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Abstract

In recent years, cell population models have become increasingly common. In contrast to classic single cell models,
population models allow for the study of cell-to-cell variability, a crucial phenomenon in most populations of primary
cells, cancer cells, and stem cells. Unfortunately, tools for in-depth analysis of population models are still missing. This
problem originates from the complexity of population models. Particularly important are methods to determine the
source of heterogeneity (e.g., genetics or epigenetic differences) and to select potential (bio-)markers. We propose an
analysis based on visual analytics to tackle this problem. Our approach combines parallel-coordinates plots, used for a
visual assessment of the high-dimensional dependencies, and nonlinear support vector machines, for the
quantification of effects. The method can be employed to study qualitative and quantitative differences among cells.
To illustrate the different components, we perform a case study using the proapoptotic signal transduction pathway
involved in cellular apoptosis.

1 Introduction
Cell populations are heterogeneous in terms of, e.g, cell
age, cell cycle state, and protein abundance [1,2]. This
heterogeneity is ubiquitous, even in clonal population,
and influences cell fate decisions [2,3], such as cell
death/proliferation [4-7]. Thus, to ultimately understand
and control the behavior of populations, the key sources
of cell-to-cell variability have to be unraveled. Unfortu-
nately, this is challenging due to experimental con-
straints. Most experimental systems and measurement
devices only allow for the simultaneous assessment of a
few cellular properties on a single cell basis. This prohi-
bits the purely experimental analysis of processes which
depend on many different cellular properties. Spencer et
al. [5] have shown that the experimental limitations can
be overcome partially using mathematical models.
To mathematically describe heterogeneous popula-

tions, agent-based models are used most frequently.
Each agent provides a mechanistic description of the
signal transduction within individual cells and thus of
its behavior. In such a framework, variability can be
modeled by either stochastic [8-10] or deterministic
[4,5,11] differences among individual cells. The source

of the former is the stochasticity of biochemical reac-
tions, while the latter may arise from genetic and epige-
netic differences, environmental heterogeneity, or slow
dynamic processes (such as the cell cycle).
We focus on the deterministic differences among cells

— also called extrinsic factors [12] — in populations of
non-interacting cells. Those differences are commonly
modeled by differential parameter values and initial con-
ditions [5,13]. Several methods exist to infer the distri-
bution of parameters and initial conditions from
experimental data [13-15] and to obtain quantitative,
mechanistic models for cell populations. Unfortunately,
the resulting agent-based models are in general highly
complex. This complexity prevents the analysis of these
models using common tools for dynamical systems [16],
such as sensitivity and bifurcation analysis. To the best
of our knowledge, for models of heterogeneous cell
populations, no structured analysis approach is available.
To study population models and to facilitate a model-
driven analysis of the heterogeneity, highly flexible
methods are required which do not rely on an analytical
analysis.
In this work, we propose two methods to fill this gap

and to facilitate the analysis of population models.
These methods — parallel-coordinates plots [17] and
support vector (SV) machines [18-20] — are tools widely
used for the analysis of high-dimensional datasets.
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We outline how these tools can also be used to analyze
complex models of heterogeneous cell populations, par-
ticularly addressing the question: “Which parameters
cause the heterogeneity of the population’s response?”.
Thereby, we extend our previous work [21] and consider
qualitative heterogeneity among cells, in the context of
cell fate decisions, as well as quantitative heterogeneity,
such as the delay of a decision process.
We show that parallel-coordinates plots provide an

easy tool to obtain a qualitative understanding of the
system, whereas SV machines allow for assessing the
performance of marker combinations quantitatively.
Good markers are thereby defined as single cell para-
meters that facilitate a good prediction of the cell fate
decision or the quantitative property under considera-
tion of the individual cell. Furthermore, we show how
the combination of parallel-coordinates plots and SV
machines enables an in-depth analysis of complex mod-
els using exploration techniques.
The article is structured as follows: In the section

“Methods”, the considered system class and problem are
described in mathematical terms, the general idea is dis-
cussed, and the application of parallel-coordinates plots
and SV machines is outlined. In the section “Results”,
we provide an exemplary application of our method to a
model of the caspase cascade. The article is summarized
in the section “Discussion”.

