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Background: Biochemical oscillators perform crucial functions in cells, e.g.,, they set up circadian clocks. The
dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous
and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for
continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types
of oscillators under the influence of perturbations such as noise.

Results: In this article, we extend the applicability of these phase computation methods to biochemical oscillators
as discrete molecular systems, upon the information obtained from a continuous-state approximation of such
oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular
oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive
certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation
experiments on the sample paths of well-known biological oscillators validate our analyses.

Conclusions: The impact of noise that arises from the discrete and random nature of the mechanisms that make
up molecular oscillators can be characterized based on the phase computation techniques proposed in this article.
The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The
isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of
any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-
state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be
possible if a proper phase model theory is developed, without resorting to such approximations.

Keywords: discrete molecular oscillators, oscillator phase, noise, phase noise, numerical methods, Monte Carlo
methods, Stochastic Simulation Algorithm (SSA), isochrons, phase equations, phase computation schemes, phase

1. Introduction

1.1 Oscillators in biological and electronic systems
Oscillatory behavior is encountered in many types of
systems including electronic, optical, mechanical, biolo-
gical, chemical, financial, social and climatological sys-
tems. Carefully designed oscillators are intentionally
introduced into many engineered systems to provide
essential functionality for system operation. In electronic
systems, oscillators are used to generate clock signals
that are needed in the synchronization of operations in
digital circuits and sampled-data systems. The periodic
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signal generated by an electronic oscillator or mono-
chromatic light from a laser is used as a carrier and for
frequency translation of signals in wireless and optical
communication systems. Oscillatory behavior in biologi-
cal systems is seen in population dynamics models
(prey-predator systems), in neural systems [1], in the
motor system, and in circadian rhythms [2]. Intracellular
and intercellular oscillators of various types perform
crucial functions in biological systems. Due to their
essentialness, and intricate and interesting dynamic
behavior, biological oscillations have been a research
focus for decades. Genetic oscillators that are responsi-
ble for setting up the circadian rhythms have received
particular attention [3]. Circadian rhythms are crucial
for the survival of many species, and there are many
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health problems associated with the disturbance of these
clocks in humans [4,5]. For instance, working night
shifts has been recently listed as a probable cause of
cancer by the World Health Organization [6-8]. A mile-
stone in synthetic biology is the work in [9] reporting
on a genetic regulatory network called the repressilator,
essentially a synthetic genetic oscillator.

Oscillators in electronic and telecommunication sys-
tems are adversely affected by the presence of undesired
disturbances in the system. Various types of distur-
bances such as noise affect the spectral and timing
properties of the ideally periodic signals generated by
oscillators, resulting in power spreading in the spectrum
and jitter and phase drift in the time domain [10].
Unlike other systems which contain an implicit or expli-
cit time reference, autonomously oscillating systems
respond to noise in a peculiar and somewhat nonintui-
tive manner. Understanding the behavior of oscillators
used in electronic systems in the presence of distur-
bances and noise has been a preoccupation for research-
ers for many decades [11]. The behavior of biological
oscillators under various types of disturbances has also
been the focus of a good deal of research work in the
second half of the 20th century [1,2,12,13].

1.2 Phase models for oscillators

The dynamical behavior of oscillators is best described
and analyzed in terms of the scalar quantity, phase. Of
the pertaining notions in the literature, the most straight-
forward phase definition is obtained when a planar oscil-
lator is expressed in polar coordinates, with amplitude
and polar angle as the state variables. The usefulness of
the polar angle as phase does not generalize to higher
dimensional oscillators. In the general case, it is our con-
viction that the most rigorous and precise definition of
phase is the one that is based on the so-called isochrons
(formed from in-phase points in the state-space) of an
oscillator [1,2,14,15]. The notion of isochrons was first
proposed by Winfree [2,14] in 1974. It was later revealed
that isochrons are intimately related to the notion of
asymptotic phase in the theory of differential equations
[16,17]. The isochron theoretic phase of a free-running,
noiseless oscillator is simply time itself. Such an unper-
turbed oscillator serves as a perfect time keeper if it is in
the process of converging to a limit cycle, even when it
has not yet settled to a periodic steady-state solution.
Perturbations make the actual phase deviate from time,
due to the degrading impact of disturbances on the time
keeping ability.

Phase is a quantity that compactly describes the dynami-
cal behavior of an oscillator. One is then interested in
computing the phase of a perturbed oscillator. If this can
be done in a semi or fully analytical manner for a practical
oscillator, one can draw conclusions and obtain useful
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characterizations in assessing the time keeping perfor-
mance. Indeed, we observe in the literature that, in various
disciplines, researchers have derived phase equations that
compactly describe the dynamics of weakly perturbed
oscillators [1,11]. It appears that a phase equation for
oscillators has first been derived by Malkin [18] in his
work on the reduction of weakly perturbed oscillators to
their phase models [1], and the same equation has been
subsequently reinvented by various other researchers in
several disciplines [2,11,19]. This phase equation has been
used in mathematical biology to study circadian rhythms
and coupled oscillators in the models of neurological sys-
tems [1,2,20], and in electronics for the analysis of phase
noise and timing jitter in oscillators [11,21]. Phase equa-
tions have great utility in performing (semi) analytical
phase computations. However, simpler and more accurate
schemes for numerical phase computations have been
recently proposed [15,22]. In some applications, merely a
technique for computing the instantaneous phase of an
oscillator for a given perturbation is needed. In this case,
not only the machinery of phase equations is not necessary
but also one can perform more accurate phase computa-
tions in a much simpler and straightforward manner.

1.3 Phase computations for discrete oscillators

We have proposed in [15] a numerical method for the
computation of quadratic approximations for the iso-
chrons of oscillators. In [22], we have reviewed the deri-
vation of the first-order phase equation (which is based
on the linear approximations for isochrons [1,2,20]),
with a formulation based on the isochron-theoretic
oscillator phase. On top of this, in [22] we have also
made use of again the quadratic isochron approxima-
tions of [15] to derive a novel second-order phase equa-
tion that is more accurate than the first-order. However,
the phase equations [22] and phase computation
schemes [15] discussed above are founded on continu-
ous oscillators described by differential equations.
Therefore, these models and techniques do not directly
apply to the analysis of molecular oscillators with dis-
crete-space models. In this article, we present a metho-
dology, enabling the application of these continuous
phase models [22] and the phase computation schemes
[15] on biological oscillators modeled in a discrete man-
ner at the molecular level. Our preliminary results
recently appeared in a workshop presentation [23]. This
article details and expands on our contributions over
this methodology.

We now summarize the workflow followed in the
methodology and also give an outline of the article. Sec-
tion 2 provides background information describing how
the discrete model of the oscillator is transformed into a
continuous, differential equation model through a limit-
ing process based on the assumption that the
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concentration of molecular species in the model of the
oscillator are large so that discrete effects are negligible
[24-30]. It should be particularly noted that the reaction
events in an SSA sample path (as generated by Gilles-
pie’s Stochastic Simulation Algorithm (SSA) [25]) are
the most crucial ingredients in translating the continu-
ous-state formalism on oscillator phase for use on mole-
cular oscillators.

Section 3 actually describes our major contribution, i.
e., how discrete-state oscillator phase computation is
accomplished using the paradigms of phase equations
and phase computation schemes. Using the phase mod-
eling techniques mentioned above, a continuous phase
model (depending on the model developed in Section 2)
is constructed and discretized. The noise sources in this
discretized phase model are represented as a cumulation
of the events occurring in the discrete model of the
oscillator. This two-way continuous-discrete transforma-
tion mechanism enables us to perform phase computa-
tions for discrete, molecular oscillators based on the
continuous phase model theory [22]. Moreover, the fact
that the noise sources in the phase computation are
synthesized from the same events in the SSA sample
path makes one-to-one comparisons with full SSA [25]
based simulations possible. The phase model con-
structed as such from the continuous-limit model of the
oscillator is accurate when a large number of molecules
exist for every species. However, in many biological
molecular oscillators, the number of molecules can be
quite small. Large deviations from the continuous limit
for such oscillators cause computations via continuous
first-order phase models based on linear isochron
approximations to become inaccurate. This was the
observation that prompted our work on the quadratic
(as opposed to linear) approximation theory and compu-
tational techniques for the isochrons of oscillators
[15,22]. With phase computation schemes based on
quadratic isochron approximations [15], deviations from
the continuous-deterministic limit are much better cap-
tured and more accurate phase computations for dis-
crete oscillators even with few molecules can be
performed.

In Section 4, we provide a brief literature review of the
approaches taken in the phase noise analysis of oscilla-
tors. Several seminal articles in the literature [11,31-36]
are categorized according to three classification schemes
in particular: the nature of the oscillator model used,
the nature of the analysis method, and the phase defini-
tion adopted. We also classify in Section 4 the approach
proposed in this article within the same framework.

Section 5 provides performance results for the pro-
posed phase computation methods running on intricate
molecular oscillators. The results are as expected, i.e.,
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phase equations are quite accurate and fast for oscillators
in a larger volume with big molecule numbers for the
species, but they lose accuracy when a smaller volume is
considered and noise effects become pronounced. Phase
computation schemes are always very accurate, even in
smaller volumes, but they are not as fast as the equations.
Several crucial points in the theory underlying the meth-
ods are also emphasized in the discussion throughout
this section. Section 6 concludes the article and suggests
some future research directions.

The next three sections constitute the detailed expla-
nation of the proposed methods. Sections 7 and 8 are
expanded versions of Sections 2 and 3, respectively, with
hints and references to derivations. Section 9 explains
how and where molecular oscillator models can be
obtained to test the proposed algorithms, which types of
information are obtained from the models in prepara-
tion for oscillator phase analysis, numerical implementa-
tion details for the proposed phase computation
methods, and in this section are also derived the com-
putational complexities for these methods.

2 Modeling and simulation of discrete molecular
oscillators

Biochemical models for molecular oscillators are gener-
ally specified as a set of molecular species participating
in a number of reactions with predefined propensities.
These models based on a stochastic chemical kinetics
formalism capture the inherent stochastic and noisy
behavior arising from the discrete and random nature of
molecules and reactions. The (instantaneous) number of
each molecular species, i.e., reactant, constitutes the
state of the model. The time-dependent state probabil-
ities for the system are described precisely with the Che-
mical Master Equation (CME) [28]. The generic form of
the CME is as in

dP(x1)
dt

M
D lajx— ) P (x—sj,1) — aj(x) P (x, 1)]

j=1

1)

Above in (1), x represents the state of a molecular
oscillator. The solution of this equation yields P(x,t),
i.e., the probability that the oscillator is visiting a certain
state x at time . Also, in (1), a(x) is called the propensity
of the j th reaction (note that we have M possible reac-
tions), while the oscillator is again visiting the state x.
This propensity function facilitates the quantification of
how much of a probability we have of reaction j occuring
in the next infinitesimal time. The constant vector s;
defines the changes in the numbers of molecules for the



Suvak and Demir EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:6

http://bsb.eurasipjournals.com/content/2012/1/6

species constituting the oscillatory system, when reaction
j occurs. The CME corresponds to a continuous-time
Markov chain. Due to the exponential number of state
configurations for the system, CME is generally very hard
to construct and solve. Therefore, one prefers to generate
sample paths for the system using Gillespie’s SSA [25],
whose ensemble obeys the probability law dictated by the
CME.

Continuous state-space models for molecular oscilla-
tors that serve as approximations to the discrete model
described above are also used. Based on the CME and
employing certain assumptions and approximations, one
may derive a continuous state-space model as a system
of stochastic differential equations, known as the Che-
mical Langevin Equations (CLEs). A CLE is of the gen-
eric form in

dX(1)

L =Sao)+sp([Vaxm])sw @

Above in (2), X(¢) is the state of the oscillator, i.e., the
solution of the SDE for a particular realization. Vectors
s; defined above are stacked side by side for all of the M
reactions to compose the stoichiometric matrix S in (2).

