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Abstract

Drug discovery today is a complex, expensive, and time-consuming process with high attrition rate. A more
systematic approach is needed to combine innovative approaches in order to lead to more effective and efficient
drug development. This article provides systematic mathematical analysis and dynamical modeling of drug effect
under gene regulatory network contexts. A hybrid systems model, which merges together discrete and continuous
dynamics into a single dynamical model, is proposed to study dynamics of the underlying regulatory network under
drug perturbations. The major goal is to understand how the system changes when perturbed by drugs and give
suggestions for better therapeutic interventions. A realistic periodic drug intake scenario is considered, drug
pharmacokinetics and pharmacodynamics information being taken into account in the proposed hybrid systems
model. Simulations are performed using MATLAB/SIMULINK to corroborate the analytical results.
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Introduction
The ultimate goal of drug therapy is to modulate the
phenotypic behavior of cells by altering the behavior
of the gene and protein components of the cell [1].
This approach is possible because the phenotypic behav-
ior of the cell reflects the dynamics of the gene and
protein-based regulatory network. When it comes to drug
therapeutics and disease modeling, the major goal is to
understand how the system changes when perturbed and
how to modify the system to achieve a desired outcome.
To understand and exploit the complicated mapping
between genome and phenome, especially in the context
of drug discovery, it is critical to evaluate the regulatory
interactions between the genes and proteins that form the
gene regulatory network (GRN). To date, the hope of the
rapid translation of “genes to drugs” has foundered on the
reality that disease biology is complex and drug develop-
ment must be driven by insights into biological responses
[2]. A systems approach is crucial for moving biology
from a descriptive to a predictive science [3,4]. This calls
for appropriate modeling to establish a functional under-
standing of disease–drug interaction, in order to better
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predict drug effects and make drug discovery a faster and
more systematic process.
Pharmacokinetics (PK) is the study of what the body

does to the drug, i.e., the absorption, distribution,
metabolism, and excretion of the drug, and pharmacody-
namics (PD) seeks to study what the drug does to the body.
A salient challenge is to link a drug’s PK information with
PD characteristics to provide a better understanding of
the time course of drug effect (PK/PD) after drug admin-
istration [5]. Modeling and simulation tools are required
to integrate PK and PD data and optimize drug regimens.
A salient problem is finding a dosing regimen of a

drug candidate that is both efficacious and safe [6]. Tra-
ditionally, drugs have been administered on an experi-
mental basis, but it is virtually impossible to optimize
dosing regimens using strictly empirical methods, espe-
cially since different patients may respond differently to
the same drug dosage [7]. Moreover, traditionally design-
ing the dosing regimen to achieve some desired target
goal such as relatively constant serum concentration may
not be optimal because of underlying dynamic biological
networks. For example, Shah et al. [8] demonstrate that
BCR–ABL inhibitor dasatinib, which has greater potency
and a short half-life, can achieve deep clinical remission
in CML patients by achieving transient potent BCR–ABL
inhibition, while traditionally approved tyrosine kinase
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inhibitors usually have prolonged half-lives that result in
continuous target inhibition. A similar study of whether
short pulses of higher dose or persistent dosing with lower
doses has the most favorable outcomes has been carried
out by Amin et al. [9] in the setup of inactivation of HER2–
HER3 signaling. Finding an optimal dosing regimen based
on the dynamics of biological systems and relevant PK/PD
information is critically important.
Systemmodeling is emerging as a valuable tool in thera-

peutics to address these challenges [3,10-12]. The process
begins with building a quantitative model of a biological
system. Consequences of particular perturbations, such as
optimal dosing regimens, optimal drug targets, or combi-
national therapy, can be simulated in time courses using
such models. In this study, we propose a hybrid sys-
tems model for GRNs and incorporate a drug’s PK and
PD information by using a state-space approach. We first
study drug effect assuming the drug target to be a gene
or protein in the proposed drug perturbation model using
dynamical system theory, considering the case of peri-
odic drug intake and analytically deriving the conditions
for the drug to be effective. We extend the analysis to
the 2-gene case and then to the case of a network with
multiple coupled genes and positive feedback loops. Sim-
ulations are performed using MATLAB/SIMULINK to
supplement our analytical results.

Model formulation
While discrete modeling leaves out many details, con-
tinuous modeling includes so many details that com-
putational demands preclude their applications to many
larger systems. Hybrid systems, which aim to merge ideas
from both continuous and discrete modeling into one
paradigm, are appealing for GRN modeling under drug
perturbations because biological systems are naturally
nonlinear, have highly varied regulatory requirements,
and possess a wide range of control strategies for meeting
their needs. While some simple, local, feedback control
methods can provide sufficient regulation of many more-
or-less continuous cellular processes, the regulation of
discontinuous processes possessing the character of com-
putational decision making requires more elaborate reg-
ulatory methods [13]. In particular, some genes display
regulation in a thresholded switch-like manner [14].
Hybrid systems include a broad space of models and sys-

tems. Several hybrid systems models have been developed
for biological networks. Some of these have been used
to perform reachability analysis to elucidate biologically
meaningful properties. For example, the Lac operon sys-
tem has been well studied both experimentally and using
continuous models [15,16]. A hybrid model and use of a
reachability algorithm were validated by comparison with
experimental data and continuous models [17]. Other bio-
logical hybrid systems analyzed in similar ways include

the Delta-Notch decision process [18,19], GRNs of car-
bon starvation [20], and nutritional stress response [21]
in Escherichia coli. As far as we know, the only hybrid
systems modeling concerning treatment or drug effects is
contained in our earlier work [22].
Gene regulation can be modeled by rate equations

expressing the difference between rate of production and
rate of degradation [23,24]. We adopt the general model

ẋi = fi(x) − γixi, (1)

where xi ≥ 0 corresponds to the concentrations of
proteins encoded by genes in the network and can be
interpreted as the gene expression level. fi(.) is a general
nonlinear function and represents the rate of synthesis.
It can be approximated by a sigmoidal function or a unit
step function, and unit step function is used in this article.
γixi is the rate of degradation. To use hybrid systems and
incorporate drug effect, we propose the following model
for a GRN of N genes under drug perturbation:
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where the last two terms on the right-hand side of
Equation (2) correspond to drug perturbation u. β > 0
and γ > 0 are synthesis and degradation rates, respec-
tively. Ki ≥ 1 is an integer representing the number of
activation/synthesis terms. �j

i and �
j
i describe how other

genes affect gene i. They are the functions of s+(xj, θ t+i
j )

and s−(xj, θ t−i
j ), where s+(.) is the unit step function,

s−(.) = 1 − s+(.), and the θ terms are the corresponding
threshold values. For each gene j, the set of threshold val-
ues related to gene i is denoted by Ti

j , where t+i and t−i

are indices of the threshold values, 0 ≤ θ
t+i
j ∈ T

i
j , and

0 ≤ θ
t−i
j ∈ T

i
j . �i and �i represent the two sets of genes

that affect the expression of gene i in different manners.
Specifically, in this article, we consider

