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Abstract

Background: There is a growing body of evidence associating microRNAs (miRNAs) with human diseases. MiRNAs
are new key players in the disease paradigm demonstrating roles in several human diseases. The functional association
between miRNAs and diseases remains largely unclear and far from complete. With the advent of high-throughput
functional genomics techniques that infer genes and biological pathways dysregulted in diseases, it is now possible to
infer functional association between diseases and biological molecules by integrating disparate biological information.

Results: Here, we first used Lasso regression model to identify miRNAs associated with disease signature as a proof of
concept. Then we proposed an integrated approach that uses disease-gene associations from microarray experiments
and text mining, and miRNA-gene association from computational predictions and protein networks to build
functional associations network between miRNAs and diseases. The findings of the proposed model were validated
against gold standard datasets using ROC analysis and results were promising (AUC = 0.81). Our protein
network-based approach discovered 19 new functional associations between prostate cancer and miRNAs. The new
19 associations were validated using miRNA expression data and clinical profiles and showed to act as diagnostic and
prognostic prostate biomarkers. The proposed integrated approach allowed us to reconstruct functional associations
between miRNAs and human diseases and uncovered functional roles of newly discovered miRNAs.

Conclusions: Lasso regression was used to find associations between diseases and miRNAs using their gene
signature. Defining miRNA gene signature by integrating the downstream effect of miRNAs demonstrated better
performance than the miRNA signature alone. Integrating biological networks and multiple data to define miRNA and
disease gene signature demonstrated high performance to uncover new functional associations between miRNAs
and diseases.
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Introduction

MicroRNAs (miRNAs) are small RNA molecules that reg-
ulate genes by binding to their 3'UTR and trigger target
degradation or translational repression [1]. miRNAs play
a key role in diverse biological processes including differ-
entiation, cell cycle and apoptosis [2]. About 3% of the
human genes encode for miRNAs, each miRNA is esti-
mated to regulate hundreds of genes, and over 50% of
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the human protein-coding genes are regulated by miR-
NAs. Computational predictions estimated that there are
around 1,700 miRNAs in human genome [3]. This makes
miRNAs one of the most abundant classes of regulatory
genes in humans. MiRNAs are now perceived as a key
layer of post-transcriptional control within the networks
of gene regulation.

MicroRNAs expression is altered in several diseases
including cancer and thus it is very likely that alteration
in miRNA expression could lead to human diseases [4,5].
Several studies showed that miRNAs are associated with a
growing list of diseases including cancer [6,7]. An increas-
ing body of evidence suggests that miRNAs impact gene
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expression in many cancer types including prostate cancer
[4,8,9]. Several studies have investigated the role of miR-
NAs in cancer using mRNA and miRNA expression pro-
filing [1,10] and suggest that most diseases are attributed
to more than one miRNA that affect hundreds of genes.

There are several lines of evidence suggesting functional
association between miRNAs and cancer. First, miRNAs
are shown to control cell proliferation and apoptosis
[2,11]. Thus their dysregulation may contribute to prolif-
erative disease. Several miRNAs showed to act as tumor
suppressor or oncogenes [12]. Second, genome-wide asso-
ciation studies demonstrated that most human miRNAs
are located at fragile sites in the genome or regions that
are commonly altered or amplified in human cancer [13].
Third, miRNAs are widely deregulated in comparison to
normal tissues [14]. Mutation of miRNAs, dysfunction
of miRNA biogenesis and dysregulation of miRNAs and
their targets may result in various diseases. The question
remains how miRNA alteration might cause a disease. All
these evidences support the strong necessities in under-
standing the functional association between miRNAs and
diseases.