2 Methodology
2.1 Models for heterogeneous cell populations and
decision processes
2.1.1 Mechanistic population model
In this article, population dynamics are described using
an ensemble [5,13] of cells (agents). This yields the
agent-based population model:

�pop =
{
�(θ (i))|i = {1, . . . , N}, θ (i) ∼ �(θ)

}
,

in which the superscript (i) specifies individual cells
within the population, N Î N denotes the size of the
cell ensemble and Σ(θ(i)) is the model of the i-th cell.
The single cell model Σ(θ(i)) may belong to the class of
Markov jump processes [15], stochastic differential
equations [14], or ordinary differential equations [13].
Since in this study we are mainly interested in signal
transduction and decision making, we consider ordinary
differential equation models. Each individual cell of Σpop
is described by

�(θ (i)) : ẋ(i) = f (x(i), θ (i)), x(i)(0) = x0(θ (i)),

with state vector x(i)(t) ∈ Rn
+ and parameter vector

θ (i) ∈ Rq
+ . The vector field f : Rn

+ × Rq
+ → Rn describing

the cell dynamics is locally Lipschitz and the mapping

x0 : Rq
+ → Rn

+ is continuously differentiable. The para-

meters θ(i) may be kinetic constants, such as synthesis,
degradation, or reaction rates.
Heterogeneity among cells of the ensemble is modeled

by differential parameter values θ(i) and initial conditions
x0(θ

(i)) among individual cells. The density of parameters
θ(i) is given by a probability density function
� : Rq

+ → R+ . Thus, the probability of observing θ(i) ÎΩ
is

Prob(θ (i) ∈ �) =
∫
�

�(θ)dθ .

This modeling framework is highly flexible and has
been proven to be very useful, especially if fast signal
transduction processes, such as cellular apoptosis, are
investigated. For a more detailed introduction, we refer
to the work of Spencer et al. [5] and Hasenauer et al.
[14]. The properties of such populations of single cells
have been studied by Spencer et al. [5], while Hasenauer
et al. [14] have derived a partial differential equation
model for the resulting population dynamics.
2.1.2 Qualitative and quantitative properties of the single
cell response
Given the mathematical models introduced above, we
study qualitative and quantitative properties of the single
cell responses. Qualitative properties are defined as the
outcome of a discrete decision processes, e.g., whether
the state of a bistable system converges to one or the
other stable steady state, or whether a certain concen-
tration threshold is reached. In contrast, quantitative
properties allow the assessment of small differences
among cells, such as the time point when a particular
threshold is exceeded.
To define single cell properties given the single cell trajec-

tory x(i)(·), the functionals Fj: ℓ
1 ® ℝ and Fδ: ℓ

1 ® {-1, +1}
are introduced. The functional Fj is used to evaluate the
quantitative property j(i) = Fj(x

(i)(·)) Î ℝ, while Fδ deter-
mines the qualitative property δ(i) = Fδ(x

(i)(·)) Î {-1, +1}.
To exemplify the functionals, we consider a process in

which threshold exceeding and its timing are of interest.
Such processes are important, for example, in apoptotic
signaling [5] and cell cycle progression [22,23], and
allow for two outcomes. Either the concentration of a

molecule x(i)j within the i-th cell exceeds the threshold

xj,th, δ
(i) = +1, or it does not, δ(i) = -1. This yields the

decision functional

Fδ(x(i)(·)) :=
{
+1 if max

t
x(i)j (t) ≥ xj,th

−1 otherwise.
(1)
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For the subgroup of cells exceeding the threshold, the
time of threshold exceeding is defined by the second
functional

Fϕ(x(i)(·)) := argmin
t

{
x(i)j (t) ≥ xj,th

}
, (2)

and may be employed to achieve a quantitative
understanding.
Note that the response x(i)(·) of a cell merely depends

on the cell’s parameters θ(i), as the single cell model is
deterministic. Therefore, the quantitative and qualitative
properties of a single cell can be viewed as a function of
the parameters, j(i) = j(θ(i)) and δ(i) = δ(θ(i)). Differences
in the parameters — as they arise between different cells
— may hence influence δ(i) and j(i), which determine
cell fate decision and qualitative properties of the cells.
2.1.3 Response markers
To understand the heterogeneity within the population
response Σpop, it is necessary to assess the dependency
of δ(i) and j(i) on the individual parameters θj. In parti-
cular, the question arises which subset θm of para-
meters,

θm := [θm1 , . . . , θmr ]
T, with m ⊆ {1, . . . , q},

is responsible for which aspect of the population het-
erogeneity. Mathematically, m is an index set and, e.g.,
for m = [2, 4] T only θm = [θ2, θ4]

T is considered. The
question of the relative importance of different para-
meters directly relates to the common problem of bio-
marker selection for stem cells and tumor cells, which is
experimentally challenging.
If there exists a subset θm of the parameters θ which

allows for the reliable prediction of the response, not all
sources for heterogeneity have to be assessed but only
those associated to θm. This enables a focusing of the
model development, as well as the reduction of the
experimental effort.

