+ -1 2

(=1)
%=1 B+

2N ,g) . (19
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Under regularity conditions, the distribution of {zg.l) },i will
converge to the true posterior distribution in (5) f24]. The
proposed Gibbs sampling algorithm is similar to the HDP
inference algorithm proposed in [21], since both the Gibbs
algorithms use the Chinese restaurant metaphor which we
will elaborate later. However, because of the differences in
modeling, we still need to provide details for the inference
algorithm based on our model.

3.1 Chinese restaurant metaphor

The Chinese restaurant model [23] is a visualized charac-
terization for interpreting the Dirichlet process. Because
there is no explicit formula to describe the Dirichlet pro-
cess, we will employ the Chinese restaurant model for
HDP inference instead of directly computing the poste-
rior distribution in (5). We refer to [23,25] for the proof
and other details of the equivalence between the Chinese
restaurant metaphor and the Dirichlet processes.

In the Chinese restaurant metaphor for the HDP model
(13), we view {zji} as customers entering a restaurant
sequentially. The restaurant has infinite number of rows
and columns of tables which are labeled by #;. Each z;
will associate to one and only one table in the jth row.
We use ¢(zj;) to denote the column index of the table
in the jth row taken by zj;, i.e., zj; will sit at table Zjg(z;).
If it is clear from the context, we will use ¢ in short
for ¢(zj;). The index of the random variable 6; in (13)
is characterized by a menu containing various dishes.
Each table picks one and only one dish from the menus
{mi}k=1,,., which are drawn independently from the base
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measure (1. gj; is drawn independently according to the
dish it chooses through the distribution F(-) as in (13).
We denote A(%;) as the index of the dish taken by table ;,
i.e., table ¢; chooses dish M (8- As before, we may write
Aji in short of A(Z;). In summary, customer z;; will sit at
table Zjy, and enjoy dish M The HDP is reflected in
this metaphor such that the customers choose the tables
as well as the dishes in a Dirichlet process fashion. The
customers sitting at the same table are classified into one
cluster. Moreover, the customers sitting at different tables
but ordering the same dish will also be clustered into the
same group. Hence, the clustering effect is performed at
the cluster level, i.e., we allow “clustering among clusters”.
In Figure 2, we show an illustration of the Chinese restau-
rant metaphor. The different patterns of shades represent
different clusters. We also introduce two useful counter
variables: c;; denotes the number of customers sitting at
table ¢;; djx counts the number of tables in row j serving
dish m1;.

Using the Chinese restaurant metaphor, instead of infer-
ring zj;, we can directly infer ¢;; and Aj;. The membership
variable z;; is completely determined by A(Zjy(z;)). That
is, zj; = zyy if and only if )\(tjtp(zﬁ)) = )»(tj¢(zj/i/))~ As we
pointed out before, the specific values of the membership
variable zj; are not relevant to the clustering as long as z;;
is supported on a countable set. Hence, we could simply
let

zii = (tip) - (15)

Zp
21 214
Zy3 p
1
Zy 2oy
Y 2y
L
L ] -
L ] -
: :

ly ls
t
22 tys
L L

Figure 2 lllustration of the Chinese restaurant metaphor. Tables of the same pattern are grouped into the same cluster.
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According to [25], we have the following conditional
probabilities for the HDP model

2k dik

» Bji—1, @0, o ~ Z

m=1

Cim
i—1+ay i
oo

+ i— 1+ [0 4) Ho,
where ", dj; calculates the number of tables taken in
the rth row and 4. is the Kronecker delta function. The
interpretation of (16) is that customer zj; chooses a table
already taken with equal probability. In addition, z; may
choose a new table with probability proportional to «y.

By the hierarchical assumption, the distribution of the
dish chosen at an occupied table is another Dirichlet pro-
cess. We have the following conditional distribution of the
dishes

djildj1s . . .
(16)

Kji .
higy [h1 Migye_y 01 szﬂ
JPji 117 * « =2 ) Dj(i-1)? ’ ] mi
=1 Z}k d}k + a3
24}

+ 7#1,
Zﬂ( d/k + o1

(17)

where Zj djx counts the number of tables serving dish
mp; ij dji counts the number of tables serving dishes;
Kj; denotes the net number of dishes served till A;;'s com-
ing by counting only once each dish that has been served
multiple times.