Currently, more than 70 diseases have been reported
to be associated with miRNAs [15]. Many studies have
produced large number of miRNA-disease associations
and showed that the mechanisms of miRNAs involved
in diseases are very complex. Uncovering disease-miRNA
associations help understanding underlying mechanisms
in diseases. This would give us better insights into the
functional role of newly discovered miRNAs in certain
diseases. Studying and analyzing the functional associa-
tion between diseases and miRNAs requires large scale
experiments to provide high-throughput data governing
the status of diseases cells. High-throughput genomics
technologies are witnessing a revolution and becom-
ing a standard routine in many experimental laborato-
ries. The quantity of microarray data analyzing the gene
expression in diseases is exponentially increasing. As a
result, disease gene signatures are delivered on a regular
basis. Defining gene signature for diseases better explore
the dysregulated biological pathways and cellular pro-
cesses in diseases. Gene signatures bear a signature of
regulatory activity of miRNAs as it is anticipated that
the collective effect of miRNAs may lead to dramatic
changes in the expression of their targets that may lead to
diseases.

Although integrating bioinformatics approaches with
miRNA expression data can predict miRNAs deregulated
in certain diseases, only very few miRNAs have been func-
tionally validated in disease context, and the underlying
mechanisms of why and how miRNAs become deregu-
lated are largely unknown. Better understanding of the
regulatory role of miRNAs in cancer development and
progression requires exploring their cooperative influence
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on target genes’ protein context. Characterizing the effect
of miRNA on target-context protein partners gained con-
siderable body of attention in the past few years. Protein
degree in PPI networks showed to be correlated with the
number of targeting miRNAs [16]. Topological features
of proteins in PPI showed to be useful to eliminate false
discoveries in miRNA-target prediction algorithms [17].
These observations shed light on the influence of miR-
NAs on the PPI subnetwork involving the target, and
highlights the importance of considering target protein
partners when searching for functional miRNA-disease
interactions.

To summarize the contribution of this work, we used
Lasso regression to identify miRNAs whose targets’ pro-
tein context are enriched in disease gene signatures. The
model was applied to identify miRNAs associated with
diseases by integrating disease gene signatures extracted
from microarray experiments and extracted from pubmed
abstracts, with miRNA-gene interactions resulting from
integrating predicted miRNA-gene interactions and their
influence on target protein context to predict func-
tional association between miRNAs and diseases. The
results of the model were validated against gold standard
miRNA-disease interactions using ROC analysis. Finally,
we focused on newly predicted prostate miRNAs from
our approach and characterized their functional role in
prostate cancer.

Materials and methods

In this section, we describe how the miRNA-target
and disease-gene networks were constructed and pre-
processed as input to the Lasso regression model pro-
posed in this work. First, the steps to define gene-disease
and miRNA-target interaction networks to define a sig-
natures for each disease and miRNA respectively are
described. The Lasso regression model used to associate
miRNAs with disease is then explained. Finally, two val-
idation steps to validate the predicted results from the
proposed model were followed. First, we showed that
Lasso regression model is effective and appropriate to be
used to associate disease signatures with miRNAs as a
proof of concept. Second, we used ROC analysis to vali-
date the predicted disease-miRNAs against gold standard
dataset.

Identification of disease-gene signatures

Gene-disease interactions were retrieved from two inde-
pendent sources. We first extracted microarray data
related to 23 diseases including 13 cancers from Gene
Expression Omnibus (Additional file 1). 450 expres-
sion profiles including control and disease samples were
extracted to define a gene signature for each disease.
All microarray experiments were conducted using GPL96
platform to avoid possible platform bias. In addition
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to avoid any possible bias that might result from nor-
malization algorithms, we manually extracted raw data
and normalize them using the RMA normalization algo-
rithm [18] implemented in bioconductor. Raw data files
related to each experiment were normalized indepen-
dently. We only focused on genes related to our diseases
extracted from OMIM database. We only considered
2,414 genes that have corresponding probe set in GPL96
platform. Finally we used significant analysis of microar-
ray (SAM) [19] in order to obtain gene signature for
each disease. For each disease, we only considered the
top 200 differentially expressed genes (top upregulated
100 and top downregulated 100) in each experiment. In
total, 1,942 genes were associated with the 23 diseases
(Additional file 2).