�
j
i = s+(xj, θ t+i

j )s−(xj, θ t−i
j ), (3)

with �
j
i defined similarly. �

j
i and �

j
i may be set to 0 or

1, or different forms when appropriate threshold values
are chosen. For example, �1

1 = s+(x1, 0−)s−(x1,∞) = 1
and �2

1 = s+(x2, 0−)s−(x2, θ21 ) = s−(x2, θ12 ). �u
i and �u

i
describe how the drug u affect gene i. βu

i ≥ 0 and γ u
i ≥ 0

are the synthesis and degradation factors of the drug on
gene i. βu

i �u
i and −γ u

i �u
i xi are used when the drug is

activating or repressing certain genes, respectively. Since
most drugs are used to repress genes, only −γ u

i �u
i xi is

considered in the examples of this article. Note that γ u is
defined as a drug-effect factor, which is closely related to
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the drug pharmacology model discussed in the following
section.
It should be kept in mind that the focus of this arti-

cle is studying the effect of dosing, in particular, dosing
regimens, on the expression of genes involved in a pathol-
ogy by using hybrid systems theory. Whereas the sim-
pler Equation (1) is widely accepted, it does not contain
drug-effect terms. Equation (2) extends Equation (1) by
including such terms. While the structure is intuitively
reasonable and somewhat general, the actual details of the
drug-effect terms are unknown. Finding the specific form
of Equation (2) for a specific disease is a system identifi-
cation problem, which is quite distinct from the analysis
problem addressed in this article. We are addressing opti-
mization of treatment intervention, given the system. The
details of our analysis might change when the details of
Equation (2) are clarified, but we expect that the hybrid
systems approach taken in the article will go through with
appropriate modifications in the mathematical details.
We consider a 2-gene example to illustrate the feasibility

of using hybrid systems for modeling drug effect. Specifi-
cally, we assume that there are two interactive genes x1, x2
that repress each other, and x1 is a disease gene which
loses its self-regulation.We also assume that a drug targets
x1 by reducing its expression level and providing a nega-
tive feedback term −γ u

1 x1. The resulting 2-gene network
is given by

ẋ1 = β1s−(x2, θ12 ) − γ u
1 x1 (4)

ẋ2 = β2s−(x1, θ21 ) − γ2x2 (5)

where β1, β2 are synthesis factors, γ2 is a degradation fac-
tor, and θ21 , θ12 are threshold values. γ

u
1 is a drug-effect fac-

tor. Using dynamical systems theory, the state-trajectory
schematic diagrams of this 2-gene network without and
with drug input are obtained and plotted in Figures 1 and
2, respectively. It is observed that without drug input, the
gene expression level of x1 increases unbounded, while

Figure 1 State trajectory schematic of 2-gene examplewithout
drug intake.

Figure 2 State trajectory schematic of 2-gene examplewith drug
intake.

with proper drug input, β1/γ
u
1 < θ21 , the system converges

to a new steady state, (β1/γ
u
1 ,β2/γ2).

We assume periodic drug intake and the drug concen-
tration level in the effect-site follows exponential decay
during each period τi, i.e., ui(t) = ζie−λd(t−kτi), where
kτi ≤ t ≤ (k + 1)τi and λd is the degradation factor. The
response of gene expression levels of the two genes under
periodic drug intake is shown in Figure 3. The state-space
trajectory of gene expression level of x1 vs. the drug con-
centration level u is given in Figure 4. A comparison of
trajectory of the gene expression level x1 vs. x2 with and
without drug are provided in Figures 5 and 6, respectively.
It is observed that the drug is quite effective in bring-
ing down the expression level of x1. The simulation study
matches the theoretical analysis, as in Figures 1 and 2, that
with proper drug intervention the system will converge to
a new steady state, x1 = β1/γ

u
1 and x2 = β2/γ2 = 1, while

x2 → 0 and x1 → ∞ without drug input.
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Figure 3 The state response under periodic drug intake.
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Figure 4 The state-space trajectory under periodic drug intake.
Parameter setting of Figures 3 and 4: x1(0) = 20, x2(0) = 0.7, τ = 8,
u(kτ) = 24, qu1 = 0.21, β1 = β2 = 1, γ2 = 1, θ21 = 10, θ12 = 2,
λd = 0.5.

Pharmacologymodel
The basis of clinical pharmacology is the fact that the
intensities of many pharmacological effects are func-
tions of the amount of drug in the body and, more
specifically, the concentration of drug at the effect-site
[5]. Historically, PK and PD were considered as sepa-
rate disciplines; however, the information provided by
these disciplines is limited if regarded in isolation [25]. A
drug-effect factor γ u is included in our proposed model
(Equation 2), which is related to drug’s PD characteristic
(concentration–response) and its PK information (dose–
concentration). In order to describe the time course of
drug effect in response to different dosing regimens, the
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Figure 5 The state-space trajectorywith drug: τ =8,u(kτ)=24,
qu1 = 0.21, λd = 0.5. The rest parameter settings are the same with
Figures 3 and 4.
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Figure 6 The state-space trajectorywithout drug intake. The rest
parameter settings are the same with Figures 3 and 4.

integrated PK/PDmodel is indispensable because it builds
the bridge between these two classical disciplines of phar-
macology [25]. Following each dosing regimen, instead of
a two-dimensional PK and PD relationship, the proposed
approach enables a description of a three-dimensional
dose–concentration–effect relationship. Specifically, PK
and PD are linked through γ u by a state-space approach to
facilitate the description and prediction of the time course
of drug effects resulting from different drug administra-
tion regimens.

Drug concentration–response curve: PDmodel
In general, the magnitude of a pharmacological effect
increases monotonically with increased dose, eventually
reaching a plateau level where further increase in dose has
little additional effect [6]. The classic and most commonly
used concentration–response model is the Hill equation
[26], also known as the sigmoidal Emax model [27] or
logistic model [28]. The relationship between the concen-
tration of the drug and its effect is most often nonlinear.
In this study, we use hybrid systems to approximate PD
curves. A common method is to replace certain slowly
changing variables by their piecewise linear approxima-
tions (see Figure 7). For example, the PD model used in
our study can approximate the popular sigmoidal Emax
model (see Figure 8). The Emax model has the general form
E = EmaxCm

ECm
50+Cm , where Emax is the maximum effect, C is the

concentration, EC50 is the concentration necessary to pro-
duce 50% of Emax, andm represents a sigmoidity factor or
steepness of the curve.
We assume a threshold of concentration below which

the drug candidate is ineffective, the minimum effective
dose (MinED), and another threshold value, called max-
imum effective dose (MaxED), above which there is no
clinically significant increase in pharmacological effect in
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Figure 7 The PDmodel: concentration-response curve used in
this study.

this study. As an example, we use a linear curve to approx-
imate the concentration–response curve between MinED
and MaxED. It is assumed that the drug-effect coefficient
γ u
1 (the drug target is x1) is related to the concentration u

through a sigmoid function and can be approximated by
the curve shown in Figure 7. The corresponding relation-
ship can be expressed as

γ u
1 =

⎧⎨
⎩
0 u < θ

u
1

qu1(u − θ
u
1 ) θ

u
1 ≤ u ≤ θu1

qu1(θ
u
1 − θ

u
1 ) u > θu1

, (6)

where qu1 is the ratio between the drug-effect factor γ u
1 and

the effective drug concentration u−θ
u
1 in the linear range.