Note also that D([\/a(X(t))D is a square diagonal

matrix with its diagonal entries given by ,/a;(X(t)) for j
=1, .., M, with a(X(¢)) the vector of propensity func-
tions. The vector &(¢) is composed of independent zero-
mean Gaussian random variables with variance one. The
deterministic limit of the CLEs is in turn called the
Reaction Rate Equations (RREs). The generic form of an
RRE is as in

M
’ jt( D3 54 x) - S ax() 3)

j=1

which is mathematically obtained by crossing out the
second term on the right-hand side of (2). The RRE
model for an oscillator has a solution that is perfectly
periodic without noisy fluctuations. On the other hand,
the solution of the CLEs produces oscillatory sample
paths with fluctuations around the periodic orbit on top
of the deterministic solution of the RREs [28].

The reader is referred to Figure 1, in which a sum-
mary of the models (along with their respective natures)
for molecular oscillators and the algorithms used to
solve these models are provided. The instantaneous
phase computations we describe in this article are per-
formed on the sample paths generated by SSA simula-
tions based on a fully discrete model of the oscillator.
However, the isochron characterization (computation of
linear and quadratic isochron approximations) for the
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oscillator is based on the continuous-space RRE and
CLE model, as we describe in the next section.

3 Phase computations based on Langevin models
In performing phase characterizations, we compute sam-
ple paths for the instantaneous phase § (in units of
time) of a molecular oscillator. In the absence of noise
and disturbances, i.e., for an unperturbed oscillator, the
phase t is always exactly equal to time ¢ itself, even if
the oscillator is not at periodic steady-state. Perturba-
tions and noise result in deviations in the phase § and
cause it to be different from time ¢ [1,2,11,15,22]. The
perpetual effect of noise and disturbances causes this
deviation in the phase 7 to accumulate. Our goal is to
compute the instantaneous phase { that corresponds to
an SSA generated sample path for a molecular oscillator.
A pictorial description of this phase computation pro-
blem for oscillators is given in Figure 2.

We assume that the deterministic RREs for a molecular
oscillator have a stable periodic solution x(£) that repre-
sents a periodic orbit or limit cycle. An isochron of an
oscillator associated with the limit cycle x,(¢) is a set of
points (in the state-space) that have the same phase. For
an oscillator with N state variables, each isochron is an N -
1-dimensional hypersurface. The union of isochrons covers
the neighborhood of its periodic orbit [1,14]. See Figure 3
for the limit cycle and isochrons of a simple polar oscilla-
tor. Isochrons form the basis for a rigorous phase defini-
tion and phase computations for oscillators [22]. Another
crucial quantity in devising phase computation schemes,
in addition to isochrons, is the orbital deviation, i.e., the
instantaneous difference between the noisy oscillator state
and the in-phase point on the limit cycle (by definition,
the two points are on the same isochron) [22].

The perturbation projection vector (PPV) v(t) is
defined as the gradient of the phase t of an oscillator
[22] on the limit cycle represented by x,(¢). The PPV,
which is equivalent to the infinitesimal phase response
curves (PRCs) [1], is instrumental in forming linear
approximations for the isochrons of an oscillator. The
matrix H(¢) is defined as the Hessian of the phase }
(and the Jacobian of the PPV) [22] on the limit cycle.
The phase Hessian H(¢) is useful in forming quadratic
approximations for the isochrons of an oscillator. The
PPV v(¢) and the Hessian H(¢) can be computed using
the techniques described in [15].

Phase equations (differential equations for the phase
) can be derived based on the CLE model of an oscilla-
tor. Phase equations come in various flavors, depending
on whether a linear or quadratic approximation is used
for the isochrons and the orbital deviation [22]. The
acclaimed phase equation, used in multiple disciplines
[1,2,11], of the form
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Figure 1 Summary of molecular models and corresponding algorithms. The models, their natures, and the simulation algorithms for these
models are given. CME (of discrete stochastic nature) dictates the probability evolution of the ensemble of the sample paths generated by the
SSA algorithm. Applying to the CME the z-leap criterion and Gaussian approximation to Poisson random variables, CLE (continuous stochastic) is
derived. CLE sample paths are obtained via appropriate SDE Solutions. The infinite volume approximation acting on the CLE leads us to the RRE
(continuous deterministic), whose solutions we get through algorithms for ODEs.

VT Obx(D), 1) @
de

is based on linear isochron approximations and a lin-
ear differential equation for the orbital deviation (not
shown here). Above, b is the noise excitation which is
synthesized as a cumulation of the events that occur in
the discrete, molecular level model of the oscillator. We
call the model of (4) PhEqnLL (the first L for the iso-
chron and the second one for the orbital deviation
approximation, the natures of both of which are linear).
We also have PhEqnQQ (quadratic approximations for
both isochrons and orbital deviation) and PhEqnQL
(quadratic approximations for isochrons and linear
approximations for orbital deviation) [22]. See Figure 4
for a high-level representation of the phase computa-
tions methodology using phase equations.

With the phase equations based on linear and quadra-
tic isochron approximations, we can compute the phase
of an oscillator without having to run SSA simulations
based on its discrete, molecular model (unless a one-to-
one comparison between the results of phase computa-
tions based on phase equations and SSA simulations is
required). On the other hand, more accurate phase
computations can be attained if they are based on, i.e.,
use information, from SSA simulations. In this scheme,
we run an SSA simulation based on the discrete, mole-
cular model of the oscillator. For points (in the state-
space) on the sample path generated by the SSA simula-
tion, we compute a corresponding phase by essentially
determining the isochron on which the point in ques-
tion lies. Here, one can either employ no approxima-
tions (PhCompBF) for the isochrons or perform phase
computations based on linear (PhCompLin) or quadratic
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% Points on Noiseless Traces

SSA Sample Path
RRE Solutions
....... Isochrons

In-Phase Points for
Noisy Traces

Figure 2 Phase computation problem for oscillators. The two
trajectories x(t), the periodic solution of the RRE, and Xss,(t), a
sample path, start at the same point on the limit cycle, but at t = t,
they end up at different points and possibly on different isochrons.
The point Xs,(to) has registered a phase shift with respect to Xs(to).
According to isochron theory, there is a point Xg (f) that is on the
same isochron as Xs(to), therefore the two points are in-phase. The
time argument ¢ of the point xs(i) is the instantaneous phase
value of x,(t). Phase computation methods aim to calculate this
value ¢.

(PhCompQuad) isochron approximations. Brute-force
phase computations without isochron approximations
(PhCompBF) are computationally costly [15,22]. See
Figure 5 for a pictorial description of PhCompBF. Phase
computations based on isochron approximations and
SSA simulations proceeds as follows: Let x4, () be the

[=Limit Cycle*"Isochrons
-1 0 1

Figure 3 Limit cycle and isochrons of a polar oscillator (figure
from [15]). For this oscillator, the isochrons are analytically calculable.

Note that each isochron crosses the limit cycle exactly at a single point.
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sample path for the state vector of the oscillator that is
being computed with SSA. We solve

VT (1) [xssa(t) — %(2)] = 0 (5)

based on linear isochron approximations (PhCom-
pLin)—or a similar equation that also involves the phase
Hessian H(¢) based on quadratic isochron approxima-
tions (PhCompQuad)—for the phase § that corresponds
to X (t). Figure 6 provides a description for PhCompLin.
The above computation needs to be repeated for every
time point ¢ of interest. Above, for x4, (), we essentially
determine the isochron (in fact, a linear or quadratic
approximation for it) that passes through both the point
x,(%) on the limit cycle and x,(#). The phase of x,(f), i.
e., 1, is then the phase of xg,(£) as well since they reside
on the same isochron. We should note here that, even
though x4, (¢) above is computed with an SSA simulation
based on the discrete model of the oscillator, the steady-
state periodic solution x,(%), the phase gradient v() and
the Hessian H(f) (i.e., all of the information that is used
in constructing the isochron approximations) are com-
puted based on the continuous, RRE model of the oscilla-
tor. See Figure 7 for the high-level representation of the
phase computations methodology using phase computa-
tion schemes. The phase computation schemes we
describe here can be regarded as hybrid techniques that
are based both on the continuous, RRE and also the dis-
crete, molecular model of the oscillator. On the other
hand, the phase computations based on phase equations
are completely founded upon the continuous, RRE and
CLE models of the oscillator.

In summary, we point out the acronyms and some
properties of the proposed phase computation methods
for convenience. The phase equations are PhEqnLL,
PhEqnQL, and PhEqnQQ. The phase computation
schemes are PhCompBF (the most accurate but com-
putationally expensive method), PhCompLin, and
PhCompQuad. The schemes employ no approxima-
tions in orbital deviation, therefore they are expected
to be more accurate with respect to the equations. The
equations, on the other hand, have low computational
complexity and can generate results very fast. We also
show in this article that there is a trade-off between
accuracy and computational complexity for these
methods.

4 Related work
A classification scheme for categorizing previous work,
pertaining to the phase noise analysis of biochemical
oscillators, can be described as follows.

First, we note that there are basically two types of mod-
els for inherently noisy biochemical oscillators, i.e.,
discrete and continuous-state. CME describes the
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methodology is given in the figure.

Approximations

Figure 4 Phase computations through phase equations methodology. The events in the SSA-generated sample path are recorded. From
the RRE, the limit cycle and isochron approximation information is computed. Phase equations make use of these two pieces of information to
compute the instantaneous phase corresponding to each point in the sample path. The first-order phase equation as adapted to this

probabilistic evolution of the states of an oscillator, and it
is referred to as the most accurate characterization for
discrete molecular oscillators. Through approximations,
one derives from CME the CLE, a continuous-state noisy
model. CLE can be used to extract crucial information
about the continuous-state system that is an approximate
representation of its discrete-state ancestor. We note
here that, in oscillator phase noise analyses, mostly the
continuous-state model has been utilized [11,31-36].
Second, the nature of the phase noise analyses
conducted can be considered in two categories, i.e.,
semi-analytical techniques and sample path-based
approaches. Semi-analytical techniques have been
developed, in particular, for the stochastic characteriza-
tion of phase diffusion in oscillators [11,31-36]. In biol-
ogy, CLE has been used as a tool in illustrating and
quantifying the phase diffusion phenomena [31-34,36].
Characterization and computations pertaining to phase
diffusion in electronic oscillators were carried
out through a stochastic phase equation and the

probabilistic evolution of its solutions [11], noting that
the phase equation used was derived from an SDE (a
Stochastic Differential Equation describing a noisy elec-
tronic oscillator) that corresponds to the CLE for bio-
chemical oscillators. In all, these semi-analytical
techniques are based on the continuous-state model of
an oscillator. Regarding sample path-based approaches,
one may recall that, in discrete state, SSA is used to
generate sample paths, whose ensemble obeys the CME.
In continuous state, CLE can in turn be used to generate
sample paths. A recent study [35] illustrates derivations
of the crucial findings presented in [11,33,34] and
adopts an approach for phase diffusion constant compu-
tation, based on the transient phase computation of
CLE-generated sample paths in an ensemble.

Third, oscillator phase can be defined via two differ-
ent methods. There are the Hilbert transform-based
and the isochron-based definitions. The phase compu-
tation based on the Hilbert transform [37] takes the
evolution of a single state variable within a sample
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Legend for the traces in the subplots.