The second source from which we extracted gene
disease interactions is pubmed publications. We used
PolySearch [20], a web server that supports more than 50
different classes of queries against different types of scien-
tific abstracts to extract associations between our diseases
and genes. The typical query used was given disease X,
find all Y such that Y is a gene. We used the default
keywords that PolySearch developed manually to relate
diseases with genes. The number of abstracts was set to
10,000 and thus obtained results from the most 10,000
relevant abstracts. For our experiment, we heuristically
considered all genes that have a relevance score more than
0 and citations more than ten as being a valid signature for
the query disease. 720 genes of relevance to our 23 genes
were extracted. We finally took the union of the two gene
sets (2,061 genes) across 23 diseases in a network called
DiseaseSig (Additional file 2).

Constructing miRNA-target interactions

Human miRNA target computational predictions for
miRNA with conserved 3'UTR were taken from Tar-
getScan 5.1 [21] which showed to outperform all other
miRNA-target prediction methods [22]. These interac-
tions are direct interactions between miRNAs and their
targets. PITA [23] miRNA-target prediction algorithm
was also used to assess how the model is sensitive to
initial input data. We also considered the non-direct inter-
actions between miRNA and targets by considering the
effect of miRNA of protein partners of the target. We used
undirectional functional protein interactions from Reac-
tome [24], which includes proteins physically interacting,
proteins sharing biological function and regulatory inter-
actions, and physical protein interactions from the HPRD
database [25]. Proteins that are not targeted by miRNAs
but at least five of their neighbors are targeted by miR-
NAs are considered indirectly influenced by miRNAs. In
this study, we combined both direct and indirect miRNA-
target interactions (NetmiR) and used it as input to Lasso
regression model (Additional file 3).
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Lasso regression modelling to predict miRNA disease
association

We used the disease-gene (DiseaseSig) and miRNA-gene
(NetmiR) interactions constructed as response and pre-
dicted variables, respectively as input to the Lasso regres-
sion model. Let DiseaseSig represent the gene signature
of particular disease, NetmiR; be the miRNA-target influ-
ence profile of miRNA (j) on all target genes. g; is the
strength of the impact of miRNA (j) on disease gene sig-
nature which indicates how much a miRNA can explain
the genes affected in a particular disease. The proposed
regression model can be written as follows:

miR
DiseaseSig(i) = Y  NetmiR; * f; + AP(B) 1)
j=1
where
mi 1
P(p) = ,; 5B )

miR is the total number of miRNAs. P(f) is the Lasso
penalty. This penalty is particularly useful when there are
many correlated predictor variables as in the case of miR-
NAs. 8 is the regression coefficient of each variable, which
indicates how each miRNA explains the gene signature.
A is a factor that determines the sparsity of the solution;
as A increases, the number of nonzero components of
decreases.

To optimize A, we tried many values of X and used those
that minimize the mean square error. Lasso regression
was fit using ten-fold cross validation. We used glmnet
implementation in matlab from http://www-stat.stanford.
edu/tibs/glmnet-matlab/ to find miRNA coefficients. An
overall description of constructing input data and the
model to identify and validate miRNA disease associations
is given in Figure 1.