This reflects the fact that the drug only starts to take effect
when its concentration level is above a lower threshold
θ
u
1 and its effect saturates when its concentration level
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Figure 8 Sigmoidal Emax model (m = 4), and approximation by
our PDmodel.

exceeds an upper threshold θu1 . Note that the sigmoidal
Emax model can be well approximated by the proposed
PD model. By taking the derivative of E with respect
to C and evaluating it at EC50, we obtain the slope as
qu1 = mEmax

4EC50
. The upper and lower bounds should satisfy

qu1(θ
u
1 − θ

u
1 ) = Emax. An example of the sigmoidal Emax

model whenm = 4 and our proposed PD model are plot-
ted together in Figure 8, where the proposedmodel closely
resembles the sigmoidal Emax model.

Periodic drug intake: PK model
Drug concentration at the effect-site is critical for its phar-
macological effect. Currently, plasma drug concentrations
are markers that serve as surrogates for drug concentra-
tion at the effect-site for beneficial and adverse effects;
however, markers not grounded on a sound theoretical
foundation and therapeutic mechanism-based interven-
tion can limit the usefulness of PK/PD modeling to drug
development. For example, it has been demonstrated that
the intracellular PK of a drug is quite different from
plasma drug concentration [29,30]. As observed in the
study by Kuh et al. [29], the intracellular concentra-
tion of a drug will exponentially increase as the drug
is absorbed after each drug intake. The drug concentra-
tion may change very slowly (in our model, we approx-
imate that as a flat curve) when the intracellular and
extracellular drug concentration approach equilibrium. In
time, drug concentration will exponentially decrease as
the rate at which it is eliminated is more than the rate
at which it enters the effect-site and, as a result, effects
diminish.
Based on the study by Kuh et al. [29], a general model for

drug concentration-time profile is given in Figure 9. Drug
concentration is plotted on a logarithmic scale against
time following each periodic drug intake. λa denotes
the exponential increase quotient; λd is the exponen-
tial decrease quotient; τ is the interval between each
drug intake; and p1, p2, and p3 denote the time stayed
in the increase, equilibrium, and decrease stage, respec-
tively. Different drugs work in different ways and the
proposed model is general enough to cover various cases.
Drug concentration may increase very quickly and, as a
result, the increase stage may be neglected, or the equi-
librium stage may be very short and can be ignored
for simplicity. By adjusting the parameters in the pro-
posed model, specific drug characteristics can be rep-
resented. In the case when the proposed model cannot
approximate a drug’s PK profile, extensive simulations
can be performed based on the drug’s actual PK profile.
In this article, we consider a periodic drug intake sce-
nario. Specifically, we are interested in investigating and
comparing the following two potential scenarios: large
dose with a longer interval versus small dose with a
shorter interval.
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Figure 9 A general drug concentration-time profile.

Mathematical analysis of drug effect
In this section, we study the time course of drug effect
for different dosage and schedule arrangements where the
drug is designed to repress a “target gene”. The case with a
special PK profile (drug concentration only has exponen-
tial decay) was analytically studied in our previous work
[22]. In this study, we extend the analysis considering a
general PK profile given in Figure 9 and PDmodel given in
Figure 8. Closed-form analytical solution is provided and
simulations are performed to validate theoretical analysis.
In later sections, we show that the same methodology can
be applied to interactive genes, where not only will the
drug affect the gene expression level, but the target gene is
also coupled with other genes.
It is assumed that the disease gene has lost part of its

self-regulation capacity and the dynamical equation of the
expression level x1 is given by

ẋ1 = β1 − γ1x1. (7)

There is a steady state x1 = β1/γ1 in such a system,
however, if the synthesis rate is much bigger than the self-
degradation rate, β1 � γ1, then the gene expression level
will be too high. A drug is used as a control input to
repress the target gene expression level. The correspond-
ing dynamical equation after drug intake is changed to

ẋ1 = β1 − γ1x1 − γ u
1 x1, (8)

where γ u
1 is the drug-effect factor defined in the previous

section. After incorporating a drug’s PK/PD (Figures 7 and
9) into our proposed hybrid system model Equation (8),
considering the scenario that the patient is taking the drug
periodically, the resulting model is given by

ẋ1= β1 − γ1x1 − qui1 (ui − θ
ui
1 )s+(ui, θ

ui
1 )s−(ui, θui1 )x1

− qui1 (θ
ui
1 − θ

ui
1 )s+(ui, θui1 )x1,

ui(t)= (eλa(t−kτi) − 1)s−(t, kτi + p1)
+ ζis−(t, kτi + p1 + p2)s+(t, kτi + p1)

+ ζie−λd(t−kτi−p1−p2)s+(t, kτi + p1+p2)s−(t, (k + 1)τi),
(9)

where for kτi ≤ t ≤ (k + 1)τi and i = 1, 2, . . . denoting
the index of different dosing regimens, qui1 = qu1 , θ

ui
1 = θ

u
1 ,

θ
ui
1 = θu1 , for any i, since we assume that the same drug
is taken in different dosage and schedule settings. ζi is the
highest concentration level reached after taking the drug.

State-space analysis
The state-space and a sample trajectory schematic of the
state (target gene expression and drug concentration level)
under periodic drug intake are shown in Figure 10. As
is common in hybrid systems, there are both continuous
quantitative changes and discrete transitions in our pro-
posed model. The entire state space may be divided into
different domains according to the value of discrete state.
As shown in Figure 10, there are five domains in the state
space, with D1,D3,D5 not being transient domains. The
figure shows the case when the drug is effective and the
drug dosage is large enough that ζi is higher than the
upper threshold θu1 . The sample trajectory of the state cor-
responds to two periods of drug intake (numbers 1–6 cor-
responding to the junctions of the drug concentration and
the boundaries of the domains, also marked in Figure 9).
Another possible scenario is that the drug dosage is not
large enough that ζi is between the upper threshold θu1 and
the lower threshold θ

u
1 . The third scenario is the case that

ζi < θ
u
1 and the drug is not effective.