2.2 Analysis of population models using data analysis
tools
In this contribution, we illustrate the application of par-
allel-coordinates plots and support vector machines for
the study of parameter dependencies and the selection
of markers m. Parallel-coordinates plots and SV
machines are well-known, but almost exclusively applied
to study high-dimensional sets of measurement data. To
exploit the methods for the analysis of simulation mod-
els, at first the cell ensemble is simulated for N ≫ 1.
This yields many pairs of parameters and trajectories,(

θ (i), x(i)(·)
)
, i = 1, . . . , N,

which are then used to obtain samples of quantitative,

Sϕ =
{(

θ (1),ϕ(1)
)
, . . . ,

(
θ (N),ϕ(N)

)}
, with ϕ(i) = Fϕ(x(i)(·)),

and qualitative

Sδ =
{(

θ (1), δ(1)
)
, ...,

(
θ (N), δ(N)

)}
, with δ(i) = Fδ(x(i)(·)),

cell properties of interest. These samples contain
information about the dependency of j and δ on the
parameters θ, being analyzed in the following. To study
the high-dimensional mappings δ = δ(θ) and j = j(θ),
parallel-coordinates plots will be employed. For the
quantitative assessment of particular marker combina-
tions SV machines will be applied. By combining both
approaches it is possible to quickly gain an overview of
important interrelations and quantify those.
2.2.1 Combining parallel-coordinates plots and SV machines
to a visual analytics system
The proposed simulation data-based analysis approach
circumvents an analytical analysis of the system equa-
tions, which would be time consuming and could only
be carried out by experts. However, the simulation data-
based approach creates the need for analyzing the large,
high-dimensional datasets, Sδ and Sϕ .
The analysis of such datasets often relies on a reduc-

tion of complexity while preserving the important infor-
mation. Visualization can help in such a situation to
determine the important parameters and to avoid infor-
mation loss. In this work, parallel-coordinates plots are
used to gain insight into the high-dimensional depen-
dencies and to find interesting dimensions. In this parti-
cular setting, interesting dimensions are those that
clearly separate a given set of classes and thus are good
candidates for the selection of potential markers m. In a
second step, the potential markers m are used to train a
SV machine. These SV machines allow for a quantitative
evaluation of the marker quality. While SV machines are
also helpful on their own, checking all possible combi-
nations of markers would result in a combinatorial
explosion. By combining SV machines and parallel-coor-
dinates plots, the number of necessary SV machine eva-
luations can be decreased substantially, resulting in a
tremendously reduced computational complexity. The
overall workflow of the analysis illustrated in Figure 1.
Besides an improved understanding of the model,

results obtained during the analysis can be used to
adapt the population model or to select additional
experiments. This proposed framework, integrating
interactive visualization with automated methods while
allowing for a feedback to the actual system/model, thus
incorporates important aspects of visual analytics [24].
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2.3 Parallel-coordinates for the analysis of high-
dimensional data
Parallel-coordinates [17] are a popular visualization
technique for high-dimensional data. A parallel-coordi-
nates plot is constructed by placing axes in parallel, as
illustrated in Figure 2. A single pair of adjacent axes

represents a 2-D projection of the data, where a point of
the corresponding Cartesian coordinates is mapped to a
line in parallel-coordinates, and vice versa. Due to this
point-line duality, the same patterns emerge in a paral-
lel-coordinates plot as in the dual Cartesian coordinates.
However, adding more axes not only allows to visualize

(1) Experiments / experimental data
(e.g., flow cytometry, microscopy, . . .)

(2) Modeling and parameter estimation
(see, e.g., Koeppl et al. (2011) and Hasenauer et al. (2011a,b))

(3) Analysis of population model
(problem studied in this work)

Simulation experiment

⇒ artificial datasets

Sδ and Sϕ

Parallel-coordinates plots
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Figure 1 Visual analytics for marker selection. Illustration of the overall workflow of (1) experiments and the collection of measurement data,
(2) modeling and parameter estimation, and (3) model analysis. Our visual analytics framework for marker selection in models of heterogeneous
cell populations is shown in detail. Based on simulation data Sδ and Sϕ generated from the model, a visual analysis is performed using
parallel-coordinates plots. Employing this visualization, insight can be gained into the dependencies of the considered properties on the
parameters. Additionally, a potential marker combination m can be selected, here, for instance, m = 1 or m = 4, which allow for a separation of
the classes. For the quantitative assessment of the informativeness of θm, e.g., SV classification or SV regression, may be employed.
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a set of pairwise relations, but also supports the viewer
in tracing lines over all dimensions. As a result, multi-
dimensional outliers and clusters can be visualized
together with 2-D relations and the distribution of
values for single dimensions.
As an N-dimensional data point is represented by a