Lasso regression modeling to identify enriched miRNAs
from gene lists

To demonstrate the applicability and effectiveness of using
Lasso regression modeling to identify miRNAs whose tar-
gets are enriched in gene lists, we used affymetrix gene
expression data from LNCaP cell lines treated with pre-
miR-1, pre-miR-27b and pre-miR-206 that was retrieved
from [26] under the access number GSE31620. Significant
analysis of micorarray (SAM) [19] was used to identify dif-
ferentially expressed genes. 88 genes were identified to be
down regulated after pre-miR-1 treatment, 83 were down-
regulated after pre-miR-206 treatment, and 51 were down
regulated after pre-miR-27b treatment. NetmiR miRNA-
target interaction network is used to represent protein
targets influenced by miRNAs. The purpose of this step
was to show a proof of concept that Lasso regression could
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Figure 1 An overview of the framework and flow of data. Four major steps to construct functional disease-miRNA associations. First is
disease-gene interactions that were constructed by integrating disease signatures from microarray gene expression data and from pubmed
abstracts. Second, miRNA-gene associations was constructed by integrating computationally predicted miRNA-target interactions and protein
networks. The aim of integrating protein networks is to reduce noisiness in the predicted data. Proteins that are not targeted by a miRNA but their
partners are, are considered as indirect miRNA-target association. Third step is to process the two input (gene-disease and miRNA-gene) as input to
the Lasso regression model. The final step is to evaluate the predicted results against gold standard miRNA-target interactions data.

be used to identify miRNAs whose targets are enriched in
gene lists.

Validating Lasso regression model performance

The predicted disease-miRNA interactions of the regres-
sion model were validated against a gold standard
disease miRNA associations manually extracted from
miR2disease [27] and HMDD [28] databases. The gold
standard network contains 743 interactions between the
23 disease and 305 miRNAs (Additional file 4). Area under
curve (AUC) is used to assess the performance of the
proposed model and compare it with other results. We
compared the performance of the proposed integrative
Lasso regression approach with Fisher test that is used
to identify miRNAs enriched in disease signature. The
purpose of this step was to show that integrating multi-
ple data sources (micorarray and pubmed abstracts in our

work) to define disease gene signatures and integrating
the influence of miRNAs on the target protein context is
valuable to uncover disease-miRNA interactions. We fur-
ther focused on miRNAs associated with prostate cancer
and validated the new predictions of the model on miRNA
expression data from two independent prostate miRNA
profiling studies. The aim was to assess the diagnostic and
prognostic value of the new predictions of the method. In
here, we only focused on prostate cancer disease due to
availability of miRNA data with clinical profiles.

Results

Constructing miRNA-target and disease-gene networks
We first constructed miRNA-target network and gene-
disease network to be used as predicted and response
variables respectively as input to the regression model.
miRNA-target network was constructed by integrating
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results from TargetScan and protein interactions. This
study only focused on genes that are targeted by a
miRNA and interact with proteins at the protein level.
We obtained 3,235 genes that are targeted by 305 miR-
NAs (Additional file 3). For the disease gene interac-
tions, we combined disease gene signature from microar-
ray data (1942) and pubmed abstracts (720). Taking the
union of the two lists generates 2,061 genes across 23
diseases (Additional file 2). Finally we only considered
genes that are directly or indirectly influenced by miR-
NAs and are associated with a disease. So we took the
intersection of the 3235 and 2061 gene lists leading to 658
genes.

Lasso regression is able to identify miRNAs from
downregulated gene sets post to pre-miRNA treatment
We first assessed the performance of the proposed
regression method using several gene lists reported by
recently published studies that used microarray analysis to
reveal genes whose expression is affected by pre-miRNA
treatment. For example, in [26] LNCaP cell lines were
treated with pre-miRNA (pre-miR-1, pre-miR206, and
pre-miR27b) and downregulated genes were identified
using differential gene expression analysis. The downreg-
ulated gene lists that were used as DiseaseSig and NetMiR
were used to evaluate the performance of Lasso regression
model to identify the influential miRNAs after treatment.
miRNA coefficients from the regression model were used
to assess the enrichment of miRNAs’ targets in the gene
set. In the pre-miR-1 downregulated genes, the regres-
sion model ranked miRNA-1 first with the highest coef-
ficient value. In the pre-miR-206 downregulated genes,
the regression model showed that miR-1 and miRNA-
206 have the highest coefficient that explains 25% of the
downregulated genes. In the downregulated genes after
miR-27b treatment, the model showed that miRNA-9
has the highest coefficient and miRNA-27b ranked sec-
ond. We compared the enrichment results of the pro-
posed model with Fisher test and hypergeometric test
and two miRNA enrichment tools Geneset2miRNA [29]
and Expression2Kinases [30]. The results of our method
demonstrated that it is able to infer correct miRNAs from
gene lists downregulated after pre-miRNA treatment and
it can better infer the influential miRNAs. These find-
ings show that integrating the influence of miRNA on the
protein context of the target improves miRNA enrich-
ment analysis and demonstrated effectiveness for using
Lasso regression to predict miRNA-disease functional
associations.