Figure 5 Brute-force phase computation scheme (PhCompBF). (a) An SSA sample path and a noiseless RRE solution (running in parallel) end
up at different isochrons at t,. (b) The last timepoints in the two simulations for part (a) are separately fed as initial conditions to the RRE in
order to generate the two separate traces shown in this subfigure. The RRE solution that was already on the periodic orbit continues tracing it,
and the off-orbit solution in turn approaches the limit cycle. (c) The off-orbit solution finally becomes periodic and the phase shift between the
two RRE solutions can be found, switching to the plots in the time domain and applying appropriate algorithms to compute the phase shift. (d)

(d) Legend

Limit Cycle
Isochrons

SSA Sample Path

RRE Solutions

Points on Noiseless Traces

Points on Noisy or
Converging Traces

path to compute the phases of all time points in the
whole sample path. The Hilbert transform-based phase
computation technique can be used to compute the
phase of any oscillatory waveform, without any infor-
mation as to where this waveform came from. The
oscillatory waveform could belong to one of the state
variables of an oscillator generated with a simulation.
This method has been utilized in [31,35] for phase
computations of sample paths. The isochron-theoretic
phase (recall that an isochron portrait belongs to a
limit cycle of the deterministic RRE) makes use of all
of the state variables and equations for an oscillator.
The isochron-based phase definition assigns a phase
value to the points in the state space of the oscillator,
making phase a property of the whole oscillator, not a
property of just a certain state variable or a waveform

obtained with a simulation of the oscillator [15,22].
Note that even though there appears to be empirical
evidence [31,35] that there is a correspondence
between the Hilbert transform-based and isochron-
based phase definitions, a precise connection has not
been worked out in the literature.

The hybrid phase computation techniques proposed in
this article apply to discrete-state models and particu-
larly the SSA generated sample paths of these models,
based on the isochron-theoretic oscillator phase defini-
tion. Our approach is hybrid because isochrons are
obtained based on the continuous model but the phase
traces are computed for the sample paths generated by
an SSA simulation that is based on the discrete model
for an oscillator. This hybrid approach targets moder-
ately noisy oscillators, within a container of not too
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Figure 6 Phase computation scheme depending on linear
isochron approximations. An isochron whose linear approximation
passes through the point X,(to) is found. The point where this

hyperplane crosses the limit cycle is Xs(ilin)f with £y, the
solution of this phase computation scheme. The difference between
the exact solution $ and the approximate solution ?Aflin is reduced
if the isochrons are close to being linear.

large or small volume, consequently with not too high
or low molecule numbers for the species in the system,
respectively.
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5 Results and discussion

We now present results obtained with the proposed
methods for oscillator phase computations on several
intricate molecular oscillators. Accuracy demonstrations
and computational speed-up figures will be given with
respect to PhCompBF, the brute-force scheme, which
we accept as the golden reference for oscillator phase
computations, since this method does not employ any
approximations in either isochrons or orbital deviations.
Section 5.1 below, in which we analyze the brusselator,
contains details pertaining to the general flow of the
phase computations and the preparatory procedures for
all the methods. Sections 5.2 and 5.3 are brief sections
illustrating the performance of the methods for oscilla-
tors called the oregonator and the repressilator, respec-
tively. All simulations were run on a computer with an
Intel i7 processor at 3.07 GHz and accommodating
6 GB of memory.

5.1 Brusselator

The Brusselator is a theoretical model for a type of
autocatalytic reaction. The Brusselator actually describes
a type of chemical clock, and the Belousov-Zhabotinsky
(BZ in short) reaction is a typical example [38]. The
model below in (6) has been largely adapted from [39],
which is based on [38].

CI\I/II';I;::::I Stochastic S
e Simulation ;nltl:})lle
a
(CME) >
- -
- - 7
-
Chemical _-"
Langevin| _ -~ =
Equationf”
(CLE)
\J
Rt;:c:ion o Limit Cycle Phase Computation Schemes
ate
Equation > :&:)?:;:i(r)::ations VI(#) | xesa(to) = x4(E)| =0
(RRE)

Figure 7 Phase computation schemes methodology. An SSA-generated sample path (alternatively one that is generated through the CLE) and the
limit cycle and isochron approximation information are fed to the phase computation schemes, which compute the instantaneous phase corresponding
to each point in the sample path. The algebraic equation for the scheme depending on linear isochron approximations is given as an example.
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AN X
B+XBR4Y
) (6)
Y + 2X = 3X

XX g

Parameter values in (6) are: k; = 0.025 s, ky = 1 s7*
mL, k3 = 1 s' (mL)? and k4 = 0.01 s™*. Volume is set to
250 mL. Molecule numbers of A, B, R, and S are held,
constant.

Several models and quantities must be derived from
the reactions in (6) before moving onto phase analysis.
The stoichiometric matrix in this case reads

1-1 1-1

5= [o 1-1 o} @
where the first row is for the species X and the sec-
ond is for Y. The columns each denote the changes in
molecule numbers as a reaction takes place, e.g., col-
umn one is for the first reaction in (6). Let us also call
X the random process denoting the instantaneous mole-
cule number for the species X, similarly Y is for Y in
the same fashion. Then, the random process vector X =
[X Y]' concatenates these numbers for convenience.
The propensity functions for the reactions can be writ-

ten as

al(X) = k1 A
52(X) = kzg X
kY X(X — 1) ®
(,l3(X) = ’ 02
a4(X) = k4X

where Q) denotes the volume parameter. Using (8), the
CME for the Brusselator can be derived in line with (1)
as

dP(X,Y;t) _ |:k1A . kyB X
dt Q
ksY X (X —1
+ g§2 )+k4X] P(X,Y;t)
+ki AP (X -1, Y1)
B(X+1 ©)
+k2 (X+ )IP’(X+1,Y—1;t)

Q
ks(Y+1) (X—1)(X—2)
+ o2
PX—-1, Y+1;¢)
+hy(X+1)P(X+1,Y;1)
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Now it is possible to derive the CLE as in (2)

dx koB X
= |lhA—
dt [1 Q
k _
Y X(x = 1) —k4X]
Q2

+ \/klAfl(t)—\/kzgxfz(t)
+\/k3 Y X(X —1)

o2 & (1)
dy _ kB X
de | @
kY X(X — 1)
_ o0
kB X
+ |:\/ o & (1)
kY X(X -1
—\/ ’ §(22 )Ss(t):|
It is easy to extract from (10) the RRE in (3) as
daxX T ko BX
= A —
de _kl Q
+k3YXs(2)2( -1) 3 k4X:|
_ (11)
dy _ ko, BX
dt | @
ks Y X(X — 1)
_ o

Note that in deriving (10) and (11) from (9), the vari-
ables X and Y (which represent molecule numbers, not
concentrations, of the species X and Y, respectively)
have become continuous instead of remaining discrete.
In preparation for phase analysis, some computational
quantities have to be derived from (11).

The phase analysis of a continuous oscillator (modeled
by nonlinear systems of ODEs such as an RRE) depends
on linearizations around the steady-state periodic wave-
form x,(¢) solving the RRE. The periodic solution x,(Z)
for the Brusselator in (6) is given in Figure 8. This func-
tion has been computed for a whole period (with the
actual approximate value for the period T' = 1000 s)
through the shooting method [40]. The species A, B, R,
and S, with their molecule numbers constant, should be
excluded from the machinery of the shooting method
for it to work.



Suvak and Demir EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:6

http://bsb.eurasipjournals.com/content/2012/1/6

Page 11 of 28

Molecule Number

XY

0 200 800 1000

400 600
Time (seconds)
Figure 8 The periodic solution x.(t) for the Brusselator. The
periodic solution (consisting of the changes in the molecule
numbers for the species X and Y) of the RRE (the continuous
deterministic model) for the Brusselator. This periodic solution
vector function is called x,(t). Note that the oscillating molecular
system has discrete states, i.e, it has discrete numbers for the
molecule numbers for each species. However, through the
continuous-state limit, we have derived the RRE and CLE, which are
continuous, from the original oscillator model. Therefore, entries of
the periodic solution x(t) in this figure are continuous valued. Also,
in the transformation from the discrete model to the continuous
one, we have chosen to stick with molecule numbers for species
rather than switching to concentrations, because we would like to
plot on top of each other, compare, and use in computational
analysis the SSA sample paths obtained from the discrete model
and sample paths and deterministic solutions obtained from the
continuous models.

In fact, x4(f) computation is enough preparation for
running the brute-force scheme PhCompBF as will be
demonstrated next. Recalling that we aim to solve for
the possibly constantly changing phase along individual
SSA-generated sample paths, we run the SSA algorithm
to generate the sample path given in Figure 9. In this
plot, the SSA simulation result and the unperturbed x,
(£) have been plotted on top of each other, for only spe-
cies Y, for illustration purposes. It must be noted that
both x4(£) and the SSA sample path start initially at the
same state on the limit cycle, therefore the star and the
circle are on top of each other at £ = 0 s. Due to iso-
chron-theoretic oscillator phase theory, the initial rela-
tive phase, or the initial phase shift of the SSA sample
path with respect to x,(£), is zero.

In Figure 9, we would like to solve eventually for the
time-evolving relative phase shift of the SSA sample
path, for now with PhCompBF. This means solving for
the phase shift for the visited states in the sample path,
denoted by circles in the figure, and preferably for all
the states in between the circles along the path as well.
PhCompBF requires running a particular type of simula-
tion for computing the relative phase shift of each vis-
ited state. We will demonstrate the method shortly, but
let us comment on how much information can be
gained by inspecting only the plot in Figure 9. The SSA
simulation suggests that the system continually

250,

200

Molecule Number
- -
o (=] a
o oS o

o

SAXRRE

0 200 300 1000

400 00
Time (seconds)
Figure 9 An SSA-generated sample path as compared to the
deterministic periodic solution for the Brusselator (showing
changes in the molecule number for only the species Y).
Changes in the molecule number for only species Y monitored. The
noisy sample path is compared to the noiseless RRE solution. The
noise has an adverse effect such that it has apparently caused the
oscillator to lag behind the deterministic solution. A quantitative
measure of this phase shift on a point-by-point basis (for all points)
in the sample path is to be obtained by the phase computation

methods proposed in this article.

introduces noise, so that everything about the system
appears noisy, the phase, the amplitude, etc. Phase is a
particular quantity that helps quantify the effect of noise
on an autonomously oscillating system. One may easily
guess that the relative phase shift of the SSA sample
path is always changing along the interval of simulation.
It is not obvious at all how to compute this phase shift
at particular points in time in Figure 9. Perhaps, one
may argue that the sudden decrease that should take
place at about ¢ = 200 s for the unperturbed x4(¢),
appears about 200s in time later for the SSA path. How-
ever, this is only an educated guess and an approximate
value. Also, that the stars and circles appear very close
to each other for example in between 600 and 1000s
does not directly help invoke the isochron-theoretic
phase theory to deduce that the phase shift along this
interval is close to zero. Recalling that Figure 9 depicts
only species Y, one has to inspect also the other species
to arrive at such a conclusion. It is also needless to state
as a reminder that for two states to have the same rela-
tive phase, having the two states equal to each other is a
sufficient but not necessary condition, again due to iso-
chron theory. In all, accurately what happens to the
phase shift along the interval is still obscure. As a side
note, one should also note that without the perfectly
periodic x4(¢), it is awfully difficult to guess the period
T, inspecting only a long SSA sample path. Relevant
theory for noisy oscillators suggests that inspecting the
zero-crossings of a whole ensemble of long and mildly
noisy SSA sample paths yields information related to
the period and phase diffusion constant of an oscillator,
in a brute-force manner [11].
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In order to demostrate PhCompBF, we have first
plotted both the SSA sample path and the limit cycle
(the closed curve traced over and over by x(£)) in 2-D
state space as in Figure 10. As stated earlier, the star
and the circle are initially coincident. Then, as time pro-
gresses, Xs(¢) just traces the limit cycle, but the SSA
sample path x,(£) runs berserk. At £y = 600 s, we have
again indicated where the two traces end up. The SSA
path at this time is off the limit cycle. Since we do not
have exact isochron information, it is not possible to
compute the phase § value that makes x4, (ty = 600 s)
and xs(f) in-phase, i.e., on the same isochron. If we
could find this 7 value, then a(ty = 600s) =t — 600
would be the sought phase shift value.