polyline intersecting axes at the respective values, paral-
lel-coordinates greatly suffer from overplotting if many
lines have to be drawn. In the resulting clutter of lines,
interesting patterns might be hidden from the user.
Exploiting the point-line duality, similar clutter-reducing
approaches as for Cartesian coordinates can be used,
where a popular technique is to estimate the density of
points (lines) and to render points (lines) transparently
with blending enabled. Other approaches compute a
continuous density [25] or estimate the overall density
using density estimation techniques [26,27]. In this
work, both alpha and additive blending is used to visua-
lize the parameter distribution in the different classes (j
(i) = 1 and j(i) = -1), enabling a qualitative analysis of
their multi-dimensional shape. An example of this alpha
blending is shown in the section “Results”.
For the analysis of a continuous variable, colormaps

can be applied to the axis representing the dependent
variable j(i). Then, every polyline is rendered using a
color according to j(i), such that its value can be visually
determined over the whole plot. The overall distribution
of colors can then be used in conjunction with the
shape of lines to analyze the dependency of independent
variables from the dependent. Again, overplotting can
become an issue for large datasets, such that a separa-
tion in few classes and a separate visualization of those

might be more informative (see example in section
“Results”).

2.4 SV machines for the quantification of marker
performance
Given a basic understanding of the importance of the
parameters and a potential marker combination θm, a
quantitative assessment of the predictive power of θm is
desirable. To achieve this, the samples Sδ and Sϕ are
analyzed employing nonlinear SV classification and non-
linear SV regression, respectively. SV classification allows
for the study of decision processes, while SV regression
enables the analysis of quantitative system properties.
The performance of SV machines — which might be

interpreted as data-based predictors — provides a mea-
sure for the quality of the marker combination θm. If a
SV machine using only θm provides good predictions for
a decision process which depends on θ, then this means
that θm carries the most important information. This
will be discussed in more detail in the following.
2.4.1 SV classification
The goal of the SV classification is to predict the dis-

crete property δ(i) given θ
(i)
m . Thus, the nonlinear map-

ping δ = δ(θ) is approximated by the lower-dimensional

nonlinear mapping δ̂ = δ̂(θm) . To calculate the SV clas-
sifier, a two step procedure is applied, as illustrated in
Figure 3. First, a mapping � : Rr → Rr∗— also called
kernel — is constructed that transforms the input space
into a feature space of higher dimension (r* >r). Second,
a linear separation of the data is performed in feature
space [20]. Therefore, the optimization problem

x1

x2

x2

x3

x1 x2 x3

Figure 2 Parallel-coordinates plots represent multi-dimensional data as polylines crossing parallel axes. A point in Cartesian coordinates
is mapped to a line in parallel-coordinates. As more axes are added, a line can be traced over all dimensions, which greatly facilitates the
perception of multi-dimensional data.
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minimize
w,b,ξ

1
2
wTw + C

N∑
i=1

ξi

subject to δ(i)
(
wT�(θ (i)

m ) + b
)

≥ 1 − ξi, i = 1, . . . ,N,

ξi ≥ 0, i = 1, . . . ,N,

(3)

is solved, in which w and b denote the normal vector
of the separating hyperplane and its offset, respectively.
The objective function combines a misclassification pen-

alty,
∑S

i=1 ξi , and a margin maximization, 1
2w

Tw . The

weighting of the different terms can be influenced via C.

The constraints are that all data points �(θ (i)
m , δ(i)) are

correctly classified within a certain error margin ξi.
Given the solution of (3), a predictor (SV classifier) for

the decision process δ = δ(θ) is

δ̂(θm) = sign
(
wT�(θm) + b

)
. (4)

Assuming that the training set Sδ is large, the predic-
tive power of this predictor will be high — meaning that

δ̂(θ (i)
m ) = δ(θ (i)) for most θ(i) ~ Θ(θ) — if and only if the

selected markers θm are informative. This allows the
quantitative assessment of the informativeness of the
markers θm using the SV classifier.
Therefore, a second sample S ′

δ is computed which
was not used to train the SV classifier, avoiding overfit-

ting. For this sample, the predictor δ̂(i) = δ̂(θ (i)
m ) is eval-

uated. These results are used to calculate the percentage
of true positive classifications TP (δ(i) = 1 ∧ δ̂(i) = 1)

and false positive classifications FP (δ(i) = 0 ∧ δ̂(i) = 1)
achieved by the SV classifier. TP and FP provide infor-
mation about the predictability of the outcome for θ(i)

using solely θ
(i)
m . Thus, the marker quality can be

assessed via TP and FP. If a low-dimensional m exists
that provides TP ≈ 1 and FP ≈ 0, the parameters θm

dominate the decision process and are good markers.
For a quantification of this effect, the classification per-
formance can be analyzed in receiver-operating charac-
teristic (ROC) space [28].
2.4.2 SV regression
Similar to the assessment of the predictive power of
marker combinations for qualitative decisions, also
quantitative properties may be analyzed. Therefore, we
employ SV regression which allows us to compute a
data-based predictor

