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Abstract

Many signal processing based methods for finding hidden periodicities in DNA sequences have primarily focused on
assigning numerical values to the symbolic DNA sequence and then applying spectral analysis tools such as the
short-time discrete Fourier transform (ST-DFT) to locate these repeats. The key results pertaining to this approach are
however obtained using a very specific symbolic to numerical map, namely the so-called Voss representation. An
important research problem is to therefore quantify the sensitivity of these results to the choice of the symbolic to
numerical map. In this article, a novel algebraic approach to the periodicity detection problem is presented and
provides a natural framework for studying the role of the symbolic to numerical map in finding these repeats. More
specifically, we derive a new matrix-based expression of the DNA spectrum that comprises most of the widely used
mappings in the literature as special cases, shows that the DNA spectrum is in fact invariable under all these
mappings, and generates a necessary and sufficient condition for the invariance of the DNA spectrum to the symbolic
to numerical map. Furthermore, the new algebraic framework decomposes the periodicity detection problem into
several fundamental building blocks that are totally independent of each other. Sophisticated digital filters and/or
alternate fast data transforms such as the discrete cosine and sine transforms can therefore be always incorporated in
the periodicity detection scheme regardless of the choice of the symbolic to numerical map. Although the newly
proposed framework is matrix based, identification of these periodicities can be achieved at a low computational cost.

1 Introduction
Many researchers have noted that the occurrence of repet-
itive structures in a DNA sequence is symptomatic of a
biological phenomena. Specific applications of this obser-
vation include identification of diseases [1], DNA foren-
sics [2], and detection of pathogen exposure [3]. Some
of these structures are simple repetition of short DNA
segments such as exons [4], tandem repeats [5], dis-
persed repeats [6], and unstable triplet repeats in the
noncoding regions [7] while other forms more elabo-
rate patterns such as palindromes [8] and the period-3
component [9-13], a strong periodic characteristic found
primarily in genes and pseudogenes [14]. Methods that
detect these DNA periodicities are either probabilistic or
deterministic. Most of the deterministic techniques rely
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on spectral analysis of the DNA sequence using the short-
time discrete Fourier transform (ST-DFT) [15-17]. The
main idea is as follows: given a DNA sequence of length
N, numerical values are first assigned to every element
in F = {A,C,G,T}, where these letters denote the four
nucleotides in the DNA, namely the two purines: adenine
(A) and guanine (G) and the two pyrimidines: thymine (T)
and cytosine (C). A typical DNA double helix is shown in
Figure 1.
The symbolic to numerical map is clearly not unique,

typically has a biological interpretation, and needs to pre-
serve the specific structure of the DNA sequence under
study. One such popular map is the Voss representation
F �−→ D = {0, 1}, where four binary indicator sequences
xl(n), l ∈ F, are generated with 1 indicating the presence
of a nucleotide and 0 its absence [18]. An example of the
mapping of a single DNA strand to xl(n),∀ l ∈ F is shown
in Figure 2.
Once the DNA symbolic sequence is mapped into

numerical version(s), a set of discrete time sequences are
generated and are the numerical equivalence of the DNA
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Figure 1 DNA: a straightened helix structure.

sequence. These numerical sequences can then by pro-
cessed using standard signal processing techniques. In
particular, the ST-DFT for each elementary sequences can
be computed as

Xl(Rn, k) �
0∑

m=−M+1
xl(Rn + m)h(m)e−j 2πmk

M , (1)

∀ l ∈ F, where n is the window starting point, R is the
amount of window shift, and h(m) = 1 for −M + 1 ≤
m ≤ 0 and zero otherwise. If R = 1, then, the window
slides one nucleotide at a time whereas if R = 3, the dis-
placement of the window is on a 3-nucleotide basis. Note
that the all-ones function h(m) does not affect the value of
Xl(Rn, k). However, it serves as a place holder for other fil-
ters that can be used to replace it, as will be shown in the
following section. One popular application of the ST-DFT
based technique that has received considerable attention
in the past is the identification of the period-3 component
using the DNA spectrum, defined for R = 3 as follows