The value of the phase shift & can, however, be com-
puted through a possibly long, ideally infinitely long,
simulation, in line with the theory of asymptotic phase
(a theory on intimate terms with isochrons). The follow-
ing is the essence of PhCompBF. One takes in Figure 10
the states x4, (to = 600 s) (the circle on the SSA path)
and x,(to = 600 s) (the star on the limit cycle) and feeds
them as initial conditions to the RRE in (21) and then
simulates both traces for some time. The result is the
two traces in Figure 11. In this plot, again only the spe-
cies Y is demonstrated. The circular marker (along with
the corresponding star) has been put only at the begin-
ning of the simulation in Figure 11 to note the fact that
only the initial value belongs to the SSA sample path.
After this initial time, both traces are parts of separate
RRE solutions. Incorporation of these two new simu-
lated traces into the plot of Figure 10 would be as fol-
lows (see Figure 12): The plot starting with the circle in
Figure 11 (with both of the two states) would be a curve
in the state space of Figure 10 starting from the circle

Y (Molecule Number)
S
(=]

o
(=]

50 200 250

100 150
X (Molecule Number)
Figure 10 Limit cycle and SSA sample path shown on the state
space for the Brusselator. Both trajectories start at the same point
on the limit cycle. The star traces the limit cycle in clockwise
direction, whereas the noisy sample path wanders around though
remaining close to the periodic orbit. After some time has passed,
the star (of the noiseless path) and the circle (of the noisy sample
path) are found to be at different locations. The qualitative
difference in terms of phase between these two points is explained
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Figure 11 Mechanism of PhCompBF (the brute-force phase
computation scheme) in time domain for the Brusselator
(changes in the molecule number for the species Y are
monitored). The star and the circle obtained at the end of the
simulations (let us call this time t) in Figure 10 are fed as initial
conditions to the RRE in (11), hence the star and the circle at the
beginning of the traces in this figure. The waveforms in this figure
monitor the same entry for these two different RRE solutions, i.e,
the changes in the molecule number for the species Y are shown.
The curve starting with the circle should come to be almost
periodic in a matter of a few periods for this oscillator. Then the
phase shift between the two waveforms can be computed. This
phase shift belongs to the point identified by the circle in Figure 10
at the end of the simulation (we have called this time to). This
phase shift has been obtained with respect to the star in Figure 10

by the concept of isochrons.

at again the time t,.

off the limit cycle but gradually converging to it. Mean-
while, the plot starting from the star in Figure 11 would
resume tracing the limit cycle in Figure 10 from again
the star. Then, as shown in Figure 12, the two simulated

Y (Molecule Number)
)
=1

o
(=]

0 50 200 250

100 150
X (Molecule Number)
Figure 12 Mechanism of PhCompBF (the brute-force phase
computation scheme) in state space for the Brusselator
(changes in molecule numbers for both species are monitored).
This is the state-space pictorial description of PhCompBF that
corresponds to Figure 11. There are two RRE solutions in this figure.
The final states of the solutions in Figure 10 are fed as initial
conditions to the RRE in (11) for the Brusselator. The RRE solution,
whose initial and final conditions are indicated by the circle,
approaches the limit cycle and almost starts tracing it, traveling
clockwise. The solution indicated by the star, which is actually
leading in terms of phase that indicated by the circle, has already
made the rightmost turn at the end of this simulation. The circle is
way behind. The actual phase shift between the two solutions has
to be computed as explained in Figure 11.
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plots are observed to be tracing the limit cycle after
simulating long enough in time, the star of the unper-
turbed path always leading the circle of the initially per-
turbed path (but notice that during the simulation for
both traces in Figure 12 all perturbations or noise are
removed). Observe in Figure 12 that the star has went
ahead to make the rightmost turn on the limit cycle,
travelling clockwise, whereas the circle is still way
behind. However, all along this simulation of Figure 12,
the instantaneous phase shift between the two traces
has remained the same. As the simulation goes on along
the limit cycle, the circle (originating from the SSA
simulation) and the star (of the unperturbed x,(¢))
would appear sometimes near, and sometimes far away
from each other. This effect is due to particularly the
varying velocity along the limit cycle, all determined by
the dynamic properties of the RRE. The constant differ-
ence in time between the circle and star is the phase
shift o (¢ = 600 s) that we aim to compute. Notice that
in the state space of Figures 10 and 12, time is only an
implicit parameter. Therefore, we have to inspect plots
of the type in Figure 11 to obtain the desired phase shift
value.

For some oscillators (as determined by the dynamics
of the RRE again), a state off the limit cycle converges
fast to begin tracing quickly an almost periodic curve, as
in the case in hand. Almost two periods are enough to
deduce the phase shift between the two curves. After
RRE simulations, the phase shift can be computed using
Fourier transforms [15].

One question that may arise is why we are particularly
using the traces belonging to the species Y to compute
phase shifts in Figure 11. Indeed, it follows from the
theory that phase is a scalar-valued property of the
whole system, therefore investigating phase shifts over
non-constant periodic molecule numbers for any species
in a system would yield the same phase shift value. In
this case, employing Y is only a matter of choice.

Notice that this brute-force scheme is carried out to
compute the relative phase shift of the SSA sample path
at only Zy, = 600 s. The phase shift for each state along
the sample path can be computed one by one through
the just outlined PhCompBF.

It has already been stated that PhCompBF is almost
the golden reference for phase computations but also
that the method is very time-consuming. It was for this
reason that new methods depending on isochron and
orbital deviation approximations were proposed. Parti-
cularly, two quantities are necessary for characterizing
isochron approximations: the phase gradient v(¢) and
the phase Hessian H(£). These are depicted for the Brus-
selator respectively in Figures 13 and 14. Recall that v(z)
is a vector function, but H(¢) is a matrix function.
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Figure 13 Phase gradient for the Brusselator. Entries of the
phase gradient (a vector function) as periodic functions, computed
through the algorithm described in [11]. The phase gradient is
referred to as v(f) in this article.

Therefore, only the phase Hessian diagonals have been
plotted in Figure 14.

Phase computation schemes are fairly easy to compre-
hend geometrically. Regarding for example the limit
cycle depicted in Figure 10, there are both a hyperplane
(accounting for the linear isochron approximation) and
a quadric surface (for quadratic approximation) asso-
ciated with each point on the limit cycle. Equations for
these characterizations are given in (40) and (41),
respectively. A phase computation scheme aims to solve
for that point on the limit cycle whose linear or quadra-
tic isochron approximation passes through a given
point, for example the stated point denoted by the circle
off the limit cycle in Figure 10, X,(fo = 600 s). Notice
that PhCompBF is also a variant of these phase compu-
tation schemes, but in this case not the isochron
approximations but the exact isochrons themselves asso-
ciated with points on the limit cycle are used.

The geometrical interpretations of phase equations, on
the other hand, are not easy to visualize. As stated in
previous sections, phase equations are differential equa-
tions involving orbital deviation in addition to isochron
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Figure 14 Phase Hessian diagonals for the Brusselator. Diagonal
entries of the phase Hessian (a square matrix function) as periodic
functions, computed through the algorithm described in [15]. The

phase Hessian is referred to as H(t) in this article.
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approximations. Phase computation schemes are
expected to be more costly but then more accurate with
respect to phase equations. Phase equations, as they are
differential equations and need to be discretized, suffer
from local truncation errors and global errors, whereas
this is not the case for the schemes that are in the form
of algebraic equations. An approximate phase computa-
tion scheme may deviate from the golden reference
(PhCompBF result) at times (particularly if the noisy
state is too far off the limit cycle), but the scheme (if
carefully designed) does not suffer from the accumula-
tion of truncation errors and its phase results are
expected to be almost always very close to that of
PhCompBF.

We now check the performance of the phase compu-
tation methods for this oscillator, on a sample path that
lasts about 1000 s, with the period about the same as
that. The results are depicted in Figure 15. PhCompBF
takes about 138 min. Speed-up of the methods on this
duration are as follows: PhCompLin (the scheme
depending on linear isochron approximations) 56x,
PhEqnLL (the phase equation that employs linear iso-
chron approximations and a linear differential equation
model for orbital deviations) 8583x, and PhEqnQL (the
phase equation with quadratic isochron and linear orbi-
tal deviation approximations) 2257x. The phase equa-
tions are most of the time sharing a common accuracy
level, not disregarding the apparent attempt of PhEqnQL
to come closer to PhCompBF around 400-600 s. PhCom-
pLin is slower than the equations but almost as accurate
as can be.

5.2 Oregonator

In this section, we present phase computation results for
a well-known and studied biochemical oscillator, the ore-
gonator [38]. This realistic oscillator accurately models
the Belousov-Zhabotinsky reaction, an autocatalytic reac-
tion that serves as a classical example of non-equilibrium
thermodynamics. The molecular reactions model,
adapted mostly from [39], is given as follows. Names of
the reactants have been simplified for convenience.

A+YE X+ R

X+Y% 2R

A+XB X427 (12)
XM AR

2B + 278y

In (12), the propensity functions, employing also the
volume of the container, can easily be derived. Parameter
values are: k; = 0.005s *mL, ky = ks = ks = 1 s* mL,
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and ks = 1.25 x 10 * s (mL)3. Molecule numbers for the
reactants A, B, and R are held constant. For this model,
the volume initially is set to 12,000 mL. In this case,
noise will not have considerable effect on a sample path.
Then, we set the volume to 3,200 mL in order to obtain a
moderately noisy oscillator. Later on, we will, halve the
value of the volume parameter, resulting in a very noisy
oscillator, and the performance of the phase computation
methods will be demonstrated for this latter case as well.

With the volume as 12,000 mL, the performance of the
phase computation methods on a particular sample path
of length 4 x 10* s (the period is about 4.43 x 10* s) is
depicted in Figure 16. PhCompBF simulation takes 502
minutes, with two periods of RRE computations before
setting out to compute the phase shift values. There are a
total of 8114 timepoints on the sample path. As the
volume is decreased, the number of timepoints per unit
time will reduce. The speed-up of the methods over
PhCompBF are: PhCompLin (on linear isochron approxi-
mations) 70x, PhEqnLL (on linear isochron and linear
orbital deviation approximations) 10733x, PhCompQuad
(on quadratic isochron approximations) 46x, and
PhEqnQL (on quadratic isochron and linear orbital
deviation approximations) 2791x. It is observed that all
the methods for a good part of the sample path stick to
the PhCompBF result. However, towards the end the
phase equations (with PhEqnQL a little more accurate
compared to PhEqnLL) begin accumulating global errors,
Otherwise, they are exquisitely fast all the time and accu-
rate at the beginning until they start deviating from the
golden reference. The phase computation schemes are
not as fast as the equations, but they are always accurate
in this simulation.

We have also tested the phase computation methods
on a sample path, with the volume set to 3,200 mL.
Figure 17 illustrates the results. The simulation interval
length (5 x 10* s) is a little more than the period (about
4.37 x 10* 5). The simulation for PhnCompBF took 242
minutes, and there are 2981 timepoints in total. The
observed speed-ups were: PhCompLin 70x, PhEqnLL
13971x, PhCompQuad 51x, and PhEqnQL 3203x. It is
observed that the phase equations are really fast, keeping
track of the exact phase though not very closely, whereas
the computation schemes, though not as fast, are almost
a perfect match for the exact phase in terms of accuracy.