ϕ̂(θm) = wT�(θm) + b, (5)

for the quantitative property j = j (θ). To compute
the nonlinear predictor, a kernel � : Rr → Rr∗ [29] is
chosen and an optimization criterion selected. In this
work, we use an ε-insensitive loss function [30], mean-

ing that residuals ϕ(i) − ϕ̂(θ (i)
m ) with an absolute value

below ε are not penalized while larger residuals are
penalized linearly. This loss function is frequently used
in the literature (see, e.g., [20,30]) and results for the
sample Sϕ in the optimization problem:

minimize
w,b,ξ ,ξ∗

1
2
wTw + C

N∑
i=1

(ξj + ξ∗
i )

subject to ϕ(i) − wT�(θ (i)
m )

−b ≥ ε + ξi, i = 1, . . . ,N,

−ϕ(i) + wT�(θ (i)
m )

+b ≥ ε + ξ∗
i , i = 1, . . . ,N,

ξi, ξ∗
i ≥ 0, i = 1, . . . ,N.

(6)

Aside from the penalization of prediction error,∑N
i=1(ξi + ξ∗

i ) , flatness and a unique solution is ensured

using 1
2w

Tw . The trade-off between those two is deter-

mined by the constant C > 0.
The optimal solution of (6) for w and b provides the

optimal predictor (5) with respect to the loss function

and kernel. This predictor ϕ̂(i) = ϕ̂(θ (i)
m ) is applied to a

second sample S ′
ϕ to compute ϕ̂(i) , a prediction for j(i).

Employing j(i) and ϕ̂(i) the marker combination m
might be evaluated based on the relative prediction

errors, e(i)m =

∣∣∣∣ϕ(i)−ϕ̂(θ (i)
m )

ϕ(i)

∣∣∣∣ . Using e(i)m , the prediction

powers of different marker combinations can be
assessed and compared using, e.g., the mean error
1
N

∑N
i=1 e

(i)
m . If the mean prediction error achieved by a

marker combination is small, the parameters θ
(i)
m carry

most of the information about j(i), and hence are suita-
ble markers. In some situations, the information about

input space

θ1

θ2

Step 1

feature space

Φ1(θ)

Φ2(θ)

Step 2

feature space

Φ1(θ)

Φ2(θ)

Figure 3 Support vector machine for subgroup classification.
Visualization of the SV machine approach for separating cells with
δ(i) = +1 (+) and δ(i) = -1 (◦). Left: distributed data in the input space.
Middle: sample transformed in the feature space which allows for
better separation. Right: separation result for separating hyperplane
with normal vector w (®). As a perfect separation is in general not
possible, misclassifications (○) exist.
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the mean prediction error may be complemented by

detailed information about the error statistics, {e(i)m }Ni=1 .
These statistics may be visualized using, for instance,
box plots or histograms, and provide additional insight,
e.g., in the structure of the error (short- vs. long-tailed
distributions) and the potential causes.
Note that the performance and predictive power of SV

machines strongly depend on the available training set.
For the analysis performed, we ensured that the training
sets are large enough and that a further increase in its
size does not result in a significant improvement of the
predictors. This is, in most situations where SV
machines and SV regressions are used, impossible for
data analysis, as the measurement devices are limited.
However, in this work we study the problem of model
analysis. The size of the dataset can be increased arbi-
trarily by repeated simulation of the model. Besides the
size of the dataset, the parameters of the SV classifica-
tion and SV regression are tuned to allow for a fair
comparison between the marker combinations. With
this and the existence of sophisticated SV machine tool-
boxes (e.g., LIBSVM [31]), the observed difference
between marker combinations can be assumed to be
due to the predictive power of the markers.
Summing up, SV machines allow for the derivation of

predictors for qualitative and quantitative properties.
These predictors can be used to assess the information
content of a subset m of the parameters about the
respective properties, thereby facilitating the assessment
of a quantitative evaluation of the predictive power of
θm. For further details about SV machines we refer to
[18-20,30,31] and references therein.