S(n) =
∑
l∈F

|Xl

(
3n,

M
3

)
|2

=
∑
l∈F

∣∣∣∣∣
0∑

m=−M+1
xl(3n + m)e−j 2πm3

∣∣∣∣∣
2

. (2)

A number of researchers have advocated the use of the
period-3 component to discriminate between coding and
non coding regions (see for example [11,13,16,19-23] to
name a few) but the subject remains highly controver-
sial as it is successful for certain genes but does not work
for others. To better comprehend the underlying reasons
behind this disparity in performance, a newmultirate DSP
model that provides a full understanding of the inner
workings of the DNA periodicity has been first proposed
in [24], and studied in details in [25]. This model is shown
in Figure 3.
This model provides closed form expressions for the

DNA spectrum that generalize and unify some of the
already existing results in the literature were obtained.
One of these expressions in particular clearly shows that
the identification of the period-3 component in the DNA
spectrum, a signal processing problem, is equivalent to
the detection of the nucleotide distribution disparity in
the codon structure of a DNA sequence, a genomic prob-
lem. The disparity in the nucleotide distribution within
the codon structure of a DNA sequence is termed the
codon bias. Using this model, the DNA spectrum is
completely characterized by a set of digital sequences,
termed the filtered polyphase sequences. By processing
these sequences, signal processing techniques can poten-
tially have an impact on understanding and detecting
biological structures of this nature. From a computational
cost perspective, the computation of the DNA spectrum
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Figure 2 A DNA segment and its Voss numerical representation composed of 4 binary (0/1) sequences: xA(n), xC(n), xG(n), and xT (n).
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Figure 3 The Multirate DSPmodel for general R. The period-3
case is easily obtained by setting R = 3.

using this model does not require any complex valued
operations [26]. This finding is rather surprising given
the existence of complex multipliers in the proposed DSP
model as clearly illustrated in Figure 3. It is shown that
the direct computation of the DNA spectrum using (2)
requires essentially double the amount of arithmetic oper-
ations compared to the DSP model approach.
It is important, however, to keep in mind that the

above conclusions and results were obtained using the
Voss symbolic to numerical transformation. A fundamen-
tal research issue is to therefore determine the sensitivity
of the signal processing based method to the choice of
the symbolic to numerical map. In particular, the core
question here is: how dependent are the above results
on the Voss representation? Are these results invariant
with respect to the other popular maps in the literature?
Can we derive necessary and/or sufficient conditions for
the invariance of the DNA spectrum to the symbolic to
numerical transformation? Is there a general mathemat-
ical framework that can help us generate new symbolic
to numerical maps for which the DNA spectrum remains
essentially the same? These are the type of questions
we address in this article and provide answers to. One
approach to answer this question was presented in [27],
where a novel framework for the analysis of the equiva-
lence of the mappings used for numerical representation
of symbolic data based on signal correlation was pre-
sented, along with strong and weak equivalence proper-
ties. In [28], we attempted to answer the same question
starting at the aforementioned DSP model for a limited
set of mappings. Our main goal in this study is to de-
embed the symbolic to numerical mapping process from
the DNA spectrum computation process. We answer a set
of other relevant questions along the way.
A key remark is in order at this point: while the

DSP model approach proposed in Figure 3 has many

advantages, it is not well suited for investigating the role
of the symbolic to numerical map in the identification
of DNA harmonics. It follows that a completely new
paradigm for detecting DNA harmonics is required. The
main contribution of this article is therefore the derivation
of a novel matrix-based framework for the computation
of the DNA spectrum that is extremely well fitted to the
study of the symbolic to numerical transformation. Specif-
ically, we first derive a newmatrix-based expression of the
DNA spectrum that:

1. comprises most of the existing mappings in the
literature as special cases,

2. shows that the DNA spectrum is in fact invariable
under all these mappings,

3. generates a necessary condition for the invariance of
the DNA spectrum to the symbolic to numerical
mapping used to compute it.