3.2 A Gibbs sampler for HDP inference

Instead of sampling the posterior probability in (5), we will
sample ¢ = {p11, P12,...} and A = {A11, A12,. ..} from the
following posterior distribution

P(¢, Alg).

We can calculate the related conditional probabilities as
follows.

If a is a value that has been taken before, the conditional
probability of ¢;; = a is given by

(18)

P (¢]Z = 61|¢lc»i, A,0, a1, &g, U1, g) X Cj@f}»ia(g}i|g;j)’ (19)

where 8 = {6;};; and A = {A;};;. The superscript

¢ denotes the complement of the variables in its cate-
: c [C—

gory, ie, g = {gvlg.nzgy and 5 = {yiki.izG-

S (gi|gfi> denotes the conditional density of gj; given all

other data generated according to menu 1, which can

be calculated as

JTLy,, = F@e10)pa©)do
— Jt
/ Hj/i’;éji,)‘/%v =, F (g1 p1(0)do
(20)

Fo (21185
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The numerator of (20) is the joint density of the data
which are generated by the same dish. By the assumption
that gy are conditionally independent given the cho-
sen dish, we have the conditional density of the data in
the product form. The denominator is the joint density
excluding the specific gj; term. The integrals in (20) can
either be calculated using the numerical method or using
the Monte Carlo integration. For example, in order to cal-
culate the following integral f ab f(x)p(x)dx, where p(x) is a
density function, we can draw samples x1, x5, . .., %, from
p(x) and approximate the integral by f: f)px)dx =
Ep [f )] ~ %Z?Zlf(xi). To calculate (20), we view
p1() as p(-) and F(gyy|-) asf ().

On the other hand, if  is a new value then we have

p <¢ji = ﬂ|¢;i, A, 0,a1, 0, g) X g

K.
P ij dix + a1 k \&jil5ji

o1

‘=" 21
ij djk + a3 @1

fﬂ@mmwmﬂ.

We also have the following conditional probabilities for
Aji. If a is used before, we have

P(qu,i = al¢, Xjy.., 0, a1, a0, g) e Zd,‘a Ja <g/i|gfi>;
j
(22)

otherwise we have

P<)"]¢ﬂ = a|¢1 )\',C'@ijeral;aO’g) X o1 fF(g}l|9)Ml(9)d9
(23)

The derivations of (19), (21), (22), and (23) are given in
Appendix.

Before we present the Gibbs sampling algorithm, we
recall the Metropolis—Hastings (M—H) algorithm [26] for
drawing samples from a target distribution whose den-
sity function f (x) is only known up to a scaling factor, i.e.,
fx) o p(x). To draw samples from f(x), we make use
of some fixed conditional distribution g(x;|x;) that sat-
isfies g(x2|x1) = q(x1|x2), Vx1,%2. The M—H algorithm
proceeds as follows.

e Start with an arbitrary value xp with p(x¢) > 0.
e Forl=1,2,...

— Given the previous sample x;_1, draw a
candidate sample x* from g(x*|x;_1).

— Calculate g8 = pz(’g:i). If 8 > 1 then accept the
candidate and let x; = x*. Otherwise accept it
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with probability B, or reject it and accept the
previous sample with probability 1 — 8.

After a “burn-in” period, say /o, the samples {x;},-;, follow
the distribution f(x).

We now summarize the Gibbs sampling algorithm for
the HDP inference as follows.

e [Initialization: randomly assign the indices
0) (0 0) , (0
¢(0) = {¢i1)1¢§2)y . ] and )\,(0) = {}“gl)’ )\‘gz); .. }
Note that once we have all the indices, the counters

{cji} and {dj} are also determined.
e Forl=1,2,...,0p+ L,

— Draw samples of [qu(l.l)} from their posteriors

) -1 -1 -1 -1
P (4 = ald 520D, 0!, el )

(24)

given by (19) and (21) using the M—H
algorithm. We view the probability in (24) as
the target density and choose g(:|) to be a
distribution supported on N. For example, we

can use q(ilj) = (1+1)” i,jeN.

— Draw samples of {k( )(,) } from their posteriors
ji

I -1 -1 (-1
P(Al(q:(, —a|¢(1) l;¢(,))c,a§ ),a(() ),g)

Jt Jt

(25)

given by (22) and (23) using M—H algorithm.
We view the probability in (25) as the target
density and use g(-|) as specified in the
previous step.