We then set volume to 1,600 mL, resulting in a noisier
oscillator. We expect the phase equations results to devi-
ate much more from the exact one, and the computation
schemes to still do well. Again for a sample path (of
length 5 x 10* s with the period 4.3 x 10* s), the
PhCompBF simulation now takes 76 min. There are 1033
timepoints. Speed-ups with the methods are: 12637x
(PhEgnLL), 74x (PhCompLin), and 44x (PhCompQuad).
PhEqnQL apparently suffers from numerical problems
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Figure 15 Phase computation methods on the Brusselator. The approximate schemes are almost a perfect match for the golden reference
PhCompBF. The equations are very fast as indicated by the speed-up figures given in the text. Results of the phase equations are quite close to
each other. In the interval 400-600 s, PhEgnQL comes closer to the true value. The following observations and facts are iterated for this first
figure of the results. For convenience, these comments are not going to be repeated for every figure that follows. Note that the phase
equations are in reality differential equations, solving one by one for the instantaneous phase of points in an oscillator sample path. Therefore,
due to the approximations involved in their design and, furthermore, due to the imperfect discretizations (of the differential equations that they
are represented by) for their numerical solutions, the phase equations are doomed to suffer from accumulating truncation errors. This is why, in
many results figures for the oscillators in this article, we observe the results of phase equations tending to deviate from the golden reference
PhCompBF as time progresses. However, computational complexity-wise the phase equations are indeed very fast. This makes the phase
equations a feasible and accurate choice for the phase computations of less noisy oscillators, possibly with a dense grid of timepoints in an SSA
sample path and high molecule numbers for every species in the system (especially in a container of large volume), deviating not much from
their limit cycles. The phase computation schemes, on the other hand, do not employ as many approximations as the phase equations do in
their design. Furthermore, these schemes are in the form of algebraic equations, again solving one by one for the instantaneous phase of points
in an oscillator sample path. Therefore, the schemes, for their numerical solution, do not involve time discretizations as the phase equations do.
This means that the schemes do not suffer from truncation error accumulation. The schemes are subject to errors originating from the
approximations committed in their theoretical development, and once again, these approximations are not on the same scale as those
employed in the derivation of phase equations, i.e, the schemes are much more accurate than the equations. However, the numerical
procedures associated with the schemes render them more costly in computational complexity with respect to the equations. Therefore, one
may rightfully contend that the phase computation schemes are tailored to fit phase computations for moderately noisy oscillators in small
volume, with low molecule numbers for each species and possibly a sparse grid of timepoints in an SSA sample path.

700 800 1000

for such a noisy oscillator, and the result for this method
is not included. In Figure 18, we observe in line with our
expectations that although PhEqnLL is again very fast,
the result it produces is almost unacceptably inaccurate,
whereas both the computation schemes maintain their
relative speed-ups (as compared to the less noisy version)
along with their accuracies.

5.3 Repressilator

The Repressilator is a synthetic genetic regulatory net-
work, designed from scratch and implemented in
Escherichia coli using standard molecular biology meth-
ods [9]. Its development is a milestone in synthetic biol-
ogy. We have obtained the model as an SBML file in

XML format [41-43]. We have used the libSBML [44]
and SBMLToolbox [45] libraries to interpret the model
and incorporate it to our own manipulation and simula-
tion toolbox for phase computations. The period of the
continuous oscillator obtained from the model is about
2.57 h. A sample path running for about 3 h was gener-
ated, and the phase methods were applied. The results
are in Figure 19. PhCompBF (the brute-force scheme)
takes about 76 min. Speed-ups obtained with the meth-
ods are: PhCompLin (on linear isochron approxima-
tions) 58x, PhEqnLL (on linear isochron and linear
orbital deviation approximations) 7601x, and PhEqnQL
(on quadratic isochron and linear orbital deviation
approximations) 1994x. It appears in Figure 19 that
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Figure 16 Phase computation methods on the Oregonator. (volume = 12, 000 mL). In a large volume, the system is not expected to be very
noisy. The phase is closer to ideal. Therefore, all phase computation methods are quite accurate, but the phase equations have started to
accumulate global errors towards the end of the simulation, as they are differential equations.

PhEqnLL towards the end of the simulation has started 6 Conclusions and future work

to accumulate a global error. PhEqnQL looks a little  The phase computation methods described in this arti-
more accurate. Again PhCompLin is, excepting a few  cle basically target three classes of discrete molecular
minor intervals, the most accurate. oscillators. First, the continuous phase models, based on
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Figure 17 Phase computation methods on the Oregonator. (volume = 3, 200 mL). In a smaller volume, the system is noisier. Phase equation
results deviate in accuracy. PhEgnQL is a little more accurate. The schemes retain their accuracies.
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Figure 18 Phase computation methods on the Oregonator. (volume = 1, 600 mL). In an even smaller volume, the system is very noisy.
PhEgnLL computes the phase shift result very fast, but this result is unacceptably inaccurate. The schemes are still accurate.

the information obtained from the oscillator model in  have shown in this article that the phase equations serve
the continuous-state limit (i.e., basically the limit cycle this purpose well. Second, for oscillators with very few
and isochron approximations), are acceptably accurate  molecules for each species in a small volume, a new
for discrete molecular oscillators with a large number of  phase concept needs to be developed, without resorting
molecules for each species, in a big volume. Indeed, we  to continuous limit approximations. This one is as yet

|
o

I
o ¢

Phase Shift (hours)
S
g

|
o
Y

T

I
o

. [@PhCompBF APhEqnLLEPhEGnQL{)PhCompLin|

0 0.5 1 1.5 2 25 3
Time (hours)

Figure 19 Phase computation methods on the Repressilator. PhEqnQL is more accurate than PhEgnLL, but the scheme PhComplin is the
most accurate.
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an unsolved problem. Third, there are systems in
between the two classes just stated, with moderate num-
ber of molecules, for which the continuous phase con-
cept is still useful but requires a hybrid approach with
combined use of both discrete and continuous models
for acceptable accuracy (note that the phase computa-
tion schemes are tailored to concretize this hybrid
approach), and this is where the contribution of this
article should be placed.

As yet, the described methods benefit extensively from
continuous state-space approxi-mations derived from
the molecular descriptions of such oscillators, and the
assumed most accurate brute-force scheme shares this
aspect. A future direction furthering this study can be
described as follows, in line with the necessity of hand-
ling the second class of oscillators stated above. A
proper phase model theory (not relying on continuous
limit approximations) for discrete-space oscillators mod-
eled with Markov chains needs to be developed. We
believe that such a discrete phase model theory can be
developed based on cycle representations for Markov
chains [46-48]. We made progress also on this problem.
We have developed a theory that precisely characterizes
the phase noise of a single cycle in a continuous-time
Markov chain. We were able to show that the phase
noise theory we have developed for a single cycle in fact
reduces to the previously developed continuous-space
phase noise theory in the limit. We are currently work-
ing on extending this discrete phase noise theory to
many cycles, i.e., to a cycle decomposition of a continu-
ous-time Markov chain.

7 Methods - Modeling and simulation of discrete
molecular oscillators

In this section we review, after giving preliminary infor-
mation (Section 7.1), some crucial paradigms in the
modeling of discrete molecular oscillators: a model that
is the complete probabilistic characterization of a dis-
crete system, known as the CME (Section 7.2), a contin-
uous deterministic approximation to the CME in the
form of the Reaction Rate Equation (Section 7.3), and
the steps that let us proceed to a continuous stochastic
model, the Chemical Langevin Equation, from again the
CME (Section 7.4). Also a descriptive review of the SSA
algorithm of Gillespie [25] for the simulation of molecu-
lar models is provided in Section 7.5.

7.1 Preliminaries

We first describe a mathematical model for an autono-
mous, discrete molecular oscillator based on a stochastic
chemical kinetics formalism [24-28,30]. We consider N
molecular species denoted by S;, S,,..., Sx- Let X be the
stochastic vector [X7, X, ..., XnlT where X; is the num-
ber of molecules of species S; in the reaction chamber
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(i.e., a cell). The M reactions taking place among these
molecular species are denoted by Ry, Ry, ..., Ry Let a;
(X) denote the propensity [25,27] of reaction j, i.e., the
probability that one R; reaction will occur somewhere in
the system in the next infinitesimal time interval [t, £ +
dz) is given by a; (X) d¢, ie,

P (R; occurs in[t, t + dt)) = a;(X)dt (13)

Let s;; denote the change in the number of molecules
of species S; as a result of one R; reaction. We define
the stoichiometry vector s;

sj = [sj1, 82, SN T (14)

for reaction R;, and the N x M stochiometry matrix [27]

S = [Sl,Sz,...,SM] (15)

7.2 Chemical master equation

The following derivation follows closely that outlined in
[27]. Let us take a note of the events X(¢ + df) = x, X(¢) =
x - s; and X(¢) = x, where d¢ is an infinitesimal time ele-
ment. Through several manipulations making use of these
events and taking the limit as d¢ — 0 [27], we obtain

dP(xt)

de
M (16)
> lajx—s) P (x—s;, 1) — 4j(x) P (x,1)]

j-1

where P(x,t) denotes the probability that the system
is at state x at time t. The above is known as the CME
[27-30]. If we enumerate all the (discrete) state config-
urations X can be in as C;, C,,...,, C,; and define,

pi(t) =P(x=Cyt) (17)
P(t) = [pl (t), Pz(t)/ cee Pns(t)]T (18)
then, the CME in (16) can be written as
dp(r)
4 -Qr® (19)

where Q is a constant square matrix with dimension
ns x ns, known as the transition rate matrix [28,29].
The above is a linear system of homogeneous ODEs,
but the number of state configurations s is possibly
huge. It is usually not practically feasible to construct
and solve (19). CME in (16) and (19) above corresponds
to a homogeneous, continuous-time Markov chain
model [28-30]. The state transitions of this Markov
chain are highly structured and compactly described by
the list of the reactions as in the CME. The CME
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provides the ultimate probabilistic characterization for a
discrete molecular oscillator. It was shown that the solu-
tion of the CME converges to a unique stationary distri-
bution. For a discrete molecular oscillator with a limit
cycle, this stationary probability distribution takes the
form of a “probability crater” for a planar system with
two species [47].

7.3 From the stochastic CME to the deterministic rate
equations

If we multiply both sides of CME in (16) with x and
sum over all x, we obtain, as shown especially in [24,27],

dE[X()] o
[dt(t)] _ ;Sj Ela;(X(1))]

(20)

We note here that E [4;(X(t))] # 4;(E [X(t)]) unless
aj(x) is a linear function of x. Thus, in general, (20) can
not be solved for E [(X(t)] since the term g; (E [(X(1)])
involves higher-order moments of X(¢) [27]. However, if
we assume that the fluctuations of X(¢) around its mean
E [(X(t)] is negligible and thus can perform a crude
moment closure scheme, i.e., if E [(X(t)] = X(¢), then
(20) simplifies to

dx(¢)

M
4 = 25 4(X(0) =S aX()

j=1

(21)

where S is the stoichiometry matrix defined in (15)
and

a(X(1)) = [a1(X(?), aa(X(?)), ..., am(X(D))]T

is an M x 1 column vector of reaction propensities
evaluated at X(¢£). The above system of deterministic
ODEs in (21) is known as the RRE [24,27].

(22)

7.4 From CME to Langevin model

The derivations in this section have been particularly
borrowed from [26]. If we assume that the reaction pro-
pensities a;(X(¢)) for j = 1, ..., M are constant in [£, £ +
dt) (known as the leap condition) [26,27], then the num-
ber of the times reactions fire in [¢, ¢ + 7) are indepen-
dent Poisson random variables [26-30] with mean and
variance equal to a,(x(¢)) 7, denoted by Pj(a;(x(t))7) for
j =1, .., M. Hence, we can write,

M
X(t+71) = X(1) + ) Pi(ai(X(1)7)s;

j=1

(23)

If we further assume that a;(x(¢)) z > 1, then
Pi(aj(x(t))T) can be approximated with Gaussian ran-
dom variables:
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Pi(aj(x(1))7) = aj(x(1))7 + /a;(x(1)) Nj(0, 1)

where Nj(0,1) for j = 1, .., M are independent Gaus-
sian random variables with zero mean and unity var-
iance [26-30]. Incorporating (24) into (23), we recognize
the (forward) Euler discretization of the following sto-
chastic differential equation (SDE), known as a Langevin
equation [26-28,30]:

d X(1)
dr

(24)

= Sa(X(t)) + SD ([\/a(X(t))D £(1) (25

where &(t) denotes an M x 1 vector of independent
white stationary Gaussian processes with unity (two-
sided) spectral density, and

D ([Vax®)]) -

[ Jai(X(t)) 0 ... ... 0
0 \./az(X(t')) 9 0 26)
Lo e e
: o0
[ 0 0 0 Vau(X(1)) |

denotes the diagonal M x M matrix function shown in
(25). We note here that if the stochastic, fluctuation
term (known as the diffusion term) above is omitted, we
obtain the RREs in (21). We note here that, with the
Langevin model, the stochastic fluctuations in the oscil-
lator are captured by the second term in the right hand
side in (25). This term represents an additive noise in
the model. By zeroing this additive noise term, we are
able to obtain the mean, deterministic dynamics of the
oscillator as the solution of the RREs in (21). On the
other hand, in the discrete, Markov chain model of the
oscillator, the mean, deterministic behavior of the sys-
tem and the stochastic fluctuations are not separable
from each other [26-28,30].