Reconstructing miRNA-disease functional association

After demonstrating that Lasso regression successfully
identified miRNAs from downregulated gene lists post to
miRNA treatment, we applied Lasso regression modeling
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to identify miRNAs associated with diseases using
miRNA-target and disease-gene networks. We further
analyzed the resulting miRNA-disease functional asso-
ciations from the regression model. In this section,
we focus on the network generated using combined
microarray and abstracts disease gene signature with
PPI based miRNA target network. Our model gener-
ated 741 interactions between the 23 diseases and 365
miRNAs (Additional file 5). 364 interactions were com-
mon with the gold standard, 157 were in the gold stan-
dard and missed by our method, and 220 were identified
by the model and not in the gold standard (Figure 2).
37 new interactions were predicted between miRNAs
and prostate cancer. Further diagnostic and prognos-
tic characterization of the 37 prostate miRNAs were
conducted.

Assessing the performance of the proposed method to
identify functional miRNA-disease associations

We evaluated the performance of the Lasso regression
model on a gold standard miRNA-disease interactions
obtained from miR2Disease database that contains exper-
imentally verified miRNA-disease associations [27]. This
gold standard data set contains experimentally validated
miRNA-target interactions. We extracted 740 interactions
between the 23 diseases and the miRNAs. We assessed
the performance of the model using several combina-
tions. We first used the microarray gene signature-disease
network vs miRNA-target network obtained from Tar-
getScan to predict miRNA-disease associations. We then
combined disease gene signature from pubmed with the
microarray gene signature vs the targetscan miRNA tar-
get network. In the third test, we used the combined
microarray and text signature vs TargetScan and PPI
based miRNA-target network. The goal of this step was
to assess if including more disease signatures and miRNA
targets would increase the performance of the model. The
last combination is to use PITA miRNA-target algorithm
instead of TargetScan to assess the performance of the
model when changing the input data sets. The model
returns miRNA-disease association values that ranged
from —1 to 1. Since the model uses Lasso penalty, most
of the resulted associations are zero. Here we only con-
sidered positive values and not negative values as negative
values had no biological interpretations in our exper-
iment. We performed receiver operating characteristic
(ROC) curve analysis to assess the performance of the
model against different network construction strategies.
ROC curves for prostate cancer showed that integrating
disease signature from abstracts increased the perfor-
mance of the model, and integrating indirect miRNA-
target association increased the performance of the model
even more. We performed ROC curve analysis for six
other cancer diseases and found consistent results in all



Qabaja et al. EURASIP Journal on Bioinformatics and Systems Biology 2013, 2
http://bsb.eurasipjournals.com/content/2013/1/3

013:3 Page 6 of 11

mir-400 3! oa R A2
83

\

/\

miR-4B4R-376
miRﬁ“sa.? I

. \ \ \ | o
_ ~ miR9-1\ mfg_lépg 1
miR-452 miR-365 VX
miR-500 - \ L
miR-124y ™ \ A
miR-148

miR-421__

miR-20b___
miR208—  ——C

miR-384 miR

gl 361
/ iR-181¢ &
03~ > 17 W
miR-193/ il 5
miR-520n / MIR-218 14
/ /miR-92-2

miR-209-537%1287 o 1]
miR4GTRAS3 i gt
MR Al 38R
miR-376¢ |
miR-380-5p

combined microarray and abstract disease gene signature as response varia

predicted by our model and the interactions missed by our model. Results s
glioblastoma, melanoma as they have more complete gene signatures.