— Since P(ao|¢p, A, o1, 8) = P(xp) and
P(ar|e, X, 00, 8) = P(oq) simply draw
samples ofoz( and D from their prior
Gamma distrlbutlons

e Using the samples after the “burn-in” period

{¢(Z) X(l)} to calculate I3(¢, A|g), which is given

=lp+1

ZIQ+L
I=lp+1

0 _ o _
! {d’/’“ = = b}
L

P (i = a,hjg, = b) =

’

(26)

where 1(+) is the indicator function. Determine the
membership distribution P(z|g) from the inferred
joint distribution P(¢ A|g) by

P(zj; = alg) = pr()"]b = alg, ¢ji = b)P(¢]z =blg).
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e Calculate the estimation of clustering index z.; for the
ith gene by 2,; = arg, max } ; P(zj; = alg).

3.3 A numerical example

In this section, we provide a simple numerical example to
illustrate the proposed Gibbs sampler. Let us consider the
case N = M = 2, ie, there are 2 genes and 2 experi-
ments. Assume that the expressions are as g11 = 0,812 =
1,821 = —1, and gy = 2. We assume 11(8) ~ N(0,1)
and F(g;|0) ~ N(6,1). For initialization, we set ¢>(0) =
LeQ = 2,60 — 3,60 — 4 k((;)@ — 1,0 _

(0) (0) (0) (0)
1, A =2,A =2anda, =, =1.
2¢$) 2¢;(2)) 0 1

We first show how to draw sample from P (qbﬁ)mﬁﬁ) ‘

2@ o o, oz(()o), g) by the M—H algorithm. Given the initial
value, assume that g(-|-) returns ¢;7 = 3 as a candidate
sample. By (19), we have P <¢ﬁ) = 1|¢go)c,l(0),a§0),

oz(()o),g) o c11fa (€11185,), where ¢;; = 1and Aqp = 1.

We also have

ST, =1 F@il0)ni(0)do
i
fH(j’,i');e(l,1),,\,./¢/i,:1 F(gj#10)p1(0)do

_ JF@ul0)F(@210)11(6)do
[ F(g1210)121(0)d6

N (g11|gi1) =

~ 0.22971.
(27)

Note that the above integral can be calculated either
numerically or by using the Monte Carlo integration
method.

By (21) and using the specific values of the variables, we
obtain

1 0 0
<¢( ) 3|¢§1)C’ (0), ( ) ,g>

K11 Z,d.

j 4k c
o ag E = ——fr(gulg
|:k_1 ijdjk‘i‘al ( 11)

e
ij djk + o

with K31 = 1, Zjdjl = 2, Z/’kdjk =4, 00 = a1 = 1.
Plugging in these values, we have

P (¢§? — 3|¢(0)C X(O),Otio), ’g)

o gfl (g11lg5;) + - /F(g11|9)u1(9)d9 ~ 0.1483. (29)

Since 8 = 8'21;98731 ~ 0.6456 < 1, we should accept this

candidate sample ¢1; = 3 with a probability of 0.6456.
After the burn-in period, say the sample returned by the
M-H algorithm is ¢1; = 4, then we update 4’11 = 4 and
move on to draw samples of the remaining variables ¢,
$21, and ¢oa.

/F(gule)m(@)d@} (28)
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Assuming that we obtain samples of oY as ¢ﬁ) =
4,0 = 1L,¢) = 1,¢) = 2. We next draw the
sample 2D, Given the initial value )‘1 o = 1 and

= 3 as a candidate sample. By
. (1) 1) 4 0)c <0> )
(22), we obtain P (Ald)i =1|pP k (1), » Qg ,g) x

(Z,' djl)fl (g11|g§1). Furthermore, we have Zj dp = 2
and fi (g11|gi1) ~ 0.22971 as calculated before.
By (23), we obtain P (xﬁ; — 31¢M,20¢ §°>,a(§°>,g)

1¢11’
o1 [ F(g1110)p1(0)d6. Moreover, we have oy = 1 and

JF(@110)u1(6)d6 ~ 0.28208 as calculated before. So
we have 8 = 225%851 ~ 0.614 < 1. After the burn-in
period, assume that the M—H algorithm returns a sample

q(-|-) returns )Lwﬁ)

Awm = 2, then update A( )(1) = 2 and move on to sample

the remaining A Varlables as well as ap and ;.

After the burn-in period of the whole Gibbs sampler,
we can calculate the posterior joint distribution P(¢, A|g)
from the samples and determine the clusters following the
last two steps in the proposed Gibbs sampling algorithm.