7.5 Stochastic simulation algorithm (SSA)

Even though the CME in (16) and (19) provides the ulti-
mate probabilistic characterization for a discrete mole-
cular oscillator, its solution is most often not practical
due to the huge number of possible state configurations.
As a result, one most often performs a stochastic simu-
lation of the continuous-time Markov chain that models
the oscillator and generates a sample path or a realiza-
tion for the state vector X(¢) as a function of time .
This kind of a simulation can be performed with a tech-
nique called the SSA, proposed in Gillespie’s seminal
work [25]. In the original SSA algorithm [25], the com-
putational cost per reaction event (due to the generation
of a random variable from a dynamic discrete probabil-
ity distribution) is O(M) in the number of reactions M.
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The cost per reaction event can be reduced to
O(logM) by using a binary tree for random selection of
reactions [49], and to O (1) under certain conditions
[50]. One also has to consider the fact that the time gap
between reactions tends to shrink as the number of
reactions M, the number of species N, and the number
of molecules of every species increases. This means that
the total computational cost of SSA for a given time
period increases as a result [24]. On the other hand, if
the numbers of molecules of all of the species are very
large, discrete stochastic simulation of a discrete mole-
cular oscillator in the sense of SSA may be unnecessary
[24,27]. In this case, the fluctuations around the deter-
ministic limit cycle will be small, and the continuous
Langevin model in (25) may be adequate. As the num-
ber of molecules increase, the reaction propensities a;(X
(£)) become larger, and the fluctuation term in the Lan-
gevin model in (25) become less and less pronounced in
comparison with the drift term, since the magnitude of
the drift term is proportional to the reaction propensi-
ties whereas the fluctuation term is proportional to their
square root [26-28].

Molecular models, their nature (as discrete or contin-
uous, and as stochastic or deterministic), and the algo-
rithms to solve these models are summarized in Figure
1. The approximation that leads us from the discrete
stochastic CME to the continuous stochastic CLE is the
Gaussian approximation to Poisson random variables
and accordingly the 7-leap approximation. Similarly, infi-
nite volume approximation takes us from the CLE to
the continuous deterministic RRE. Sample paths in line
with the CME can be generated through SSA. CLE is a
type of stochastic differential equation, so it can be
solved via appropriate algorithms. Solution of the RRE
requires algorithms designed for ordinary differential
equations (ODEs) [26-28].

8 Methods - Phase computations based on
Langevin models

There exists a well developed theory and numerical
techniques for phase characterizations of oscillators with
continuous-space models based on differential and sto-
chastic differential equations [15,22]. As described in
Sections 7.3 and 7.4, continuous models in the form of
differential and stochastic differential equations can be
constructed in a straightforward manner for discrete
molecular oscillators. Thus, one can in principle apply
the previously developed phase models and computation
techniques [15,22] to these continuous models.

The outline of this section is as follows: After present-
ing the preliminaries (Section 8.1), the phase computa-
tion problem is introduced (Section 8.2). The methods
in Section 8.3 (phase models in the form of ODEs) and
in Section 8.4 (phase computation schemes that involve
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the numerical solution of certain algebraic equations)
are designed to numerically solve the phase computation
problem of Section 8.2.

8.1 Preliminaries

For a molecular oscillator, we assume that the determi-
nistic RREs in (21) have a stable periodic solution x()
(with period T') that represents a periodic orbit or limit
cycle.

An isochron of an oscillator associated with the limit
cycle x,4(2) is a set of points that have the same phase.
For an N-dimensional oscillator, each isochron is an N-
1-dimensional hypersurface. The union of isochrons cov-
ers the neighborhood of its periodic orbit [1,14]. Iso-
chrons form the basis for phase definition and phase
computations for oscillators [22]. In Figure 3, the limit
cycle and the isochron portrait of a simple polar oscilla-
tor are shown [2,15].

Expanding (21) to first-order (linearization) around
x,(£), with

aS a(x)
G(t) = G(x4(1)) = (27)
X x=x,(t)
yields
dy
a = G(t)y (28)

(28) is a linear periodically time-varying (LPTV) sys-
tem. The adjoint form of (28) is given by

d
dt

The PPV v(¢) is defined as the T-periodic solution of
the adjoint LPTV equation in (29), which satisfies the
following normalization condition

dx(t) g du(t)
de u'(1) dt

where u(t) = dx,(¢)/dt. The entries of the PPV are the
infinitesimal PRCs [1]. The PPV is instrumental in form-
ing linear approximations for the isochrons of an oscilla-
tor and in fact is the gradient of the phase of an
oscillator [22] on the limit cycle represented by x4(Z).

We next define the matrix H(¢) as the Jacobian of the
PPV as follows

z=-G'(t) z (29)

V(1) 1 (30)

H() = Hex () = st L Ve

() ox (31)

xX=X,(t)

taking into note that actually both v(¢) = v(x,(¢)) and
H(¢) = H(x,(¢)) are functions of the periodic solution x;
(£). The function H(¢) is in fact the Hessian of the phase
of an oscillator [22] on the limit cycle represented by x;
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(#). This matrix function is useful in forming quadratic
approximations for the isochrons of an oscillator.

8.2 Phase computation problem

The phase computation problem for oscillators can be
stated as follows. It is observed in Figure 2 that assum-
ing an SSA sample path and the periodic RRE solution
start at the same point on the limit cycle (note that the
two are in-phase initially), the two trajectories may end
up on different isochrons instantaneously at ¢ = ¢, (i.e.,
the two traces at this instant are out of phase). However,
according to the properties of isochrons, there is always
a point on the limit cycle that is in-phase with a particu-
lar point near the limit cycle. Therefore, the existence of
xs(?) in-phase with the instantaneous point X, (to) is
guaranteed. We call then the time argument ; of x,(%)
the instantaneous phase of x4, (o) [1,2,14,22]. All meth-
ods described below in this section are designed to
numerically compute this phase value.

8.3 Phase equations based on Langevin models

In this section, oscillator phase models in the form of
ODEs are described. In [22], we have reviewed the first
order phase equation based on linear isochron approxi-
mations, and we have also developed novel and more
accurate second order phase equations depending on
quadratic approximations for isochrons. We will,
furthermore in this section, explain how to apply these
models to discrete oscillator phase computation.

8.3.1 First-order phase equation based on linear isochron
approximations

The first-order phase equation based on linear isochron
approximations can be derived from the continuous
Langevin model in (25) using the theory and numerical
techniques described in [15,22], which takes the form

~

o1 @sD ([amm)) e, i) =062

where 7 represents the total phase of the oscillator (in
units of time) and v(£) is the PPV discussed above. The
value x,(%), the periodic solution x,(¢) evaluated at the
perturbed phase , represents possibly a good approxi-
mation for the solution of the Langevin equation in (25)
provided that the perturbed oscillator does not wander
off too far away from the deterministic limit cycle repre-
sented by x,(2).

The phase { defined above and the phase equation in
(32), capture the deviations (from the periodic steady-
state) of the perturbed oscillator only along the limit
cycle, i.e., phase deviations. A perturbed oscillator also
exhibits orbital deviations away from its deterministic
limit cycle. Moreover, for a discrete, molecular
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oscillator, the deterministic periodic solution x(¢) is
merely the solution of its continuous and deterministic
limit when the number of molecules are assumed to be
very large. As such, the solution of a discrete molecular
oscillator may exhibit large fluctuations around this con-
tinuous and deterministic limit. Thus, x,(f) may not
serve as a good approximation in such a case. In order
to truly assess the quality of x,(f) as an approximation
in a meaningful manner, we need to compare it with a
sample path solution of the discrete, Markov chain
model that can be generated with an SSA simulation.
However, a one-to-one comparison of x(f) based on
the solution of the phase equation in (32) and a sample
path obtained with an SSA simulation is not straightfor-
ward. In solving (32), one would normally generate sam-
ple paths for the independent white stationary Gaussian
processes denoted by &(¢). In an SSA simulation, sample
paths are generated as described in Section 7.5. If done
s0, a one-to-one comparison between a sample path
from an SSA simulation and x(f) would not make
sense. In order to make this sample path based compari-
son meaningful, we use the same discrete random
events that are generated in an SSA simulation in order
to synthesize the sample paths for the independent
white stationary Gaussian processes £(£) in the numeri-
cal simulation of (25). More precisely, we proceed as fol-
lows. We numerically compute the solution of (32) in
parallel and synchronous with an SSA simulation. We
discretize the SDE in (32) using time steps that are dic-
tated by the reaction occurrence times in the SSA simu-
lation. Assuming that the last reaction has just occurred
at time ¢, the next reaction will occur at time ¢ + 7 and
it will be the jth reaction, we form the update equation
for t as follows

f(t+1)=10(t) + T + v (i(1))S [ — a(xs(i(1)))7] (33)

where e; is the M x 1 unit vector with the jth entry
set to 1 and the rest of the entries set to 0, and
a(x(1) = [a1 (x(D), a2 (D)), - am(x:(}))]" 39
is an M x 1 column vector of reaction propensities
evaluated at x4(Z). The form of the update rule above in
(33) can be deduced by examining (24) where we have
approximated a Poisson random variable with a Gaus-
sian one. With (33) above, the sample paths for the
white Gaussian processes &(£) in (25) (and hence the
Wiener processes as their integral) are being generated
as a cumulation of the individual events, i.e., reactions,
that occur in the SSA simulation of the oscillator at a
discrete, molecular level. In the update rule (33), we

subtract a(x((t))) r from e; that represents an
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individual reaction event in order to make the synthe-
sized &(t) zero mean. The mean, deterministic behavior
of the oscillator is captured by the first drift term on the
right hand side of (25) which is used in the computation
of the periodic steady-state solution x4(¢) and the PPV v
(t). Thus, the mean behavior is already captured, and
that is why, it needs to be subtracted in (33). We can
now compare xg(f) and the SSA generated sample path
in a one-to-one manner in order to assess the quality of
xs(1). We should note here that the SSA simulation
that is run in parallel and synchronous with the solution
of the phase equation in (32) is necessary only for a
meaningful sample path based comparison. One would
normally not run an SSA simulation but simply generate
sample paths for the Gaussian processes £(¢) and
numerically solve (32) with an appropriate technique
and generate a sample path for the phase ;. In this case,
we would not be synthesizing &(¢) as a cumulation of
reaction events from SSA, but instead directly as white
Gaussian processes.

Figure 4 summarizes the phase equations (as opposed to
the phase computation schemes, to be introduced later)
approach for oscillator phase computations. An SSA sam-
ple path is generated. Then, the reaction events in the SSA
sample path are recorded. This information, along with
limit cycle and isochron approximations computed from
the RRE, are fed into phase equations (the first-order
phase equation in (32) has been given as an example in
Figure 4), which in turn yield the phase 7. A high-level
pseudocode description of phase computations using the
first order phase equation is given in Algorithm 1.