3 Results
3.1 Model for heterogeneous cancer cell population
To illustrate the proposed visual analytics framework, a
model of the proapoptotic signaling is analyzed. Proa-
poptotic signaling is involved in the process of apoptosis
[32-34], also called programmed cell death. Apoptosis is
an important physiological process to remove infected,
malfunctioning, or no longer needed cells from a multi-
cellular organism. The apoptotic signaling pathways
converge at the caspase cascade [32], where initiator
caspases (e.g., caspase 8) and effector caspases (e.g., cas-
pase 3) are activated. If the activity of effector caspases
exceeds a certain threshold, apoptosis is induced.
A variety of single cell and cell population models

have been proposed to describe cellular apoptosis (see,
e.g., [4-6,34-40] and references therein). In this study,
we consider the mathematical model of the signal trans-
duction which is depicted in Figure 4. This single cell
model [35] is among the most cited ones. For details
about the model, we refer to the original publication

[35]. As the process of apoptosis induction is known to
be heterogeneous, we extend the single cell model [35]
by accounting for cell-to-cell variability. This is achieved
by introducing differences in parameter values and
initial conditions:

• From flow cytometric experiments, it is known that
the amount of caspase 8 (C8), caspase 3 (C3), caspases
8- and 10-associated RING protein (CARP), and inhi-
bitor of apoptosis protein (IAP) is different among
individual cells. The differences are modeled by differ-
ences in synthesis rates (k-8, k-9, k-10, and k-12) among
individual cells. The distribution of k-8, k-9, k-10, and
k-12 within the population is modeled as log-normal
distribution, with mean as published by Eissing et al.
[35] and a coefficient of variation of 0.4 (own unpub-
lished data). The initial conditions of C8, C3, CARP,
and IAP are set to their steady state values.
• Similar to the original publication [35], the activa-
tion of the caspase cascade is modeled by a non-
zero initial condition of active caspase 8, C8a(0). In
the population, C8a(0) is log-normally distributed
with a median of 4,000 molecules per cells and a
coefficient of variation of 0.4. The variation of
C8a(0) accounts for variability up-stream of the cas-
pase cascade.

The binding affinities and kinetic rates are the same
for all cells. For the numerical values, we refer to the
article of Eissing et al. [35].
Given this model of the heterogeneous cell population,

we analyzed (i) how the decision whether or not a cell
undergoes apoptosis during the first 12 hours and (ii)
how the time of cell death Td is influenced by the cell’s
parameters θ = [C8a(0), k-8, k-9, k-10, k-12]

T. This yields
two variables of interest: δ (= +1 ⇒ cell survived; = -1 ⇒
cell died) providing the outcome of the decision process;
and j (= Td) providing the time of apoptosis commit-
ment. As indicator for apoptosis, the amount of active
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Figure 4 Caspase cascade. Illustration of proapoptotic signaling
pathway [35]. Normal arrows refer to conversion reactions, dashed
arrows indicate enzymatic activity, and thick arrows illustrate inputs
and outputs of the system.
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caspase 3 (C3a) is used. If more than 5,000 copies of
C3a are present in a cell, this cell is assumed to undergo
apoptosis within 10 minutes, defining the time of cell
death Td. The functionals associated to the considered δ
and j are similar to (1) and (2), respectively. In the
remainder, we search for a lower-dimensional subset of
the parameters θ which provide good markers for cell
death and survival as well as the time of cell death.

3.2 Parallel-coordinates plot establishes importance of C3
and IAP concentration for cell fate decision
To study the life-death-decision, a sample Sδ with
100,000 members is visualized in parallel-coordinates
(Figure 5). As only two classes (dead and alive) are con-
sidered, alpha blending can be used to visualize the den-
sity of each class as well as the density at the
overlapping regions, where the transparent red color,
representing dead cells, and the transparent blue color,
representing living cells, are blended wit a = 0.03. Using
this coloring, high-density regions appear more satu-
rated for the individual classes and darker at their
overlap.
From Figure 5, it is apparent that the second and

fourth parameters (θm = [k-8, k-10]
T) provide a reason-

able separation between the classes (red = dead, blue =
alive). Most of the surviving cells have high values of k-8
and low values of k-10, which corresponds to a high IAP
expression and a low C3 expression, respectively.
Although the other parameters also influence the pro-
cess, their influence seems to be minor.

3.3 SV classification proves that C3 and IAP expression
are the best markers for the cell fate decision
Given the results of the visual analysis, we consider θm
= k-8, θm = k-10, as well as θm = [k-8, k-10]

T and compute
the classification quality using SV machines (for details
see “Methods”). As can be seen in Figure 6A, the

predictive power of the individual parameters is limited
(θm = k-8: TP = 0.73, FP = 0.38; θm = k-10: TP = 0.74,
FP = 0.29), while both markers together yield a reason-
able classification performance (TP = 0.77, FP = 0.13).
The corresponding ROC curve is depicted in Figure 6C
and the visualization of TP and FP is provided in Figure
6D. For comparison, the alternative combinations of two
markers are evaluated in terms of the area under the
ROC curve (Table 1) and the TP/FP (Figure 6C).
The markers θm = k-8 and θm = k-10 outperform all

other single markers and marker pairs. In addition, the
marker vector θm = [k-8, k-10]

T outperforms all other
combinations in terms of the area under the ROC
curve. Some other combinations result in more than
50% false positive classifications (see Figure 6B). Of
course, extending the marker vector, e.g., by adding k-12,
results in further improvement.