4 Experimental results

The HDP clustering algorithm proposed in this article can
be employed for gene expression analysis or as a segmen-
tation algorithm for gene regulatory network inference. In
this section, we first introduce two performance measures
for clustering, the Rand Index (RI) [27] and the Silhou-
ette Index (SI) [28]. We compare the HDP algorithm to
the support vector machine (SVM) algorithm for network
segmentation on synthetic data. We then conduct various
experiments on both synthetic and real datasets including
the AD400 datasets [29], the yeast galactose datasets [30],
yeast sporulation datasets [31], human fibroblasts serum
datasets [32], and yeast cell cycle data [33]. We com-
pare the HDP algorithm to the Latent Dirichlet allocation
(LDA), MCLUST, SVM, K-means, Bayesian Infinite Mix-
ture Clustering (BIMC) the HC [4,14,34-37] based on the
performance measures and the functional relationships.

4.1 Performance measures

In order to evaluate the clustering result, we utilize two
measures: RI [27] and SI [28]. The first index is used when
a ground truth is known in priori and the second index
is to measure the performance without any knowledge of
the ground truth.

The RI is a measure of agreement between two cluster-
ing results. It takes a value between 0 and 1. The higher is
the score, the higher agreements it indicates.

Let A denote the datasets with a total number of # ele-
ments. Given two clustering results X = {X3, ..., Xs} and
Y = {Yi,....,Yr} of A, ie, A = U, Xi = UL Y
and X; (" X; = ¥, Y;(Y; = @ for i # j. For any pair of
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elements (a, b) in A, we say they are in the same set under
a clustering result if @ and b are in the same cluster. Oth-
erwise we say they are in different sets. Note that there are
totally (g’) pairs of elements. We define the following four
counting numbers: Z; denotes the number of pairs that
are both in the same set in X and Y; Z, denotes the num-
ber of pairs that are both in different sets in X and Y; Z3
denotes the number of pairs that are in the same set in X
and in different sets in Y; and Z4 denotes the number of
pairs that are in different sets in X and in the same set in
Y. The RlI is then given by

Z Z
RI = 1+ 22 ) (30)
v+ Zy+ 23+ 24

Due to the lack of the ground truth in most real appli-
cations, we utilize the SI to evaluate the clustering per-
formance. The SI is a measure by calculating the average
width of all data points, which reflects the compactness of
the clustering. Let x denote the average distance between
a point p in a cluster and all other points within that clus-
ter. Let y be the minimum average distance between p and
other clusters. The Silhouette distance for p is defined as

y—x

max{x, y}’ 3D

s(p) =
The SI is the average Silhouette distance among all data
points. The value of SI lies in [ —1,1] and higher score
indicates better performance.

4.2 Network segmentation on synthetic data

In regulatory network inference, due to the large size
of the network, it is often useful to perform a network
segmentation. The segmented sub-networks usually have
much less number of nodes than the original network,
leading to faster and more accurate analysis of the original
network [38]. Clustering algorithms can be employed for
such segmentation purpose. However, traditional cluster-
ing algorithms often provide segmentation results either
too fine or too coarse, i.e., the resulting sub-networks

10

6 7

Figure 3 The synthetic network structure.
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Table 1 Clustering performance of LDA, SVM, MCLUST,
K-means, HC, and HDP on the AD400 data

Algorithm RI Sl Number of clusters

LDA 0.931 0.553 10.0
SVM 0.929 0493 11
MCLUST 0.942 0.583 10
K-means 0.895 0457 10
HC 0.916 0.348 9

BIMC 0.935 0.571 10.0

HDP 0.947 0.577 10.0

either contain too few genes or two many genes. In addi-
tion, the hierarchical structure of the network cannot be
discovered by those algorithms. Thanks to its hierarchical
model assumption, the HDP algorithm can provide better
segmentation results. We demonstrate the segmentation
application of HDP on a synthetic network and compare
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to the SVM algorithm which is widely used for clustering
and segmentation.