minﬂiigd BYR-MR-1G1R 3011
A \ | /

\ / .
{ miR374 iRA8d" )
/ \
/ R
\ v \

miR1-2 / miR-133

/ Bp2e2 : \

miR-363 miR-342 / ) f R-182/ R ~

YN A 7T || /N iR )

miR:373 A% / /) mirasd | YW A\ miR326

/MR- ] I ] AN \ A miR-30e-3p

mingdo / (/0 Jl Al [ ImiR-gRiB0a-5p  miR-18b i @ Disease
miR_425||R-151£i /] /| m Pmir212 ‘j‘| b ‘.‘ )
miR-2#91B302¢" /| / | I \ \ \ miRNA
' milg":"l‘ﬂiz“?gﬂzs.,‘ (1| miR-503

|
|
| e
,miR-19b
7&19?' — Interactions in gold standard

Figure 2 Predicted disease-miRNA functional association. Predicted miRNA-disease interactions using Lasso regression model. Here we used

mapped all the common interactions between the predicted interactions and the gold standard data. We also showed the novel interaction

| /
| /

| /

|

miR-101-2
miR-19

miR-99
./’/
———miR-141 ——miR-30a
8- /
miR-130b
/ i 4 miR-302f
/ i -59€R

Sy
- miR-369-3p
miR-20

Common Interactions between
our model and gold standard

not predicted by our model

== Interactions predicted by our
model not in gold standard

ble and with PPl-based miRNA-target signatures predicted variable. We

howed that results are biased to cancer diseases(prostate, breast, ovary,

the diseases (Figure 3). We focused on these six cancer
diseases as they have the highest number of miRNAs
associated with them. We compared AUC results from
the proposed Lasso regression model with results we
obtained using Fisher test and found that Lasso regres-
sion performs better than Fisher test-based enrichment
analysis. We also found that the model is susceptible to
the initial input data sets (miRNA-target, disease-gene).
This suggests that the performance of the Lasso regres-
sion model is robust and can be adapted to different
networks.

Evaluating clinical implications of newly discovered
associations

We used the 37 miRNAs to evaluate their association
with prostate cancer. We extracted the miRNA expres-
sion from two prostate cancer data sets. The first is
Taylor data [31] (GSE21032) that contains the expres-
sion of the miRNAs across 139 samples (98 primary, 12
metastatic and 29 normal). We only obtained 16 miR-
NAs with expression data in the Taylor data. The second
data is from [32] (GSE23022) that contains expression of
miRNAs across 40 samples (20 primary tumor and 20
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normal). 21 miRNAs have corresponding expression in
the data. We first tested the ability of these miRNAs to
predict tumor samples. We used support vector machine
(SVM) from LIBSVM library [33] (http://www.csie.ntu.
edu.tw/cjlin/libsvm/) implemented in matlab to assess the
performance. 10-fold cross validation was used to avoid
overfitting problem. We compared the performance of
the 16 miRNAs from Taylor data with 57 prostate miR-
NAs that were in common in the gold standard and our
model. Results in Table 1 showed that the newly predicted
prostate miRNAs are diagnostically as good as the gold
standard prostate miRNAs. We then evaluated the diag-
nostic role of the 16 miRNAs in Taylor data with prostate
cancer progression. Heatmap (Figure 4) demonstrates that
the 16 miRNAs are associated with metastasis. We further
conducted survival analysis to assess if the 16 miRNAs are
associated with cancer recurrence. Results showed that
both the 57 miRNAs in common with gold standard and
the 16 miRNAs predicted are able to significantly separate
high risk from low risk patients (p = 0.00025 and 0.007,
respectively) (Figures 5 and 6).