When the state transits in each period under peri-
odic drug intake, it may pass through different domains
(depending on the changes of drug concentration along
time). During the transit time through domains D5 and
D3, the gene expression level is pushed lower (to the left),
while the driving strength will depend on the drug’s PD
characteristic. During the transit time through D1, the
expression level will rise (to the right), since the drug con-
centration is lower than θ

u
1 . For the drug to be effective,

the reduction of the expression level in D5 and D3 has
to be larger than the increase of the expression level in
D1. In summary, we should have x1((k + 1)τ ) < x1(kτ),

Figure 10 The state trajectory schematic (target gene
expression versus drug concentration) under PK profile
(Figure 9) assuming dose > θu1 .
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so that after each treatment the expression level x1 will
decrease.

State trajectory analysis
We analyze the drug effect considering the scenario shown
in Figure 10, where ζi > θu1 . The same methodology can
be applied to a simpler scenario where θ

u
1 < ζi < θu1 .

We divide the state trajectory in a period kτi ≤ t ≤
(k + 1)τi into stages a, b, c, d, e, f, and g as marked in
Figure 10 and examine the drug effect stage-by-stage. The
time notations used in the derivation are given by

• t1: the traveling time from the initial state to the
boundary between D3 and D1.

• t2: from initial state to boundary between D5 and D3.
• t3: from initial state to the end of stage c, t3 = kτi+p1.
• t4: time at which the drug concentration starts to

decrease, t4 = kτi + p1 + p2.
• t5: from the initial state to the end of stage e.
• t6: from the initial state to the end of stage f.

For kτi ≤ t ≤ (k + 1)τi, where i is the index for dif-
ferent dosing regimens, the corresponding equations and
solutions for each stage are given by:

• Stage (a) - D1 (kτi ≤ t ≤ t1):

ẋ1 = β1 − γ1x1, =⇒
x1(t) = β1

γ1
+

[
x1(kτi) − β1

γ1

]
e−γ1(t−kτi),

ui(t) = eλa(t−kτi) − 1. (10)

• Stage (b) - D3 (t1 ≤ t ≤ t2):

ẋ1 =β1−[ γ1 + qu1(u − θ
u
1 )] x1 =⇒

x1(t) = x1(t1)A(t1)
A(t)

+ 1
A(t)

∫ t

t1
β1e−[(qu1 (1+θ

u
1 )−γ1)σ− qu1

λa e
λa(σ−kτi)]dσ ,

A(t) = e−[(qu1 (1+θ
u
1 )−γ1)t− qu1

λa e
λa(t−kτi)],

ui(t) = eλa(t−kτi) − 1.
(11)

• Stage (c) - D5 (t2 ≤ t ≤ t3 = kτi + p1):

ẋ1 =β1−[ γ1 + qu1(θ
u
1 − θ

u
1 )] x1 =⇒

x1(t) = β1

γ1 + qu1(θ
u
1 − θu1 − θ

u
1 )

+
[
x1(t2) − β1

γ1 + qu1(θ
u
1 )

]

× e−[γ1+qu1 (θu1 −θ
u
1 )](t−t2),

ui(t) = eλa(t−kτi) − 1

(12)

• Stage (d) - D5 (t3 ≤ t ≤ t4 = kτi + p1 + p2):

ẋ1 =β1−[ γ1 + qu1(θ
u
1 − θ

u
1 )] x1 =⇒

x1(t) = β1

γ1 + qu1(θ
u
1 − θ

u
1 )

+
[
x1(t3) − β1

γ1 + qu1(θ
u
1 − θ

u
1 )

]

× e−[γ1+qu1 (θu1 −θ
u
1 )](t−t3),

ui(t) = umax
i = ζi

(13)

• Stage (e) - D5 (t4 ≤ t ≤ t5):

ẋ1 =β1−[ γ1 + qu1(θ
u
1 − θ

u
1 )] x1 =⇒

x1(t) = β1

γ1 + qu1(θ
u
1 − θ

u
1 )

+
[
x1(t4) − β1

γ1 + qu1(θ
u
1 − θ

u
1 )

]

× e−[γ1+qu1 (θu1 −θ
u
1 )](t−t4),

ui(t) = ζie−λd(t−t4).

(14)

• Stage (f ) -D3 (t5 ≤ t ≤ t6):

ẋ1 =β1−[ γ1 + qu1(u − θ
u
1 )] x1 =⇒

x1(t) =
[
x1(t5)e

−[
qu1
λd

θu1 +(qu1θ
u
1 −γ1)t5]

+
∫ t

t5
β1e

−[
qu1
λd

θu1 e
−λd(σ−t5)+(qu1θ

u
1 −γ1)σ ]dσ

]

× e[
qu1
λd

θu1 e
−λd(t−t5)+(qu1θ

u
1 −γ1)t],

ui(t) = θu1 e
−λd(t−t5).

(15)

• Stage (g) -D1 (t6 ≤ t ≤ (k + 1)τi):

ẋ1 = β1 − γ1x1 =⇒
x1(t) = β1

γ1
+

[
x1(t6) − β1

γ1

]
e−γ1(t−t6),

ui(t) = θ
u
1 e

−λd(t−t6). (16)

We can deduce the necessary and sufficient condition
for the effectiveness of the drug by expressing the inequal-
ity x1((k + 1)τ ) < x1(kτ) in terms of dosing period τ

and unit dose, assuming the dosage is proportional to the
maximum drug concentration ζi reached after taking the
drug. When the initial conditions are x1 = x1(kτi), the
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equations governing the state trajectory from time kτi to
time (k + 1)τi are given by

x1(t1) = β1
γ1

+
[
x1(kτi) − β1

γ1

]
e−γ1(t1−kτi), (17)

x1(t2) = x1(t1)A(t1)
A(t2)

+ 1
A(t2)

×
∫ t2

t1
β1e−[(qu1 (1+θ

u
1 )−γ1)σ− qu1

λa e
λa(σ−kτi)]dσ ,

A(t2) = e−[(qu1 (1+θ
u
1 )−γ1)t2− qu1

λa e
λa(t2−c)],

(18)

x1(t5) = β1

γ1 + qu1(θ
u
1 − θ

u
1 )

+
[
x1(t2) − β1

γ1 + qu1(θ
u
1 − θ

u
1 )

]

e−[γ1+qu1 (θu1 −θ
u
1 )](t5−t2),

(19)

x1(t6) =
[
x1(t5)e

−[
qu1
λd

θu1 +(qu1θ
u
1 −γ1)t5]

+
∫ t6

t5
β1e

−[
qu1
λd

θu1 e
−λd(σ−t5)+(qu1θ

u
1 −γ1)σ ]dσ

]

e[
qu1
λd

θu1 e
−λd(t6−t5)+(qu1θ

u
1 −γ1)t6],

(20)

x1((k + 1)τi) = β1
γ1

+
[
x1(t6) − β1

γ1

]
e−γ1((k+1)τi−t6), (21)

t1 = kτi + 1
λa

ln(1 + θ
u
1 ), (22)

t2 = kτi + 1
λa

ln(1 + θu1 ), (23)

p1 = 1
λa

ln(1 + ζi), (24)

t5 = kτi + p1 + p2 + 1
λd

ln
(

ζi

θu1

)
, (25)

t6 = t5 − 1
λd

ln
(

θ
u
1

θu1

)
, (26)

For the drug to be effective, we need the disease gene
expression level to decrease following each period of drug
intake. Hence, we can express x1((k + 1)τ ) < x1(kτ)

in terms of dosage and frequency schedule and derive
the region where the drug is effective using the above
listed equations.