The network under consideration is shown in Figure 3.
We assume that the distributions for all nodes are Gaus-
sian. The directed links indicate that the parent nodes
are the priors of the child nodes. Disconnected nodes are
mutually independent. We generate the data in the follow-
ing way. Nodes 1, 2, and 8 are generated independently
by Gaussian distributions of unit variance with means
1, 2, and 3, respectively. Nodes 3, 4, 5, 6, 9, and 10 are
generated independently by unit variance Gaussian distri-
butions with means determined by their respective parent
nodes. Node 7 is generated by a Gaussian distribution
with mean determined by node 4 and variance determined
by absolute value of node 5. The network contains two iso-
lated segments with one segment containing nodes 1-7
and the other containing nodes 8—10. The HDP algorithm
is applied to this network and segments the network into
three clusters. Nodes 2, 4, 6 form one cluster; nodes 1, 3,
5,7 form another cluster; and nodes 8, 9, 10 form the third

5.5
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Experiment order number
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0.985-

=)

©

=]
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10 12 14 16 18 20
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Figure 4 Plots of the HDP results in 20 experiments. (a) Plot of number of clusters in 20 experiments. (b) Plot of rand index in 20 experiments.
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one. The SVM algorithm on the other hand produces two
clusters, one containing nodes 1-7 and the other contain-
ing nodes 8—10. As one can see, the network obviously
contains two hierarchies in the left segment, i.e., nodes
1-7 of the network. The SVM fails to recognize the hier-
archies and provides a result coarser than that given by the
HDP algorithm.

4.3 AD400 data

The AD400 is a synthetic dataset proposed in [29], which
is used to evaluate the clustering algorithm performance.
The dataset is constituted by 400 genes with 10 time
points. As the ground truth, the AD400 dataset has 10
clusters with each one containing 40 genes.

For randomized algorithms as LDA, BIMC, HDP, we
average the results over 20 runs of the algorithms. We
compare the HDP algorithm to other widely used algo-
rithms such as LDA, SVM, MCLUST, K-means, BIMC,
and HC. The results are presented in Table 1. As we can
see, the HDP algorithm has the similar performance of the
MCLUST algorithm. While the HDP generally performs
better than other widely used algorithms.

4.4 Yeast galactose data

We conduct experiment on the yeast galactose data, which
consists of 205 genes. The true number of clusters based
on the functional categories is 4 [39]. We calculate the
RI index between different clustering results to the result
in [39], which is regarded as the standard benchmark.
The LDA model is a generative probabilistic model for
document classifications [34], which also uses Dirichlet
distribution as a prior. We adapt the LDA model to the
yeast galactose data to compare the proposed HDP algo-
rithm. Since the LDA and HDP methods are randomized
algorithms, we run the algorithms 20 times and use the
average for the final score. In Figure 4, we illustrate the
performances of each experiments for the HDP method.
The performances of the algorithms under consideration
are listed in Table 2.

It is seen that the HDP algorithm performs the best
among the three algorithms. Unlike the MCLUST and
LDA algorithms which produce more clusters than 4, the
average number of clusters given by the HDP algorithm is
very closed to the “true” value 4. Compared to the SVM

Table 2 Clustering performance of LDA, MCLUST, SVM,
and HDP on the yeast galactose data

Algorithm Rand index Number of clusters
LDA 0.942 6.3
SVM 0.954 5
MCLUST 0.903 9

HDP 0.973 38
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Table 3 Clustering performance of LDA, MCLUST,
K-means, HC, BIMC, and HDP on the yeast sporulation data

Algorithm SI Number of clusters
LDA 0.586 6.2
MCLUST 0.577 6
K-Means 0.324 8
HC 0392 7
BIMC 0592 6.1
HDP 0.673 6.0

method, the HDP algorithm produces a result that is more
similar to the “ground truth’) i.e., with the highest RI value.

4.5 Yeast sporulation data

The yeast sporulation dataset consists of 6,118 genes with
7 times points which were obtained during the sporulation
process [31]. We pre-processed the dataset by applying
a logarithmic transform and removing the data whose
expression levels did not have significant changes. After
the pre-process, the data have 513 genes left. In Table 3,
we compare the HDP clustering result to LDA, MCLUST,
K-Means, BIMC, and HC. For randomized algorithms
such as LDA, BIMC, and HDP, we average the scores by
running the algorithm 20 times.

From Table 3, we can see that the HDP has the high-
est SI score. It suggests that the clustering results pro-
vided by HDP are more compact and less separated than
results from other algorithms. The K-means and HC algo-
rithm suggest higher number of clusters. However, their SI
scores indicate that their clusters are not as tight as other
algorithms.