Discussion
Over recent years, miRNAs have emerged as major players
in the complex networks of gene regulation and have been

implicated in various aspects of human diseases. Deci-
phering functional associations between miRNAs and
diseases is a major step toward understanding the under-
lying patterns governing miRNA disease associations. In
addition, it gives better insight into the functional role of
miRNAs in disease development. The accumulated data
on miRNA expression levels in tumors demonstrate that
miRNAs are promising diagnostic candidates to distin-
guish different tumors and different subtypes of tumors
as well as to predict their clinical behavior [5]. The
observations supported the role of miRNAs as either
prognostic and/or diagnostic markers. miRNAs have ther-
apeutic applications by which disease-causing miRNAs

Table 1 Classification evaluation of prostate miRNAs
predicted by our model and common with gold standard
in multiple prostate miRNA expression data sets

Taylor data GSE23022
miRNAs common in gold 92.8% 77%
standard and our model
miRNAs predicted in our 90.6% 70%

model and NOT in gold
standard
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Figure 4 Heatmap of newly predicted prostate miRNAs. Novel predicted miRNAs that are not in the gold standard are associated with
metastasis. Expression levels of the 16 miRNAs from Taylor prostate data reveals that there is two distinct clusters of patients. One rich with
metastatic samples and the other is rich with normal prostate and non-aggressive primary cancer samples.

could be antagonized or functional miRNAs could be
restored.

Lasso regression modeling demonstrated promise to to
construct miRNA-target networks [34]. Motivated by this
work, we used Lasso regression model to predict func-
tional associations between miRNAs and diseases based
on gene signatures of each. Since there is an explosion
of disease microarray data, we used it to define gene
signature for each disease. To assess the noisiness in
the disease signature, we integrated disease gene signa-
ture from pubmed abstracts to generate signature that
cover wider spectrum of genes. For the miRNA-gene
network, we only considered genes that are interacting
with other proteins or genes and are directly or indi-
rectly influenced by the miRNAs as these genes are
anticipated to have higher influence on disease pro-
gression compared to genes that are targeted by miR-
NAs and not propagating their influence on the protein
network.

We first evaluated the performance of Lasso regres-
sion as a miRNA enrichment analysis method as a proof
of concept. Lasso regression successfully identified miR-
NAs from downregulated genes after miRNA treatment.
We further evaluated the performance of Lasso regres-
sion model on the disease -miRNA interaction networks.
We extracted disease-miRNA association network from
miR2Disease and HMDD that contain manually curated

database for microRNA deregulation in human diseases.
ROC curve analysis showed that integrating microarray
and text abstracts to define disease signature gives bet-
ter performance compared to using the signatures sep-
arately. Similarly, integrating miRNAs’ indirect influence
on genes to define miRNA target signature demonstrated
better performance compared to using the direct influ-
ence alone. This suggests that refining signatures is a key
step for accurate regression modeling. Two key issues
have big effect on the accuracy of the model. First, the
completeness and noisiness in the disease and miRNA
signature. The more complete and refined the signature
is, the more accurate the model is. Since microarray dis-
ease gene signature might harbour many off target genes
that are irrelevant to the disease, more robust disease
gene signature that is based on integrating more evi-
dences is essential for the success of the modeling process.
Similarly, incomplete miRNA-target interactions showed
to affect the performance of the model. Using miRNA-
target interactions from PITA showed less accuracy com-
pared with TargetScan results. This suggests that miRNa-
target data plays critical role in Lasso regression modeling
to predict functional associations between miRNAs and
diseases.