In (33), we evaluate the reaction propensities at x,(%),
on the solution of the system projected onto the limit
cycle represented by x,(¢). However, the oscillator also
experiences orbital fluctuations and rarely stays on its
limit cycle. Based on linear isochron approximations, we
can in fact compute an approximation for the orbital
fluctuations as well by solving the following equation [22]

dzgt) -G Y(t) + SD ([\/a(xs(f))D £(1)

-0 sp ([Vamn]) ¢ ud

With the orbital fluctuation computed by solving the
above linear system of differential equations, we can form
a better approximation for the solution of the oscillator:

(35)

X(1) ~ x(}) + (1) (36)

Then, one can evaluate the reaction propensities at
x(f) + Y(t) instead of x4(%), in (32), (33) and (35), in
order to improve the accuracy of phase computations.
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One can further improve accuracy, by replacing G (%) in
(35) with

aS a(x)

Cx@ Y@ =" 0|
x=x,(1)+Y(t)

(37)

marking also that the matrix G is indeed a function of
explicitly the state variables. Still, the equations in (32)
and (35) are both based on linear isochron approxima-
tions. Phase and orbital deviation equations based on
quadratic approximations for isochrons will provide
even better accuracy, which we discuss next.
8.3.2 Second-order phase equation based on quadratic
isochron approximations
The second-order phase equation based on quadratic
isochron approximations can be derived from the con-
tinuous Langevin model in (25) using the theory and
numerical techniques described in [15,22], which takes
the form

d " o
£=1+WM+HMYMFSD(h%mmﬂ)ﬂﬂw&
1(0) = 0,
with
v . 19G(x)
a ~SOYO+,TE] (0 eY)

+sD ([Vax()]) £
~{v® +nE ] s ([Vaxw)]) s}
[u(d) + GHY()]

(39)

3G(x)

where X(1) = x5() + Y(1), ox represents an

x=X;(t)
N x N2, matrix, and ® denotes the, Kronecker product
making Y(¢) ® Y(¢) an N? x 1 vector.

With quadratic approximations for the isochrons of
the oscillator, the phase computations based on (38) and
(39) will be more accurate. We can assess the accuracy
of the results obtained with these equations again by
numerically solving them in synchronous fashion with
an SSA simulation while synthesizing the white Gaus-
sian processes &(t) as a cumulation of the reaction
events in SSA, as described in Section 8.3.1.

8.4 Phase computation schemes based on Langevin
models and SSA simulations

With the phase equations based on linear and quadratic
isochron approximations described in Section 8.3, we can
compute the phase of an oscillator without having to run
SSA simulations based on its discrete, molecular model.
We note here again that the SSA simulations described
in (32) were necessary only when a one-to-one
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comparison between the results of phase computations
based on phase equations and SSA simulations was
required. On the other hand, more accurate phase com-
putations can be attained if they are based on, i.e., use
information, from SSA simulations. In this hybrid
scheme, we run an SSA simulation based on the discrete,
molecular model of the oscillator. For points (in the
state-space) on the sample path generated by the SSA
simulation, we compute a corresponding phase by essen-
tially determining the isochron on which the point in
question lies. Here, one can either employ no approxima-
tions for the isochrons or perform phase computations
based on linear or quadratic isochron approximations. In
[15], we have established the theory for these types of
approximate phase computation schemes based on linear
and quadratic isochron approximations.

The brute-force phase computations without isochron
approximations, which we call Ph-CompBF in short,
aims to compute the phase difference between two indi-
vidual given points, based on the isochron-theoretic
phase definition with respect to the periodic solution xg
(¢) tracing the limit cycle. This method is computation-
ally costly [15,22], as the following explanation based on
Figure 5 will reveal. An SSA sample path is computed
and the instantanous phase of x,(£y) is desired to be
found. Note that ¢, is a particular value in time. For this
purpose, in the transition from Figure 5a to 5b, all noise
is switched off and RRE solutions (trajectories in state
space) starting from x,(Zp) (star on the limit cycle) and
Xssa(to) (circle off the limit cycle) in Figure 5a are com-
puted. We can compute the phase shift between these
two traces only when the off-cycle solution converges as
in Figure 5c, that is we will have to integrate RRE for
this solution until it becomes approximately periodic in
the time domain. In this plot, the illustration has been
prepared such that the convergence to the limit cycle
takes one period or so, but this may not always be the
case. Indeed, ideally this process takes infinite time. This
is why the brute-force method is costly. Eventually, the
phase shift between the two trajectories can be com-
puted and added to instantaneous time f,, to compute
the phase f[15,22].

The phase computation based on isochron approxima-
tions and SSA simulations proceeds as follows: Let Xy,
(t) be the sample path for the state vector of the oscilla-
tor that is being computed with SSA. We either solve

VI (1) [Xssa(t) — %5(1)] = O (40)
based on linear isochron approximations or
v (1) [xssa(t) — x5(D)] +
(41)

; [Xesa (1) — %o(D)]" H) [Resa (1) — %:(D)] = 0
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based on quadratic isochron approximations for the
phase ; that corresponds to X, (£) [15,22]. The above
computation needs to be repeated for every time point
¢t of interest. Above, for Xx,(t), we essentially deter-
mine the isochron (in fact, a linear or quadratic
approximation for it) that passes through both the
point x(f) on the limit cycle and x,,(2). The phase of
xs(1), i.e., 1, is then the phase of x,(¢) as well since
they reside on the same isochron. An illustration of
the scheme founded upon linear isochron approxima-
tions is given in Figure 6. In this plot, we are looking
for an isochron whose linear approximation goes
through x4, (fo), and this is the isochron of the point
xs(fin)- Notice that the linear approximation (the
straight line in Figure 6) is tangent to the isochron of
xs(fin) at exactly x,(fn). The value %, then is the
phase computed by this scheme. Notice that there is
some difference between the exact solution { and the
approximate fj;,. This difference is certain to shrink if
the isochrones are locally closer to being linear. For
more accurate but still approximate solutions, the
quadratic scheme can be used [15,22].

We should note here that, even though x,,(f) above
is computed with an SSA simulation based on the dis-
crete model of the oscillator, the steady-state periodic
solution x4(%), the phase gradient v(i) and the Hes-
sian H({) (i.e., all of the information that is used in
constructing the isochron approximations) are com-
puted based on the continuous, RRE model of the
oscillator [15,22]. The phase computation schemes we
describe here can be regarded as hybrid techniques
that are based both on the continuous, RRE and the
discrete, molecular model of the oscillator. On the
other hand, the phase computation schemes discussed
in Section 8.3 based on phase equations are comple-
tely based on the continuous, RRE and Langevin mod-
els of the oscillator. Figure 7 explains the ingredients
that the phase computation schemes utilize. An SSA
sample path is generated (note that alternatively a
sample path may be generated through the CLE).
From the RRE model, limit cycle information (x(£))
and isochron approximations (v(t) and H(¢)) are com-
puted. All this information is fed into the phase com-
putation schemes (in Figure 7 we have given the
expression for the scheme utilizing linear approxima-
tions for convenience, as this is the method likely to
be preferred due to its lower complexity despite its
inferior accuracy as compared to the quadratic
scheme) and then finally the phase { is found. A high
level pseudocode of phase computations using the
scheme depending on linear isochron approximations
is given in Algorithm 2.
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9 Methods - Oscillator models, numerical
methods, and implementation notes

This section briefly describes where suitable oscillator
models can be found particularly on the internet and how
these models can be modified when possible (Section 9.1),
how the obtained ODE models can be handled computa-
tionally (Section 9.2), a description of the numerical meth-
ods used in the simulations (Section 9.3), and the
computational costs that they incur (Section 9.4).

9.1 Biochemical oscillator models

Oscillator models for analysis can be found from multi-
ple resources on the web. Models generally come in two
separate forms, described briefly as follows.

Models of the first type are translated directly from
actual biochemical reactions. Propensities of the reac-
tions are functions of a reaction rate parameter and
appropriate algebraic expressions of molecule numbers
associated with the reacting species. As such, the pro-
pensities are always positive. Moreover, the volume
parameter (associated with the container or the cell
accommodating the species) can easily be incorporated
into the propensity functions. Volume of the cell implies
the level of noisiness in the sample path simulations,
i.e., basically, the more voluminous a cell, the more the
number of each reacting species, and then the closer the
sample path solution to the ensemble average. There-
fore, one may rightfully declare that every different
value for the volume parameter defines a new oscillator
to be analyzed, although the mechanism of the reactions
and the pattern for the propensities remain the same for
a pre-determined setting.

Models of the second type are provided directly as
ODE models. In some cases, the propensity functions
are difficult to handle, and it is not obvious how the
crucial volume parameter can be incorporated into the
equations. Then, it happens that analysis of these oscil-
lators is a little restricted, not having the capability to
adjust the level of noisiness in a correct and reliable
manner. However, in all, the simulations can be carried
out for the value of the volume implied by the ODE
model.

As to where oscillator models can be found on the
web, there are multiple alternatives. http://www.xmds.
org/[39] is the website for a simulator, in which particu-
larly models from [38] have been modified in appropri-
ate form to be analyzed. We have benefitted extensively
from the models we have obtained from these refer-
ences, as most of them are models of the first type
described above. One of the other alternatives is obtain-
ing ODE models (models of the second type stated
above) from online repositories such as [41-43] and
manipulate them via appropriate software toolboxes
[44,45].
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9.2 Information computed from the ODE model and SSA
Oscillator models are approximated by ODEs in the
deterministic sense, through procedures already
explained in the previous sections. Our purpose before
handling a sample path generated by SSA is to have avail-
able in hand some crucial computational quantities that
will help compute the phase along the sample path. All
these crucial quantities will be computed using the ODE
model. A shooting type of formulation [40] is preferred
to obtain the periodic solution, more particularly a num-
ber of discrete timepoints for x4(¢) along a single period.
The shooting method solves this boundary value problem
efficiently even for large systems of ODEs [40]. A further
key benefit is that by-products of the shooting method
can be utilized in solving for v(£), namely the PPV or the
phase gradient [11]. On top of x,(¢) and v(£) and using
again the by-products of these computations, H(¢), the
phase Hessian, can be obtained through the algorithm
proposed in [15]. Now, SSA simulations for the sample
paths of the noisy molecular oscillator can be performed
[25], and these sample paths are analyzed in terms of
phase with the following numerical methods. It should be
recalled, however, that during the SSA simulation, also
pieces of information have to be stored at each reaction
event, conveying which reaction was chosen randomly to
be simulated and what were the propensity function
values at that particular instant.

9.3 Phase simulations

In this section, we provide details concerning the
numerical aspects of the proposed phase computation
methods.

The brute-force scheme (PhCompBF) (described in
Section 8.4) is basically run for all of the timepoints in
an SSA-generated sample path, and it is very costly in
terms of computation. If x,,(¢y) is a timepoint in the
sample path (naturally at where a state change takes
place) the RRE is integrated with this initial condition at
t = 0 for a long time so that this deterministic solution
settles to the limit cycle in continuous time. The solu-
tion of the RRE with the initial condition x4(¢,) at t=0
can be readily computed, this is a shifted version of the
periodic solution x(¢) that is available. If the phase shift
between the two solutions is computed, this shift is the
phase shift of the sample path xg, at ¢ = £, [15]. Since
one generally does not know the phase value at the very
first timepoint of an SSA sample path, the brute-force
scheme is mandatory in computing this phase value and
providing the initial condition, on which all of the other
approximate phase computation schemes and equations
can operate.