4.6 Human fibroblasts serum data
The human fibroblasts serum data consists of 8,613 genes
with 12 time points [32]. Again a logarithmic transform
has been applied to the data and genes without significant
changes have been removed. The remaining dataset has
532 genes.

In Table 4, we show the performance of the HDP algo-
rithm and other various algorithms. It has been shown

Table 4 Clustering performance of LDA, MCLUST, K-means,
HC, BIMC, and HDP on the human fibroblasts serum data

Algorithm Sl Number of clusters
LDA 0.298 94
MCLUST 0.382 6
K-Means 0.324 7
HC 0313 5
BIMC 0418 7.3
HDP 0452 6.4
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Figure 5 Plots of all HDP clusters for yeast cell cycle data. (a) Plot of Cluster 1, containing 261 genes. (b) Plot of Cluster 2, containing 86 genes.
(c) Plot of Cluster 3, containing 135 genes. (d) Plot of Cluster 4, containing 144 genes. (e) Plot of Cluster 5, containing 76 genes. (f) Plot of Cluster 6,
containing 25 genes. (g) Plot of Cluster 7, containing 88 genes. (h) Plot of Cluster 8, containing 60 genes. (i) Plot of Cluster 9, containing 381 genes.




Wang and Wang EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:5

http://bsb.eurasipjournals.com/content/2013/1/5

Table 5 Numbers of newly discovered genes in various
functional categories by the proposed HDP clustering
algorithm

Function categories Number of newly discovered genes

Cell cycle and DNA processing 20
Protein synthesis 25
Protein fate 4

Cell fate 12
Transcription 8
Unclassified protein 57

that the clustering results by the HDP algorithm are the
compactest among those algorithms. The LDA algorithm
suggests 9.4 clusters with the lowest SI score, which indi-
cates that some of its clusters can be further tightened. HC
provides a result consisting of five clusters. However, the
SI score of the HC result is not the highest, which suggests
its clustering may not be well formed.

4.7 Yeast cell cycle data

We next apply the proposed HDP clustering algorithm
on the yeast cell Saccharomyces cerevisiae cycle dataset
[2,40]. The data are obtained by synchronizing and col-
lecting the mRNAs from cells at 10-min intervals over
the course of two cell cycles. It has been used widely for
testing the performances of clustering algorithm [2,14,41].
The expression data have been taken logarithmic trans-
form and lie in the interval [ —2, 2]. We pre-processed the
data to remove those which did not change significantly
over time. We also removed those data whose means are
below a small threshold. After the pre-processing, there
are 1,515 genes left. We then apply the HDP algorithm
and obtain 10 clusters in total. The plots of the clusters are
shown in Figure 5.

We resort to the MIPS database [42] to determine the
functional categories for each cluster. The inferred func-
tional category of a cluster is the category shared by the
majority of the member elements. After applying the cell-
cycle selection criterion in [2], we find that there are 126
genes identified by proposed HDP algorithm but not dis-
covered in [2]. We list in Table5 the numbers of newly
discovered genes in various functional categories. We also
observe that parts of the newly discovered unclassified
genes belong to clusters with classified categories. Given
the hierarchical characteristic of the HDP algorithm, it
may suggest multiple descriptions of those genes that
might have been overlooked before.

Note that in [14] a Bayesian model with infinite num-
ber of clusters is proposed based on the Dirichlet process.
The model in [14] is a special case of the HDP model pro-
posed in this article when there is only one hierarchy. In
terms of discovering new gene functionalities, we find that
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the performances of the two algorithms are similar, as the
method in [14] discovered 106 new genes compared to the
result in [2]. However, by taking the hierarchical structure
into account, the total number of clusters found by the
HDP algorithm is significantly smaller than that given in
[14] which is 43 clusters. The SI score for BIMC and HDP
are 0.321 and 0.392, respectively. The HDP clustering con-
solidates many fragmental clusters, which may provide an
easier way to interpret the clustering results.

In Table 6, we list the new genes discovered by the HDP
algorithm which are not found in [2].

5 Conclusions

In this article, we have proposed a new clustering
approach based on the HDP. The HDP clustering explic-
itly models the hierarchical structure in the data that is
prevalent in biological data such as gene expressions. We
have developed a statistical inference algorithm for the
proposed HDP model based on the Chinese restaurant
metaphor and the Gibbs sampler. We have applied the
proposed HDP clustering algorithm to both regulatory
network segmentation and gene expression clustering.
The HDP algorithm is shown to reveal more structural
information of the data compared to popular algorithms
such as SVM and MCLUST, by incorporating the hierar-
chical knowledge into the model.