3.4 Parallel-coordinates plots show a complex
dependency of the time of death on the parameters
After the analysis of the decision process, we study the
dependency of time of cell death Td on the parameters.
The time of cell death Td is a quantitative property and
can take any positive value, therefore an alternative
visualization has to be used. One approach would be to
use a different color for each line in parallel-coordinates,

depending on T(i)
d . Unfortunately, this approach suffers

from heavy overplotting, which is why the data was split
into three classes and separate plots were created for
each class.
Figure 7A-C visualize the parameter distribution in

different percentile intervals for Td. A comparison of
Figure 6A, visualizing the cells that die early (0 to 10th
percentile), and Figure 7C, depicting the cells that die
late (90 to 100th percentile), unravels offsets in all para-
meter dimensions. The differences are particularly pro-
minent for C8a(0), k-10, and k-12, showing that the
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Figure 5 Separation of subgroups in parallel-coordinates. Parallel-coordinates density plot in which each polyline represents the parameter
of a single cell, θ(i). The color of a polyline encodes whether the cell survived (blue line) or died (red line). In order to emphasize dense regions,
alpha blending with a = 0.03 was used for all lines. The parameters k-8 and k-10 show the best separation of colors and hence correspond to
potential markers.
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abundance of C3 also plays an important role in deter-
mining whether cells die early or late. Unfortunately, a
closer look at Figure 7 also reveals that the parameter
distributions associated to cells that undergo apoptosis
at early, intermediate, and late time points strongly
overlap in parallel-coordinates. This indicates that Td

may depends on all parameters. Therefore, a reliable
prediction of Td using only a few parameters might be
infeasible.

3.5 SV regression reveals ubiquitous importance of IAP
an C3 expression levels
To quantify the predictive power of different marker com-
binations with respect to Td, we employ the SV regression
based approach introduced in “Methods”. As a perfor-

mance measure, the relative prediction error

∣∣∣∣T(i)
d −T̂(i)

d

T(i)
d

∣∣∣∣ ,
their T̂(i)

d
is the prediction of the SV machine. Details on

the implementation may be found in “Methods”.
At first, we study the potential combinations of two

markers proposed by the parallel-coordinates plots: k-10
and k-12; C8a(0) and k-10; and C8a(0) and k-12. Out of
those, the best performance with a median prediction
error of 40% is achieved by C8a(0) and k-12, which also
outperforms all other combinations of two markers. Inter-
estingly, all marker combinations achieve a median predic-
tion error between 40 and 50%, as shown in Figure 8. This
illustrates two things: On the one hand, markers allowing
for a distinction between early and late dying cells do not
necessarily enable a good prediction of the death time Td,
as here also the cells dying in an intermediate interval
dominate the statistic. On the other hand, this quantifica-
tion proves that even the best combination of two markers
provides only very limited predictive power. Thus, unlike
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Figure 6 Performance of different marker combinations. Evaluation of classification performance using different marker combinations. (A)
and (B) illustrate the classification obtained using to different two marker combinations. The prediction of the classifier (trained using 10.000
simulations) is provided as background color (blue square = alive; red square = dead) together with a test sample (× = alive; ◦ = dead), which
has not been used for training. (A) Classification employing C3 synthesis, k-10, and IAP synthesis, k-8, as markers. For the classification of cell
survival: TP = 0.77, FP = 0.13. (B) Classification employing initial amount of C8a, C8a(0), and C8 synthesis, k-8, as markers. For the classification of
cell survival: TP = 0.68, FP = 0.53. (C) ROC curve obtained when using C3 synthesis, k-10, and IAP synthesis, k-8 as marker. (D) The performance of
all individual markers, all marker pairs, and the best marker triplet in ROC space. Note that an optimal classifier would be in the upper left corner.

Table 1 Area under the ROC curve for different marker
combinations

C8a(0) k-8 k-9 k-10 k-12

C8a(0) 0.569 0.747 0.626 0.808 0.690

k-8 0.747 0.736 0.760 0.898 0.800

k-9 0.626 0.760 0.603 0.822 0.709

k-10 0.808 0.898 0.822 0.795 0.858

k-12 0.690 0.800 0.709 0.858 0.676

A common performance measure for classifiers is the area under the ROC
curve. The worst and best achievable performance is 0.5 and 1, respectively.
The evaluation of the area under the ROC curve verifies that if only one
marker can be used, k-10 (area = 0.795) and k-8 (area = 0.736) are the best
choice (on-diagonal bold numbers). In case of two markers, the combination
of k-8 - k-10 allows for the best classification (area = 0.898) (off-diagonal bold
numbers). For the three markers k-8, k-10, and k-12, the area under the ROC
curve is 0.966.
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the decision which predominantly depends an C3 and IAP
expression, the time of cell death is highly sensitive to
changes in all parameters.