The approximate phase computation schemes [15]
(again described in Section 8.4) consist of solving the
algebraic equation in (40) or (41), depending on whether
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linear or quadratic approximations are respectively pre-
ferred to be used, and they are also run for all points in
the SSA sample path (see Algorithm 2 for the pseudo-
code of phase computations utilizing the scheme
founded upon the linear isochron approximations). Ben-
efitting from the scalar nature of these equations, the
bisection method is used extensively in their numerical
solution. Details and subtleties involved with these
schemes (of considerably less computational load com-
pared to PhCompBF) are provided in [15].

Phase equations [22], described in Section 8.3 are in
this context stochastic differential equations, operating
on the recorded reaction events of an SSA sample path.
The specific discretization scheme applied to the first
order phase equation is explained in detail in Section
8.3.1 (see Algorithm 1 for the pseudocode of phase
computations with this first order equation). This dis-
cretization scheme can be easily extended to the second
order phase equation of Section 8.3.2.

We will denote each method analyzed and used in
generating results by some abbreviations, for ease of
reference. The brute-force scheme explained above is
denoted by Ph-CompBF, the scheme depending on lin-
ear isochron approximations (summarized by (40)) by
PhCompLin, and that depending on quadratic in (41) by
PhCompQuad. The first order phase equation of (32) is
denoted by PhEqnLL (the first L for linear isochron
approximations and the second L for linear orbital
deviation approximations). The second order phase
equation of (38) and (39) is denoted by PhEqnQQ (Q
for both type of approximations, isochron and orbital
deviation). We prefer to use instead of PhEqnQQ a sim-
pler, but numerically more reliable, version of the sec-
ond order equation. This simpler version is described by
the equations (38) and (35). Equation (35) is the orbital
deviation equation belonging to the first order phase
equation theory. In turn, we denote this simpler model
by PhEqnQL [22].

9.4 Analysis of computational complexities

In this section, we analyze the computational costs of
phase computation schemes and phase equations. Let us
denote by N the number of states in an oscillator, M
the number of reactions, K the number of timepoints
along a single period, L the number of total timepoints
along the interval where a phase computation method is
run.

Preliminary statements on computational complexities
are as follows. We assume as well-known complexities
that x4(¢), G(¢) (assumed to be sparse), u(¢) and v(z) are
computable along a single period in O(N K) time. The
computation of H(#) (which is usually not sparse) upon
the stated quantities takes O(N> K) time [15]. We
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assume that if a matrix is sparse, then matrix vector
multiplications and solving a linear system of equations
involving this matrix can be done in linear time.

For PhCompBF (see Section 8.4 and Figure 5 for
explanations), in order to compute the phase of a point
Xssa(to), we have to integrate the RRE with initial condi-
tion X,(Zo) for an ideally infinite number, namely 7pe,,
of periods, so that the states vector can be assumed
more or less to be tracing the limit cycle. If FFT (fast
Fourier transform) properties are used to compute the
phase shift between periodic waveforms, the overall
complexity of PhCompBF can be shown to amount to
O(npecK N L + L Klog, K) [22].

The approximate phase computation schemes consist
of solving the algebraic equations in (40) or (41)
(depending on whether the linear or quadratic scheme
is preferred). The bisections method is used to solve
these equations. In order to compute the phase value of
a particular timepoint, an interval has to be formed. In
forming such an interval, we start with an interval, of
length d,,,;, and centered around the phase value of the
previous timepoint, and double this length value until
the interval is certain to contain the phase solution. The
allowed maximum interval length is denoted by dax-
Then, the bisections scheme starts to chop down the
interval until a tolerance value d,, for the interval
length is reached. See Algorithm 2 for the pseudocode
of phase computations using PhCompLin (the scheme
depending on linear isochron approximations), based on
this explanation. More explanations on the flow of
PhCompLin are given in Section 8.4 and Figure 6. The
PhCompLin computational complexity can be shown to

be
dz
O [N Llo max
( &2 lrdtoldmin —‘ )

and PhCompQuad (which depends on quadratic iso-
chron approximations) complexity is

O (N2 L log, ’7 s —D
dio1dmin

based on the explanations above.

The computational complexity expressions for all of
the phase computation schemes are summarized in
Table 1.

Phase equation solution complexities depend (in
extreme conditions) mainly on the stoichiometric matrix
S being sparse (few nonzero entries per row) or totally
dense. Note that in realistic problems S is observed to be
usually sparse. These stated respective conditions lead us
to come up with best and worst case complexities.

(42)

(43)
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Table 1 Computational complexities for the phase
computation schemes

Scheme Computational complexity
PhCompBF O(npertK N L + L Klog,K)
2
PhCompLin O (N Llog, ’7 inax —D
dtoldmin
d2
PhCompQuad O <N2 L log, ’7 max —D
dtoldmin

In order of increasing computational complexity, the schemes are PhCompLin
(on linear isochron approximations), PhCompQuad (on quadratic isochron
approximations), and PhCompBF (with no approximations). We denote by N
the number of states in an oscillator, K the number of timepoints along a
single period, and L the number of total timepoints along the interval where
a phase computation method is run. We have ng., as the number of periods
that we simulate the RRE with the initial condition that is off the orbit, so that
this solution of the RRE can be expected in practice to settle into periodicity,
and the phase value associated with the stated initial condition can be
computed (note that this is the essence of PhCompBF). The values d,.x and
dmin are respectively the maximum and minimum lengths of the interval in
which a solution for phase is sought. The value dy, denotes a tolerance.

As such, PhEqnLL (the equation employing linear iso-
chron and linear orbital deviation approximations) com-
plexity in the best and worse case can be shown to be
OML+NL) and O(N M L), respectively. PAEqnQL
(with quadratic isochron and linear orbital deviation
approximations) complexities are O(N? L+ M L) (best
case) and O(N? L+ N M L) (worst case). Complexities
for the phase equations are summarized in Table 2. For a
pseudocode of phase computations using PhEqnLL, see
the explanation in Section 8.3.1 and Algorithm 1 based
on this account.

The essence of the above analyses is that there is a
trade-off between accuracy and computational complex-
ity [22]. For mildly noisy oscillators, the phase equations
should remain somewhat close to the results of the
golden reference PhCompBF and the other approximate
phase computation schemes, which imitate PhCompBF
very successfully with much less computation times. For
more noisy oscillators, we should expect the phase com-
putation schemes to do still well, although the phase

Table 2 Computational complexities for the phase
equations

Equation Complexity (best) Complexity (worst)
PhEgnLL OML+NL) O(NML)
PhEQNQL ON?L+ ML) ON?’L+ NML)

We provide the best and worst case computational complexities for the phase
equations, PhEqnLL (on linear isochron and linear orbital deviation
approximations) and PhEqnQL (on quadratic isochron and linear orbital
deviation approximations), according as the stoichiometric matrix S is sparse
(few entries per row) or fully dense. Note that the computational load the
equations entail are much less than those of the phase computation schemes.
We denote by N the number of states in an oscillator, M the number of
possible reactions that can occur, K the number of timepoints along a single
period, and L the number of total timepoints along the interval where a
phase computation method is run.
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equations will compute some inaccurate results very
fast. PhCompBF is always very slow [22].

Algorithm 1 - PhEqnLL pseudocode
input : oscModel and ssaPath
output: phase and phaseShift of points in ssaPath
//compute limit cycle [40]
1 x,(¢) = computeLimitCycle (oscModel);
//compute linear isochron approximations along a
single period [11]
2 v(¢) = computePhaseGradient (oscModel);
//obtain SSA path data
3 pts = pts in ssaPath;
//compute phase
4 for i < 1 to size(pts in ssaPath) do
//for the first timepoint, use the brute-force scheme
PhCompBF
//refer to Section 8.4 and Figure 5 for explanations
/Irefer to Section 9.4 for computational complexity
5 if i is equal to 1 then
//tValue of pts(i) : the time at which pts(i) occurs
//value of pts(i) : state vector for the oscillator at
tValue of pts(i)
6 phaseShift(i ) = PhCompBF(oscModel, x4(£),
tValue of pts(i), value of pts(i ));
7 phase(i ) = [ tValue of pts(i) | + phaseShift(i);
8 end
//for the other timepoints, use the first order phase
equation
//PhEqnLL update rule is given in (33) of Section
8.3.1
//more implementation details and computational
complexity in Section 9.4
//stoichiometric matrix (S) and propensity function
(a(X))
//information are embedded in oscModel
9 if i is not equal to 1 then
10 tau = [ tValue of pts(i ) ] - [ tValue of pts(i-1) ];
//Now apply the update rule in (33)
//reactionNo of pts(i ) : number of the reaction
occuring at tValue of pts(i )
/le; is an M-sized vector with its j th entry one
11  phase(i) =
phase(i-1 ) + tau + v'(phase(i-1)) S [€ eactionNo
of pts(i) - a(xs(phase(i-1))) taul;
12 phaseShift (i))=phase(i)-[tValue of pts(i)];
13 end
14 end

Algorithm 1: PhEqnLL pseudocode

Extended caption for Algorithm 1: Lines 1-2 compute
the limit cycle and the phase gradient. In lines 4-14, the
phase computation is described. Lines 5-8 describe the use
of the brute-force scheme PhCompBF for the phase
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computation of the first timepoint. In lines 9- 13, the
phase computation of the other timepoints is accom-
plished via PhEqnLL (the phase equation founded upon
the linear isochron and the linear orbital deviation
approximations).
Algorithm 2 - PhCompLin pseudocode
input : oscModel and ssaPath
output: phase and phaseShift of points in ssaPath
//compute limit cycle [40] and linear isochron approx-
imations [11]
1 x4(£) = computeLimitCycle (oscModel); v(t) = com-
putePhaseGradient (oscModel);
//obtain SSA path data
2 pts = pts in ssaPath;
//compute phase
3 for i < 1 to size(pts in ssaPath) do
//for the first timepoint, use the brute-force
scheme PhCompBF
4 if i is equal to 1 then

5 phaseShift(/) = PhCompBF(oscModel, x(¢),
tValue of pts(i), value of pts(i));

6 phase(i ) = [ tValue of pts(i)] + phaseShift(i );

7 end

//for the other timepoints, use PhCompLin, see
(40) of Section 8.4
//pictorial description in Figure 6
//algorithm description and computational com-
plexity in Section 9.4
8  if i is not equal to 1 then
//phase(i-1 ) used as the midpoint of the
interval
9 d = din/2; interval = [ phase(i-1 ) - d, phase(i-
1) + dJ;
10 while length(interval) < d, ;.. /2 do
//Check if the solution { to the following
equality (40) is in interval
//vT (1) [[value of pts(i)] — x(7)] = 0

11 if solution is in interval then break;

12 d = 2* d; interval = [ phase(i-I) - d, phase(i-1 ) +
dl;

13 end

//use bisection method to compute the solu-
tion to (40)
14 phase(i ) = BisectionMethod(oscModel, x(£),
v(¢), interval, value of pts(i));
15 phaseShift(i) = phase(i) - [tValue of pts(i)];
16 end
17 end

Algorithm 2: PhCompLin pseudocode

Extended caption for Algorithm 2: Line 1 computes
the limit cycle and the phase gradient. In lines 3-17, the
phase computation is described. Lines 4-7 describe the
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use of the brute-force scheme PhCompBF for the phase
computation of the first timepoint. In lines 8-16, the
phase computation of the other timepoints is accom-
plished via PhCompLin (the phase computation scheme
founded upon the linear approximations for isochrons).
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SSA: Stochastic Simulation Algorithm; CME: Chemical Master Equation; CLE:
Chemical Langevin Equation; RRE: Reaction Rate Equation; SDE: Stochastic
Differential Equation; ODE: Ordinary Differential Equation; PhCompBF: brute-
force phase computation scheme; PhComplLin: phase computation scheme
depending on linear approximations for isochrons; PhCompQuad: phase
computation scheme depending on quadratic approximations for isochrons;
PhEgnLL: phase equation depending on linear approximations for isochrons
and linear approximations for orbital deviation; PhEqnQL: phase equation
depending on quadratic approximations for isochrons and linear
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orbital deviation.
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