Furthermore, the new algebraic framework presented
here decomposes the frequency identification problem
into several fundamental components that are totally
independent of each other. It follows that sophisticated
digital filters and/or alternative transformations to the
DFT such as the discrete cosine, sine, and Hartley trans-
forms can always be easily incorporated in the harmonics
detection scheme irrespective of the choice of the sym-
bolic to numerical map. Finally, although the newly pro-
posed framework is matrix based, we show that similar
to the DSP model approach, the computation of the DNA
spectrum using this new framework is very efficient.
The article is organized as follows. In Section 2, we

derive a new matrix based framework to efficiently
compute the ST-DFT-based spectrum. New expressions
for the ST-DFT Xl(Rn, MR ) and its magnitude squared
|Xl(Rn, MR )|2 are obtained and indicate that these quan-
tities are completely parameterized by some pre-defined
matrices. The numerical values of these matrices simply
depend on our choice of filtering (e.g., rectangular window
versus non-rectangular one versus general FIR filters) as
well as our choice of data transform (e.g., the DFT versus
the DCT versus the DST).
Using these results, in Section 3, a new expression of the

DNA power spectrum is derived and is also completely
defined by these matrices. The elegance of this matrix
based approach is that it allows the incorporation of gen-
eral symbolic to numerical maps into the newly derived
DNA spectrum expression provided these generic maps
can be expressed as affine transformations of the Voss rep-
resentation. This last assumption is motivated by the fact
that all the popular maps that are available in the literature
satisfy the affine condition. Furthermore, the maps are
now completely characterized by the affine transforma-
tion (two matrices A and b) and can be therefore changed
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without affecting the remaining matrices in the DNA spec-
trum expression. In conclusion, the newly derived DNA
spectrum expression is stated as a function of a number
of matrices. Each of these matrices captures an essential
component of the process (filtering, data transform, sym-
bolic to numerical map) and the elements of each matrix
can be changed without affecting the other matrices.
In Section 4 and using the above results, we show that

the Voss-based DNA spectrum is essentially invariant
under some of the most popular maps in the literature. A
necessary and sufficient condition for the invariance of
the DNA spectrum under any map is also derived.
In Section 5, we show how the special structure of the

filtering matrix allows the efficient use of sophisticated
digital filters to improve the detection performance of
DNA harmonics through the computation of the DNA
spectrum. We also show how to replace the DFT by
other fast transforms such as the discrete cosine transform
(DCT), the discrete sine transform (DST), and the dis-
crete Hartley transform (DHT). Finally, some concluding
remarks are mentioned in Section 6. A list of the different
notation used in the article is summarized in Table 1.

2 A new algebraic framework for computing the
ST-DFT

Given a sequence x(n) of lengthN, the ST-DFT is typically
implemented using a sliding window approach as shown
in Figure 4. Windows of length M that overlap with a fac-
tor R are first generated to form xr(n), r = 1, 2, . . . ,Nw,
where Nw = �(N − M + 1)/R� is the number of resulting
windows. Once we map the DNA sequence into an inte-
ger number of numeric sequences γ , given by xl(n), l =
1, . . . , γ (F �−→ D), the ST-DFT’s Xl(n), l = 1, . . . , γ can
be found and their squaredmagnitudes are added to result
in the DNA Spectrum S(n) as summarized in Figure 5.
It was shown in [26] that the ST-DFT of x(n) can be

written as

X(Rn,
M
R

) = X0(n) + X1(n)e−j 2πR + · · · + XR−1(n)e−j2π R−1
R ,

(3)

where the quantities Xr(n),∀ r ∈ {0, 1, . . . ,R − 1} are the
so-called filtered polyphase sequences given by

Xr(n)
.= Xr

(
Rn,

M
R

)

=
	M
R −1
∑

m=r,r+R,...
x(Rn + Rm + r)hr(m),

(4)

∀ r ∈ {0, 1, . . . ,R − 1}. The impulse response hr(m) is
the inverse Z-transform of Hr(z) in Figure 3. Equations
(3) and (4) can be used to compute the ST-DFT of a