4 Conclusion
4.1 Visual analytics enable an in-depth analysis of
complex population models
In this article, a novel explorative approach has been
presented to determine markers for decision processes

in heterogeneous populations. It has been shown that
methods used for data analysis can also be employed to
gain insight into complex models, where common analy-
tical methods seem to reach their limits. Especially, the
potential of parallel-coordinates plots and support vec-
tor machines has been illustrated. While the first allows
for the study of large, high-dimensional datasets and the
selection of potential markers, the latter can provide a
quantitative assessment of their predictive power. Using
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Figure 7 Dependency of Td on the single cell parameters. Visualization of three subsets of the sample Sϕ using parallel-coordinates. The

subplots depict the parameter vectors of the cells having T(i)
d

value: (A) below the 10th percentile; (B) between 45th percentile and the 55th

percentile; and (C) above the 90th percentile of the Td values. The thin black lines are elements of the sample and the thicker line is the mean.
A comparison of the subplots (A) and (C) shows that cells dying early and cells dying late mainly differ in the parameters C8a(0), k-10, and k-12
but also the other parameters show small offsets in one or the other way. The joint consideration of all subplots reveals that in parallel-

coordinates the parameter regions, associate to different times of cell death, overlap. This indicates that several parameters will determine T(i)
d

.
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both methods, the source of qualitative and quantitative
cell-to-cell variability may be unraveled.
This article provides a case study evaluating the

potential of combining visualization and automated
methods for the assessment of complex system models.
The considered system class is only one example and
the proposed framework can be generalized easily to
other systems and questions.

4.2 Analysis of heterogeneous cell population allows for
novel insight
We have illustrated the proposed visual analytics approach
by analyzing a cell population model for proapoptotic sig-
naling, which plays an essential role in programmed cell
death. We have studied the cell fate decision as well as the
time of cell death. These properties were analyzed before
(see, e.g., [5]) in a purely qualitative way and without the
tools proposed in this work.
Our study shows that parallel-coordinates plots are a

proper tools to determine potential markers. The

predictive power of these markers can then be quantified
using SV machines. In this study, the markers we found
agree well with those found in the literature. In particu-
lar, the important role of IAP—also called XIAP—for cell
death commitment is outlined in several publications
[39,41]. While C3 abundance is known to be important
[39], our analysis suggests that the amount of available
C3 could be even more important than expected.
In addition, our analysis indicates that, under normal

conditions, the time of cell death strongly depends on
all parameters, which has been hypothesized earlier [5].
Only under altered conditions, e.g., a strongly increased
initial amount of C8a(0), some parameters become more
important than others (results not shown). This is again
in agreement with the results of Spencer et al. [5].
Furthermore, this finding of a varying importance of
parameters depending on the experimental setup, pro-
vides hints for possible future experiments. Thus, our
visual analytics approach we propose also provides help-
ful feedback for model validation and development.
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4.3 Outlook
In this work, we have proposed a method to determine
decision markers for given models. However, all model
possess uncertainties, rendering an uncertainty-aware
analysis crucial. Therefore, a workflow including model
development, parameter estimation, uncertainty analysis,
and marker prediction has to be established. This
requires improved modeling and parameter estimation
tools, as well as methods to evaluate the uncertainty of
the marker prediction, arising from model uncertainties.
Given such a workflow, beyond the analysis of models,

our analysis tools might also be used to guide the search
for biomarkers. This is possible as our methods allows
for the assessment of the importance of any parameters
which are different among cells of the population.
Among others, the importance of common biomarkes,
e.g., expression levels and transcription factor/protein
abundance, may be determined based on a model of the
population. This is much in the same way as the target
selection using sensitivity analysis of single cell models
based on ordinary differential equations (see, e.g., [42]).
However, the marker selection requires population mod-
els, as differences between cells have to be considered,
and is therefore more challenging.

Methods
Software
The model of the heterogeneous cell population was
implemented in MATLAB using the SBtoolbox2 [43].
For the SV classification and the SV regression, the
LIBSVM toolbox for MATLAB is employed [31]. The
visualization software for parallel-coordinates was imple-
mented in C++ using the Qt library Version 4.8.0 and
OpenGL.

Numerics
For the SV classification and SV regression, we
employed as kernels radial basis function with g = 0.25.
The SV regression parameter which defines the interval
of insensitivity was set to 0.01. All remaining parameters
are set to the default constants, see LIBSVM manual. To
improve the performance of the SV machines, we
applied a log-transformation to the parameters θ.
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