Results and analysis
Based on the theoretical analysis in previous two sections,
we demonstrate that the drug efficacy depends on total
drug intake, different dosages, and frequencies. The den-
sity of drug intake is defined as α = Dose1

τ1
= Dose2

τ2
. It is

proportional to the total drug intake, and hence, related
to the drug toxicity level in practice. First, we demonstrate
the effect of total drug intake (equivalently, α) towards
drug efficacy. For each fixed total drug intake, we plot the
target gene expression reduction based on Equations 17 to
26 for different dosing period τ as a curve in Figure 11. It
is observed that the curve is “U” shaped and there exist
“sweet spot” for certain dosages and schedules given a
fixed α. If we define drug efficacy region (DER) as the drug
drives down the target gene expression by more than a
desired percentage (say 60% in this case), it is demon-
strated that the DER is related to the total drug intake,
dosing period τ and dosage. DER is marked by the shaded
area in Figure 11 for the case that α ≤ 0.5. It is also
observed that when α gets bigger, which indicating more
toxicity, DER is getting bigger accordingly. We would like
to emphasize that toxicity is one of the primary causes
for drug attrition and long development cycle times [31].
If a drug’s toxicity profile is available, for example, the
maximum dosage and maximum exposure (α), we can
find a good compromise between toxicity and drug effi-
cacy based on such study, and determine the “sweet spot”
(a good dosage and schedule balance) given the obtained
α, and hence provide valuable suggestions of the dosing
regimens to the clinical study.
Second, we test the analytical results via numerical sim-

ulation using MATLAB/SIMULINK. Given a fixed total
drug intake, or equivalently, a fixed density of drug intake
(α = 0.4), three typical scenarios are studied by simula-
tion: small frequent drug intake with τ = 7 and dose =
2.8; big infrequent drug intake with τ = 22 and dose =
8.8; and intermediate dosage and frequency with τ = 12
and dose = 4.8. The results are shown in Figure 12a–
f, with the first row corresponding to the state responses
and the second row corresponding to the state space tra-
jectory. Although the three cases have the same total drug
intake and initial condition (initial gene expression level
x(0) = 20), the drug efficacy is different. In the small
frequent intake case, the dosage is small and the drug con-
centration is mostly changing between domains D3 and
D1. Figure 12d shows that the state-space trajectory set-
tles in a small limit cycle and disease gene expression level
settles at 11.5 at the end of each period of treatment. On
the other hand, the big infrequent drug intake case results
in a big limit cycle as in Figure 12f. Although the dosage
is high, the long period between dosages means that the
period stayed in D1 is getting longer (where drug con-
centration is below θ

u
1 , hence not effective), and disease

gene expression level settles at 12.1 at the end of each
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Figure 11 The percentage change of the disease gene expression versus the period of drug intake τ for α = 0.4, 0.5, 0.6, 0.7, 0.8,
respectively. The change must be significant (say at least 60%) and α must be smaller than the acceptable toxic level. Parameters used: qu1 = 0.1,
β1 = 1, γ1 = 0.04, θu1 = 10, θ

u
1 = 2, x(0) = 20; p1 = 1; p2 = 5; λd = 0.3.

period of treatment. As a comparison, the drug effect for
the case with intermediate dosage and frequency shown
in Figure 12b,e is superior to the other two cases. Dis-
ease gene expression level settles at 8.8 at the end of each
treatment period. If we check the curve in Figure 11 with
α = 0.4, the intermediate dosage case with τ = 12
is located near the bottom of the “U” shape. Lastly, we
observe that all state-space trajectories follow the state
trajectory schematic in Figure 10, as predicted by the
analytical results.

Analysis of 2-gene networks
We extend the theoretical analysis to 2-gene networks and
show that the same framework applies to the modeling
and analysis of drug effect in more complex gene net-
works. We assume that x1 is the target gene, there exists
a positive feedback loop between x1 and another gene
x2, and that a drug targets x1 by reducing its expression
level and providing a negative feedback term −γ u

1 x1. The
resulting 2-gene network is shown in Figure 13 and is
given by

ẋ1 = β1 + η1x2 − γ1x1 − γ u
1 x1

ẋ2 = β2 + η2x1 − γ2x2 (27)

where β1, β2 are synthesis factors, γ1 and γ2 are degra-
dation factors, and γ u

1 is a drug-effect factor. η1 > 0
and η2 > 0 are the parameters of the positive feedback
loop between the two genes. The 2-gene network under

drug perturbation model, Equation (27), can be rewritten
as a second-order ODE:

ẍ1+(γ1+γ u
1 +γ2)ẋ1+((γ1+γ u

1 )γ2−η1η2)x1 = β1γ2+β2η1

(28)

The solution of this equation is given by

x1(t) =
{
k1eλ1t + k2eλ2t λ1 
= λ2
k1eλ1t + k2teλ1t λ1 = λ2

, (29)

where λ1 and λ2 are the two eigenvalues of Equation 28
and k1 and k2 are parameters depending on the initial con-
ditions. Letting a = γ1 + γ u

1 + γ2, b = (γ1 + γ u
1 )γ2 − η1η2

and d = β1γ2 + β2η1, the two eigenvalues are given by
λ1,2 = −a±√

a2−4b
2 . It is easy to verify that a2 − 4b =

(γ1 + γ u
1 − γ2)2 + 4η1η2 > 0. Since a2 − 4b > 0, we

conclude that λ1 
= λ2 and both eigenvalues are real.
Furthermore, one of the eigenvalues, λ2, is always nega-
tive since λ2 = −a−√

a2−4b
2 < 0. The sign of λ1 will be

determined by the sign of b:

λ1 < 0, if b > 0
λ1 = 0, if b = 0
λ1 > 0, if b < 0

(30)

In other words,

λ1 < 0, λ2 < 0 if (γ1 + γ u
1 )γ2 > η1η2

λ1 = 0, λ2 < 0 if (γ1 + γ u
1 )γ2 = η1η2

λ1 > 0, λ2 < 0 if (γ1 + γ u
1 )γ2 < η1η2

. (31)
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Figure 12 Drug response at three different schedules but same drug intake: (a–c) the state response at τ = 7, 12, 22, respectively; (d–f)
the state space trajectory at τ = 7, 12, 22, respectively. Other parameters are qu1 = 0.1, β1 = 1, γ1 = 0.04, θu1 = 10, θ

u
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Figure 13 A 2-gene network with positive feedback loop and
drug input.