Table 1 Summary of the article notations

F {A, C,G, T}, the field of DNA nucleotides

V {0, 1}, the field of Voss binary elements

D A general field of complex valued elements

F �−→ D Field mapping operation from set F to set D, resulting in
γ sequences xl(n), where l = 1, . . . , γ . For example, when
D = V, F �−→ D results in γ = 4 binary sequences,
namely: xA(n), xC(n), xG(n), and xT (n)

xl(n) A discrete time sequence of length N whose elements
belong to the mapped field D

xl(n) The nth window of length M, extracted from xl(n), l =
1, . . . , γ

x̂l(n) The interleaved version of x(n) with an interleaving factor
R, l = 1, . . . , γ

Xl(Rn,
M
R ) The ST-DFT of xl(n), generated using a sliding window of

lengthM and a window shift of length R

ϒv(n) [XA(n) XC(n) XG(n) XT (n)]T , the array of the four V-based
ST-DFTs

ϒd(n)
[
X1(n) X2(n) . . . Xγ (n)

]T , the array of the γ D-based ST-
DFTs

Xlr(n) The rth filtered polyphase component of Xl(n), where r =
0, 1, . . . , R − 1 and l = 1, . . . , γ

Sv(n) The DNA spectrum computed by adding the magnitude
squared of the ST-DFT of the four V-based sequences

Sd(n) The DNA spectrum computed by adding the magnitude
squared of the ST-DFT of the γ D-based sequences

�l(n) [ Xl0(n) Xl1(n) . . . Xl,R−1(n)]T , the array of the R filtered
polyphase components Xlr(n), r = 0, 1, . . . , R − 1 and
l = 1, . . . , γ

Iγ An identity matrix of size γ × γ

C An array of length R whose elements are equally spaced
on the unit circle

h An array of length M/R whose elements are all equal to
one

D C�CT , an R × Rmatrix

H IR ⊗ hT , an R × R block matrix of M
R × 1 blocks

W HHDH, an R × R block matrix of M
R × M

R blocks

A,b The affine transformation matrices of size γ × 4 and γ ×
1, respectively, that map the four V-based sequences into
the γ D-based sequences.

B AHA, a 4 × 4 matrix

C̃ A complex valued array of R elements

h̃ A complex valued array ofM/R elements

D̃ C̃�C̃T , an R × Rmatrix

H̃ IR ⊗ h̃T , an R × R block matrix of M
R × 1 blocks

W̃ H̃HD̃H̃, an R × R block matrix of M
R × M

R blocks

discrete time sequence, and subsequently its magnitude
squared. In this section, we re-express these equations in
matrix form, and then use the new formula to derive an
expression for |X(Rn, MR )|2. Throughout the article, vec-
tors and matrices (arrays) are always expressed in bold
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Figure 4 Splitting x(n) intoNw overlapping sections xr(n) using
a sliding window approach.

letters. The notation for the various matrix operations is
given in Table 2.

2.1 Matrix formulation of the ST-DFT
Using the defined matrix notation, we can restate
Equation (3) as

X
(
Rn,

M
R

)
=
[
1 e−j 2πR · · · e−j2π R−1

R

]
⎡
⎢⎢⎢⎣

X0(n)

X1(n)
...

XR−1(n)

⎤
⎥⎥⎥⎦

.= CT�(n). (5)

The real valued array

�(n) = [X0(n) X1(n) . . . XR−1(n)]T (6)

Table 2 Notation of matrix operations

{·}∗ Matrix complex conjugate

{·}T Matrix transpose

{·}H Matrix hermitian

{⊗} Kronecker product of two matrices

vec{.} Vector of columns of a matrix

is the vector whose elements are the R filtered polyphase
components. Similarly, the complex valued R-element
array

C =
[
1 e−j 2πR · · · e−j2π R−1

R

]T
(7)

is the vector whose elements are the R equispaced pha-
sors located on the unit circle with 2π

R phase deviations as
shown in Figure 6 for R = 3 and R = 8. Note that

R−1∑
r=0

e−j2πr/R = 1 − (e−j2π/R)R

1 − e−j2π/R = 0, (8)

∀R 
= 1, which implies that the sum of elements in C is
equal to 0. This is a key feature of the complex array C
that will be used in later sections to simplify important
expressions.
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Figure 5 System structure to find the DNA power spectrum S(n) by extracting successive sliding windows of the symbolic DNA sequence,
mapping each to γ numeric sequences, finding their DFT’s at k = M

R , and finally adding the corresponding squaredmagnitudes. In this
example, Nw = �(N − M + 1)/R� = �(12 − 6 + 1)/3� = 3 windows are generated.