Table 6 List of newly discovered genes in various
functional categories

Function categories Genes

YBLO51c¢ YBR136w YBLO16wW YDR200C YBR274wW
YDR217¢ YLR314c¢ YJLO74c YJLO95w YDRO52¢
YDL126c¢ YCLO16¢ YDL188c YALO40c YELO19¢
YER122c¢ YLRO35¢ YLRO55¢ YMLO32¢c YMR078¢

Cell cycle and DNA

processing

YDRO91c YGL103w YBR118w YBLO57¢c YBR101c
YBR181c YDLO83c YDL184c YDRO12w YDR172w
YGL105w YGL129¢ YJLO41w YJL125¢ YJR113c
YLR185w YPLO37c YPLO48w YLROO9w YHLOOTw

YHLOT5w  YHRO1T1w YHRO88w YDR450w
YELO34w

Protein synthesis

Protein fate YALO16w YBLOO9w YBRO44c YDL040c

YALO40c YDLOO6wW YDL134c YILOO7c YJL187c
YDL029w YDLO035¢ YCR0O02¢ YBL105¢ YCRO89w
YER114c YELO23c

Cell fate

YALO21c YBLO22¢ YCLO5Tw YDR146¢ YILO84c
YJL127c¢ YJL164c YJLOO6C

Transcription
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Appendix
Derivation of formula (19) and (21)

P <¢]l = a|¢;i1 lvoyal:QO; M1, g)

P (gji; ¢/l = a|¢6(zji),x, o,al,ao,ﬂl,g;i>

B (32)
P<g1'i|¢fir)~’0,051,0!o,m,gfi>
o P(gjh ji = a|¢;i, X,O,al,ao,ul,g]?i) (33)
X P (g’}l'¢; x) 0; 1,00, U1, g;[)
P (3 = algfu 1, 0,01,00,11,5) (34)
By (16), if a has appeared before, we have
P (¢]l = d|¢ﬁ», l,0,a1,a0,ul,g1¢i) X Cjg. (35)
Otherwise we have
P(¢]l = 6l|¢;t‘yX;0;a1,0l0,,u1,g}qi) X op. (36)

If a has appeared before, by the assumption the data are
conditionally independent, we also have

P(gji|¢: X,o,al,do,m,gﬁ) = fija (gji|gfg)r (37)

where f3, (gﬁ|g]2) can be calculated by the Bayes’ formula:

JTLy,, = F@e10)pa9)do
Ji

¢ gilgs) = )
P (g,; /l> S gz, Mgy =i F(gj10)pu1(8)do
(38)
Combining (35) and (37), we have (19).
If a4 has not appeared before, by (17), we have
P <g]l|¢t X: 0: o1, 0, L1, g;)
Kja S.d
7Ok L/F £10) 141 (0)do)
Z T d ]k+a1fk (g; Ig,,) S ditan (gl )
(39)

Combining (36) and (39), we have (21).
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Derivation of (22) nd (23)

p <)\']¢11 = ﬂ|¢’ )"/Cq)]l) 01 o1, %0, U1, g)

p (gji’ )\/(Pll = ﬂ|¢, )\’]Cqbll’ 0’ 1,00, U1, g;)

N (40)
P (gjl|¢; A, 0; o1, 00, U1, gjcl)
o P (gl'i’ Ajgy; = alo, l;(pﬁ,O,otl,ao, U1, g;l) (41)
P (gﬁlqs’)"o’“l’ao» ergfi>
P (kf"’ﬁ = alé, Xy, 0,1, 0, m,gf,-) (42)
By (17), if a has appeared before, we have
p ()Lj¢/i = al¢, k;(pﬁ, 0, 01,0, 11, g]cl) 104 Z dja~ (43)
j
Otherwise we have
P()‘f@t =al, l,%ﬂfo,al,ao,m,gfi) o og. (44)
If a is used before, we have
p (gji|¢; X, 0,01, 00, ul,gﬁ) =f, (gji|g;i) . (45)

Otherwise, the customer chooses a new table. The data
are generated from F based on a sample from (1. We have

P (gl 1,0, a1, 00,101, 85) = / F(gil6) 111 (6)do.
(46)

Combining (43), (44), (45), and (46), we have (22) and (23).
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