The above equation has an important biological inter-
pretation: when the degradation of x1 due to the strength
of the drug is faster than the increase of x1 due to the
positive feedback loop, both eigenvalues are negative, the
system is stable and x1 will experience exponential decay;
on the other hand, if the effect of the positive feedback
loop is dominant, then one of the eigenvalues will be
positive and x1 will increase exponentially.
Given initial condition x1(t0) and ẋ1(t0), then for the

case λ1 
= λ2, we have

k1 = e−λ1t0

λ1 − λ2
(dλ2/b + ẋ1(t0) − λ2x1(t0)) (32)

k2 = e−λ2t0

λ2 − λ1
(dλ1/b + ẋ1(t0) − λ1x1(t0)) (33)

Now with the baseline analysis of the second-order sys-
tem, we provide detailed state trajectory analysis by taking
into account the practical form of PK/PD (γ u

1 ) when the
drug is taken periodically.

State trajectory analysis
We analyze the drug-effect following the same framework
given in the subsection “State trajectory analysis” under
the main section “Mathematical analysis of drug effect”.
For kτi ≤ t ≤ (k + 1)τi, i = 1, 2, . . ., the correspond-
ing equations and solutions for each stages are given as
follows:

• Stage (a) - D1 (kτi ≤ t ≤ t1):

ẋ1 = β1 + η1x2 − γ1x1
ẋ2 = β2 + η2x1 − γ2x2

ui(t) = eλa(t−kτi) − 1. (34)

The solution of x1(t) is given by Equation (29), with k1
and k2 given by Equations (32) and (33), and t0 = kτi.

• Stage (b) - D3(t1 ≤ t ≤ t2):

ẋ1 = β1 + η1x2 − γ1x1 − γ u
1 x1

ẋ2 = β2 + η2x1 − γ2x2
=⇒

ẍ1 + aẋ1 + bx1 = d
ui(t) = eλa(t−kτi) − 1 (35)

where a, b, d are defined as before. When
incorporating the practical form of γ u

1 = qu1(u − θ
u
1 )

and u = eλa(t−kτi) − 1, the above second-order ODE
has no closed-form solution. In this case, the solution
can be obtained numerically.

• Stage (c) - D5 (t2 ≤ t ≤ t3 = kτi + p1): The set of
equations are the same as in Stage (b ) except that
γ u
1 = qu1(θ

u
1 − θ

u
1 ). Since γ u

1 does not depend on
u = eλa(t−kτi) − 1 explicitly, x1 has a closed-form
solution given by Equation (29).

• Stage (d) - D5 (t3 ≤ t ≤ t4 = kτi + p1 + p2): The
solution of x1 is the same as that in Stage (c) except
the start and end times, and the equation of u, which
is ui(t) = umax

i = ζi in this stage.
• Stage (e) - D5 (t4 ≤ t ≤ t5): The solution of x1 is the

same as in Stage (c) except the start and end times,
and the equation of u, which now is
ui(t) = ζie−λd(t−t4).

• Stage (f ) -D3 (t5 ≤ t ≤ t6): The solution of x1 is the
same as in Stage (b ) except the start and end times,
and the equation of u, which now is
ui(t) = θu1 e−λd(t−t5).

• Stage (g) -D1 (t6 ≤ t ≤ (k + 1)τi): The solution of x1
is the same as in Stage (a) except the start and end
times, and the equation of u, which now is
ui(t) = θ

u
1 e−λd(t−t6).

We can deduce the necessary and sufficient condition
for the effectiveness of the drug by expressing the inequal-
ity x1((k + 1)τ ) < x1(kτ) in terms of dosing period τ

and unit dose. In the 2-gene case, no explicit closed-form
expression can be deduced for the solutions in stages (b)
and (f ) and numerical methods have to be applied. How-
ever, through such analysis, it is observed that the same
methodology for analyzing drug effect can be extended
to GRNs with multiple interactive genes, although the
mathematics involved will become more complicated and
sometimes numerical methods must be applied when
there is no closed-form solution.

Simulation results and analysis
When drug input is not present, the disease gene expres-
sion will grow unbounded owing to the positive feedback
loop between the two genes. Here, we study response of
the disease gene expression to drug input and compare
two different schedules for τ = 20 and τ = 30, keeping
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Figure 14 Drug response follows two different schedules but same drug intake (α = 0.8): (a–c) the state response, state space trajectory,
and 3D state-space trajectory at τ = 20, respectively; (d–f) the state response, state space trajectory, and 3D state space trajectory at
τ = 30, respectively. Other parameters are qu1 = 2,β1 = 0.1,β2 = 0.1, η1 = 1, η2 = 1, γ1 = 0.2, γ2 = 1, θu1 = 8, θu1 = 3, x1(0) = 1, x2(0) = 1,
p1 = 1, p2 = 15, λd = 0.3.
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α = 0.8 fixed. The response and state trajectories in 2D
and 3D are given in Figure 14a–f, with the first and second
rows corresponding to τ = 20 and τ = 30, respectively.
We observe that both cases have periodic responses, but
the disease gene expression is much better controlled
when τ = 20. This is because the drug concentration is
high enough in both cases compared to the threshold (θu1 ),
while the decay of the drug concentration is shorter in the
case when τ = 20. In Figure 14c,f, the 3D state (disease
gene expression) trajectories show that the trajectory set-
tles to an inner circle when τ = 20, whereas the trajectory
settles to an outer circle when τ = 30. Similar obser-
vations apply to Figure 14b,e. Note the scale of x-axis of
Figure 14e is 20 times bigger than that of Figure 14b.

Extension and discussion
In previous sections, we have considered the drug-effect
on one-gene and a 2-gene case. In this section, we will
consider the drug-effect on a target gene in a more sophis-
ticated GRN context.