Rushdi et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:16 Page 6 of 21
http://bsb.eurasipjournals.com/content/2012/1/16

2 /82 /3

1

e -j4 /3

e -j2 /3

1

e -j /4

e -j /2

e -j3 /4

-1

e -j5 /4

e -j3 /2

e -j7 /4

(a) R = (b)3 R = 8
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On the other hand, we observe that (4) can be written in
the following matrix format

Xr(n) = [ 1 1 · · · 1 ]
⎡
⎢⎢⎢⎣

x(Rn + r)
x(Rn + r + R)

...
x(Rn + r + M − R)

⎤
⎥⎥⎥⎦ .= hT x̂r(n),

(9)

∀ r ∈ {0, 1, . . . ,R − 1}, where h is an all-one vector of
length M/R, and x̂r(n) of length M/R is the rth polyphase
component of the window x(n) of lengthM. Using (9), the
R filtered polyphase components Xr(n) can be arranged in
the following array format

[X0(n) X1(n) . . . XR−1(n)] = hT [ x̂0(n) x̂1(n) . . .

x̂R−1(n)] . (10)

Using the identity

vec(A1A2) = (I ⊗ A1)vec(A2), (11)

it follows that⎡
⎢⎢⎢⎣

X0(n)

X1(n)
...

XR−1(n)

⎤
⎥⎥⎥⎦ =

(
IR ⊗ hT

)
⎡
⎢⎢⎢⎣

x̂0(n)

x̂1(n)
...

x̂R−1(n)

⎤
⎥⎥⎥⎦ ,

which can be restated in matrix format as

�(n) =
(
IR ⊗ hT

)
x̂(n) = H x̂(n), (12)

where H .= IR ⊗ hT is an R × R matrix of 1 × M
R blocks,

given by

H =

⎡
⎢⎢⎢⎢⎣

hT 0 · · · 0

0 hT
. . .

...
...

. . . . . . 0
0 . . . 0 hT

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 1 .. 1 · · · 0 0 .. 0

...
. . .

...
0 0 .. 0 · · · 1 1 .. 1︸ ︷︷ ︸

M/R

⎤
⎥⎥⎥⎦ .

The window x̂(n) of lengthM is a block interleaved ver-
sion of the sliding window x(n) of length M starting at
index n. Generating x̂(n) can be accomplished by block-
ing the window x(n) into an array of R elements per row
(hence M/R rows), and then reading the array out col-
umn by column. The ST-DFT X(Rn, MR ) can therefore be
completely identified as a function of C, h, and x̂(n) as
follows

X(Rn,
M
R

) = CT
(
IR ⊗ hT

)
x̂(n) = CTH x̂(n). (13)

The complex row vector CTH is an array of R blocks,
each of length M

R as given by

CTH =
⎡
⎣1 .. 1︸︷︷︸

M/R

e−j 2πR .. e−j 2πR︸ ︷︷ ︸
M/R

· · · e−j2π R−1
R .. e−j2π R−1

R︸ ︷︷ ︸
M/R

⎤
⎦ ,

which represents M/R repetitions of the elements in C.
Similar to C, the sum of elements in CTH is equal to 0.

2.2 Amatrix based expression for the magnitude squared
of the ST-DFT

Using (5), the magnitude squared of the ST-DFT can be
expressed as∣∣∣∣X

(
Rn,

M
R

)∣∣∣∣
2

= XH(n)X(n)
.= �H(n)D�(n), (14)

where matrix D .= C�CT is an R × Rmatrix given by

D =

⎡
⎢⎢⎢⎢⎢⎣

1 e−j 2πR · · · e−j2π R−1
R

ej
2π
R 1

. . .
...

...
. . . . . . e−j 2πR

ej2π
R−1
R · · · ej

2π
R 1

⎤
⎥⎥⎥⎥⎥⎦ .