The second issue is the gold standard data. We realized
that gold standard data was biased toward certain dis-
eases like prostate cancer, breast cancer, and glioblastoma
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Figure 5 Prognostic analysis of known prostate miRNAs. Survival
analysis for the 57 miRNA common in the model and the gold
standard. We used miRNA expression from Taylor data and
Kaplain—-Meier curves to show significance of the association
between the novel miRNAs and cancer recurrence.

that have around hundred associated miRNAs. However,
other disease like sarcoma, and colon cancer are associ-
ated with very few miRNAs like let-miR-7a and miR-21,
respectively. This have big impact on false discovery rates
and thus AUC performance measure. A more curated
miRNA-disease interactions network is required to have
more accurate performance evaluation. Unfortunately,
we do not have complete manually accurated miRNA-
disease databases. We tried to combine miR2Disease and
HMDD to reduce incompleteness in the used miRNA-
target interactions.

To further validate the novel miRNA-disease associ-
ations predicted by the model, we focused on prostate
cancer as a case study. The model predicted 37 miRNAs to
be involved in prostate cancer development. We extracted
their expression from prostate miRNA expression data
(Taylor and GSE23022); 16 of which have expression in
Taylor miRNA expression data. Analyzing the diagnostic
potential of these new miRNAs showed that these newly
discovered miRNAs are diagnostically as good as prostate
miRNAs in the gold standard data. Furthermore, the 16
miRNAs showed to be prognostically significant as they
are associated with cancer recurrence. When we looked
deeper into the literature, we found several of the 16 miR-
NAs have been validated to have a role in prostate cancer.
For example, miRNA-1 showed to be a tumor suppres-
sor miRNA that act as prognostic biomarker [26]. These

08F
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Figure 6 Prognostic analysis of predicted prostate miRNAs.
Survival analysis for the 16 miRNA predicted in the model and not in
the gold standard. We used miRNA expression from Taylor data and
Kaplain—Meier curves to show significance of the association
between the novel miRNAs and cancer recurrence. This results
suggest that the 16 miRNAs are prognostic biomarkers that require
further biological and clinical investigations.

results support the the power of integrating signatures to
construct functional network associations.

Finally, these results showed a promise of using regres-
sion models for integrating disease and miRNA signatures
to find underlying functional associations between miR-
NAs and diseases. This could give us more insight on
the functional role and implications of miRNAs in disease
development.

Conclusion

Uncovering miRNA-disease functional association is a key
step to understand disease development. Integrating dis-
ease signature from microarray data and pubmed abstract
with miRNA target interactions to build miRNA-disease
functional association showed promise to uncover signif-
icant associations between diseases and miRNAs. Lasso
regression demonstrated effectiveness for miRNA enrich-
ment analysis. Integrating multiple data sources and bio-
logical networks to define more accurate disease and
miRNA signature is promising to uncover novel biological
associations between miRNAs and disease. Newly pre-
dicted miRNAs associated with prostate cancer showed
diagnostic and prognostic potential. This concludes that
our model gives more insight into disease and functional
role of miRNAs in disease development. Although limita-
tions exist in the current work, the uncovered interactions
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are important for understanding diseases and patterns

underlying miRNA-disease associations.
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Additional file 1: Gene Expression Data Titles. This file contains the
gene expression data we used to find disease signature from microarray
data. We provided the GEO of the 24 diseases we used in addition to the
experiment title.

Additional file 2: Disease- Gene Signatures. This file represents the gene
signatures for each of the 24 diseases that we extracted from microarray
data and from pubmed abstracts. The file also represents the combined
signature of diseases from both microarray and pubmed abstracts.

Additional file 3: PPI-based miRNA targets. This file shows the protein
network-based miRNA targets. This shows the indirectly influence of
miRNAs on genes to represent functional target of miRNAs.

Additional file 4: Gold standard miRNA disease. This file is the gold
standard miRNA-disease associations that we extracted from miRDisease
and HDMM databases to validate the performance of our approach.
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the miRNA disease interactions predicted from our approach. In addition, it
shows the overlap with the gold standard interactions. It shows the
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goldstandard and the interactions that are in goldstandard and our
method was unable to predict it.
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