3-gene network with multiple feedback loops
Suppose a 3-gene network is given by

ẋ1 = β1s−(x2, θ12 ) − γ u
1 x1 + η1x3 (36)

ẋ2 = β2s−(x1, θ21 ) − γ2x2 (37)

ẋ3 = β3s−(x2, θ32 ) − γ3s−(x1, θ31 )x3, (38)

where η1 is a perturbation parameter (from x3 to x1),
β1, β2, β3 are activation factors, γ2, γ3 are degradation
factors, and θ21 , θ12 , θ31 , θ32 are threshold values. γ u

1 is
a drug-effect factor. We assume periodic drug intake and
drug concentration level follows exponential decay dur-
ing each period, i.e., ui(t) = ζie−λd(t−kτi), where kτi ≤
t ≤ (k + 1)τi. A graphical model of the 3-gene network is
given in Figure 15. There exist two positive feedback loops
between x1 and x3.
When the target gene is in GRN context, not only its

expression level is related to drug perturbation, but also
depends on network contexts. Several interesting phe-
nomena are observed through our simulations study:

1. Drug response is related to disease stage. Simulations
are performed with different initial target gene
expression level (x1(0)). Figure 16a–c shows the
system responses with x1(0) = 20, which is not too
high (corresponding to early disease state). As shown
in Figure 16a, x1 expression level reduces to the
range [ 7.7, 8.4] under periodic drug intake, while x2
and x3, the two other interactive genes settle at 1.0
and 4.0, respectively. The system reaches a new
steady state (a semi-stable limit cycle, to be exact),
with xs1 = β1+η1xs3

γ u
1

= β1+η1β3/γ3
γ u
1

, xs2 = β2
γ2
, and

Figure 15 The 3-gene GRNmodel. The solid line is the real
interaction between genes. The dashed line is derived to show the
positive feedback loop for certain conditions.

xs3 = β3
γ3
, where x1 is well controlled. The trajectories

of x1 vs. u and x1 versus x3 are given in Figure 16b,c,
respectively. The semi-stable limit cycle is shown in
Figure 16b.
System responses with x1(0) = 40 (corresponding to
late disease state) are shown in Figure 16d–f for
comparison. Although the other parameter settings
are exactly the same, the drug will not repress the
disease gene x1 (Figure 16d) owing to the interaction
between the disease gene x1 and gene x3. When
x1(0) = 20 < θ31 = 21, Equation (36) becomes
ẋ3 = β3s−(x2, θ32 ) − γ3x3, and thus x3 is negative
regulated by x1 and converge to xs3 = β3

γ3
. However,

when initial condition x1(0) = 40 > θ31 = 21,
Equation (36) becomes ẋ3 = β3s−(x2, θ32 ), and thus
x3 is positively regulated by x2 and its expression
level will keep increasing. As a result, x1 will keep
increasing as well, and a positive feedback loop is
formed between x1 and x3. This is confirmed by the
trajectories of x1 versus u and x1 versus x3 given in
Figure 16e,f, respectively.

2. Under certain conditions, single drug perturbation
may not be enough. A drug is usually designed to a
specific target. In this example, the drug tries to
provide negative feedback to the regulation of x1
(tries to repress x1); however, since the target gene is
interactive (or, in a more general setting, pathways
have crosstalk), only repressing the target gene (or
blocking the signal of one pathway) may not prevent
the target gene from expressing itself through
interactions with other genes (or through
inter-connected pathways). In our case, x1 is
interactive with x3. To continue with previous
simulation (results shown in Figure 16d–f, we try to
increase the drug dosage tenfold from u(kτ) = 24 to
u(kτ) = 240 with the same dosing period τ = 8
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Figure 16 Simulation results for the 3-gene network under drug perturbation with different initial conditions: (a–c)with initial condition
(x1(0) = 20), (d–f)with initial condition (x1(0) = 40). Other parameter settings are: x2(0) = 0.7, x3(0) = 0.5, τ = 8, u(kτ) = 24, qu1 = 0.21,
β1 = β2 = 1, β3 = 4, γ2 = 1, γ3 = 1, θ21 = 10, θ12 = 2, θ31 = 21, θ32 = 10, η1 = 0.1, λd = 0.5.

trying to bring down the expression level of x1.
However, from system responses shown in
Figure 17a–c, it is observed that the drug is not
effective although the dosage is increased tenfold.
One step further, not only we increase dosage to
u(kτ) = 240, but also to increase the dosing
frequency (dosing period is decreased from τ = 8 to
τ = 2), systems responses are shown in
Figure 18a–d, where Figure 18c shows the left part of
the trajectory shown in Figure 18b. It can be

observed that although the drug perturbation is very
strong, and the drug concentration is always staying
in domain D5, drug is still not effective.

From the nonlinear dynamical system perspective, the
equation xs1 = β1+η1xs3

γ u
1

= β1+η1β3/γ3
γ u
1

represents a semi-
stable limit cycle. If the initial condition is from the inside
of the limit cycle, then the systemwill converge to the limit
cycle; however, if the initial condition is from the outside
of the limit cycle, then the system will diverge from the
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Figure 17 Simulation results for the 3-gene network under drug perturbation (high dosage), parameter settings are the same with
Figure 16d–f except dosage u(kτ ) = 240.

limit cycle. Such simulation results demonstrate the het-
erogeneity of the drug’s responses due to the nonlineari-
ties in complex systems, where multiple inputs affect each
output and the underpinning structure may include par-
allel, redundant, and feedback loop processes, it is likely
that some cases will not respond to a single drug pertur-
bation no matter how strong it is. As a result, innovative
perturbation methods, such as finding a better target or
combinatorial therapy, are necessary.

Simulation of effects of different drugs and a drug
combination on NF − κB pathway
In this article, the models and examples are selected
such that they are mathematically tractable and important
insights can be obtained, and we can verify the theoretical
results with simulation results. For large-scale networks
and multiple drugs/drug targets, the proposed model is
still applicable; however, analytical results may not be
attainable even for this simplistic model. In that case, sim-
ulations can be carried out case-by-case. To illustrate this
point of view, we carried out a simulation study of the

NF−κB pathway under two different drugs and each drug
with different drug targets.
NF−κB signaling regulates inflammation, cell prolifera-

tion, and apoptosis by increasing the expression of specific
cellular genes in response to a variety of extracellular lig-
ands. How to explore therapeutic strategies to prevent the
prolonged activation of the NF − κB pathway attracts lots
of attention [32,33]. An ODE model of the NF − κB path-
way [34] is adopted and the two drugs under consideration
are drug X (drug A in [35]) and FDA approved drug pro-
teasome inhibitor Bortezomib (Velcade) [36]. The detailed
simulation setup is available in the Appendix and the
SIMULINK model is given in Figure 19. The specificity of
some drugs to inhibit several of these components of the
NF − κB pathway is one of the concerns. For example, the
proteasome which is responsible for the IκBα degradation
has many other important functions. Thus, Bortezomib
modulates a variety of cellular processes that may con-
tribute to toxicity if the dosage is too high [36]. Hence, we
design combination therapy to induce a better effect and
at the same time to contain toxicity to a certain threshold.
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Figure 18 Simulation results for the 3-gene network under drug perturbation (high dosage and short interval): (a-d) state response,
trajectory of x1 versus u, detailed initial trajectory of x1 versus u, and trajectory of x1 versus x3, respectively. Parameter settings are the
same with Figure 16 except u(kτ) = 240 and τ = 2.

To achieve this, drug X is a protein kinase inhibitor,
which competitively inhibit IKK with the binding kinet-
ics the same as that of the natural reaction involving
NF − κB : IκBα and IKK [35]. While Bortezomib is
a proteasome inhibitor that will inhibit IκBα degrada-
tion, its effect is adjusted through the parameter setting
related to individual terms for IκBα and NF − κB :
IκBα molecules rescued from inhibition of IκBα degra-
dation [35]. We first validate the results in [34,35]. In
Figure 20a, we show that oscillatory behaviors occur for
NF − κB pathway with constant stimulus. Under this con-
stant stimulus, it is observed in Figure 20b,c that only
very high dose of drug X can effectively block NF − κB
nuclear translocation. Similar observation is obtained for
Bortezomib from Figure 20d,e, where low drug dosage
(65% inhibition) is not effective, while the side effects

are unacceptable when the drug is effective (95% inhi-
bition). All the above simulation results are consistent
with those in [34,35]. In this article, we go a step fur-
ther and consider the combination of these two drugs.
It is interesting to see in Figure 20f that some com-
binations of the drugs with non-overlapping toxicities,
e.g., combined Bortezomib (65% inhibition) and drug X
(0.2μM), might provide enormous benefit by keeping
the level of nuclear NF − κB low while having tolerable
toxicities.

Conclusions and future work
This article provides systematic mathematical analysis
and dynamical modeling of drug effect in the GRN con-
text, where a drug functions as a control input to reduce
the elevated target gene expression level. A hybrid systems
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Figure 19 Simulation results for theNF − κB pathway under various drug perturbations with different drug administration. (a) Effect of
continuous stimulus, no drug input. (b) Effect of drug X (0.2μM). (c) Effect of drug X (1.0μM). (d) Effect of Bortezomib (65% inhibition). (e) Effect of
Bortezomib (95% inhibition). (f) Effect of combined Bortezomib (65% inhibition) and drug X (0.2μM). The detailed parameters are available in the
Appendix.
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Figure 20 SIMULINKmodel for theNF − κB pathway.

model is proposed to study the dynamics of the underlying
regulatory network under drug perturbation. Drug phar-
macology information is incorporated into drug thera-
peutic response modeling to demonstrate the significant
difference in drug effect for different dosing regimens.
Considering the complicated nature of gene regulation,
this study is a small step towards quantitative modeling of
therapeutic effect. We have kept the examples mathemat-
ically tractable so that valuable insights and reasonable
predictions can be obtained from theoretical analysis.

Compared to our previous work [22], where drug effect
was only studied for a specific PK profile (drug con-
centration only has exponential decay stage) when the
drug is targeted to a single gene, three major exten-
sions are provided in this article: (i) we provide ana-
lytical results of drug effect under a very general PK
profile, where three stages of drug concentration change
(increase, equilibrium, and decrease) are considered; (ii)
the proposed methodology is applied to interactive genes
in a GRN context, with detailed analytical derivations
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Table 1 Definition of variables

x1 NF − κB

x2 IκBα

x3 IκBα : NF − κB

x4 NF − κBn

x5 IκBαn

x6 IκBαn : NF − κBn

x7 IKK

x8 IKK : IκBα

x9 IKK : IκBα : NF − κB

for both one-gene and two-gene cases; and (iii) we per-
form extensive simulations for a more complicated GRN
setting and explain several interesting observations due
to multiple feedback loops and the existence of limit
cycles.
It is expected that the theoretical framework proposed

in this article, when correlated to real biological networks,
can help improve drug development productivity and
make drug discovery more systematic. During such pro-
cess, cross disciplinary effort is indispensable. For exam-
ple, application of such a framework will require exper-
iments designed to elucidate model parameters, such as
protein concentration levels and synthesis and degrada-
tion speeds.While some parametersmay be relatively easy
to obtain, others may be difficult to get based on current

techniques and model simplification may be necessary;
nonetheless, the basic hybrid systems model and the con-
clusions drawn from it, such as the nature of DERs and
the role of limit cycles, will remain valid, only their par-
ticular forms being changed to represent experimental
instantiation of the model.

Appendix
See Tables 1 and 2.

ODEmodel of the NF − κB pathway
The ODE model of the NF − κB pathway is adopted from
[34,35].

dx1
dt

= −a4x1x2 + d4x3 − a4x1x8 + (r4 + d4)x9

+ deg4x3 − k1x1 + k01x4
(39)

dx2
dt

= −a1x2x7 + d1x8 − a4x1x2 + d4x3 − deg1x2

− tp1x2 + tp2x5 + ssynthesisx4(t − τ)

(40)

dx3
dt

= a4x1x2 − d4x3 − a7x3x7 + d1x9

+ k2x6 − deg4x3
(41)

dx4
dt

= k1x1 − a4x4x5 + d4x6 − k01x4 (42)

Table 2 Parameter values

Parameter Reaction type Biochemical reaction Value Unit

a4 Complex formation NF − κB + IκBα → NF − κB : IκBα 30 μM−1min−1

a7 Complex formation NF − κB : IκBα + IKK → NF − κB : IκBα : IKK 11.1 μM−1min−1

a1 Complex formation IκBα + IKK → IκBα : IKK 1.38 μM−1min−1

d4 Dissociation NF − κB + IκBα ← NF − κB : IκBα 0.03 min−1

d1 Dissociation NF − κB : IκBα + IKK ← NF − κB : IκBα : IKK 0.075 min−1

d1 Dissociation IκBα + IKK ← IκBα : IKK 0.075 min−1

deg1 Degradation IκBα → 0 0.006 min−1

deg4 Degradation NF − κB : IκBα → NF − κB 0.0013 min−1

k01 Transport NF − κBn → NF − κB 0.0048 min−1

tp2 Transport IκBαn → IκBα 0.025 min−1

k2 Transport NF − κBn : IκBαn → NF − κB : IκBα 0.84 min−1

k1 Transport NF − κB → NF − κBn 5.4 min−1

tp1 Transport IκBα → IκBαn 0.05 min−1

τ Synthesis (delay) NF − κBn → NF − κBn + IκBα 40 min

k02 Inactivation IKK → 0 0.002 min−1

r4 + d4 Catalyzed degradation NF − κB : IκBα : IKK → NF − κB + IKK 11.1 min−1

r1 Catalyzed degradation IκBα : IKK → IKK 2.22 min−1

ssynthesis Synthesis NF − κBn → NF − κBn + IκBα 0.24 min−1
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dx5
dt

= tp1x2 − tp2x5 − a4x4x5 + d4x6 (43)

dx6
dt

= a4x4x5 − d4x6 − k2x6 (44)

dx7
dt

= k(t) − k02x7 − a1x2x7 + (d1 + r1)x8

− a7x3x7 + (d1 + r4)x9
(45)

dx8
dt

= a1x2x7 − (d1 + r1)x8 (46)

dx9
dt

= a7x3x7 − (d1 + r4)x9 (47)
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