D is obviously a right circulant (hence Toeplitz) matrix
whose rows and columns are rotated versions of C. Obvi-
ously, the sum of any row or column elements inD is equal
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to 0. Substituting (12) in (14), or equivalently using (13),
implies that the spectrum S(n) can be stated as∣∣∣∣X

(
Rn,

M
R

)∣∣∣∣
2

= x̂H(n)

[(
IR ⊗ hT

)H
C�

]

×
[
CT
(
IR ⊗ hT

)]
x̂(n)

= x̂H(n) HHD H x̂(n)

= x̂H(n) W x̂(n), (15)

where

W .= HHDH = (CTH)H(CTH),

is an R × Rmatrix of M
R × M

R blocks, given by

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 e−j 2πR · · · e−j2π R−1
R

ej
2π
R 1

. . .
...

...
. . . . . . e−j 2πR

ej2π
R−1
R︸ ︷︷ ︸

M
R ×M

R

. . . ej
2π
R 1︸︷︷︸

M
R ×M

R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Matrix W can be represented as a Kronecker product
of D and an M

R × M
R all-one matrix. Note that any row or

column in W is a rotated version of CTH, therefore, the
sum of the elements of any row or column in W is equal
to 0.

3 The newDNA spectrum expression
A first step towards finding the DNA spectrum S(n) is
the symbolic to numeric mapping F �−→ D as was
shown in Figure 5. Once the symbolic DNA sequence is
mapped into γ numeric sequence(s), the short-time dis-
crete Fourier transform is applied to each of them and the
sum of the squared magnitudes of the ST-DFTs will result
in the DNA spectrum at the frequency point k = M

R as
given by

S(Rn, k)|k=M
R

=
γ∑
l=1

∣∣∣∣Xl

(
Rn,

M
R

)∣∣∣∣
2
. (16)

For simplicity, we denote S(Rn, k)|k=M
R
as S(n) in the fol-

lowing sections. Several mappings were introduced in the
literature using both real and complex numerical values
with typical number of sequences γ = 1 up to 4 to main-
tain reasonable computation complexity. In this section,
we use the results of Section 2 to derive general expres-
sions for theM/R ST-DFT and spectrum for any symbolic
to numeric mapping.

3.1 The Voss-based DNA spectrum
The simplest and most commonly used map of a DNA
sequence is the Voss representation F �−→ V: that is
to form γ = 4 binary indicator sequences xA(n), xC(n),
xG(n), and xT (n) where a 1 would indicate the presence

of a base and 0 indicates its absence [18]. This approach
has been extensively used in relevant genomic research.
Note that the four sequences are not linearly independent
since for any index n, the four sequences will add up to
one. That is

xA(n) + xC(n) + xG(n) + xT (n) = 1.

This redundancy plays an important role in the deriva-
tions of this section. Moreover, it follows that for any
length-Mwindow starting at n, the fourmappedVoss win-
dows will add up to an all-one length-M sequence and the
same fact holds for the interleaved windows

xA(n) + xC(n) + xG(n) + xT (n) = x̂A(n) + x̂C(n)

+x̂G(n) + x̂T (n)

= [ 1 1 · · · 1]T . (17)

For illustration, Figure 7a shows a sample DNA window
that is mapped into the corresponding numeric windows
xl(n),∀ l ∈ F in Figure 7b,d,f,h.With an example interleav-
ing factor R = 3, the interleaved windows x̂l(n),∀ l ∈ F

are shown in Figure 7c,e,g,i. Each of the four sequences is
a discrete time sequence that can be processed using the
analysis of Section 2.
Therefore, the ST-DFT of each sequence can be found

using (13) to be

Xl(n) = CTH x̂l(n), (18)

∀ l ∈ F, and the power spectrum of each sequence can
hence be derived as in (15) to be

Sl(n) = |Xl(n)|2 = x̂Hl (n) W x̂l(n),

∀ l ∈ F. It follows that the Voss-based DNA spectrum
Sv(n) is

Sv(n)
.= |XA(n)|2 + |XC(n)|2 + |XG(n)|2 + |XT (n)|2
=
∑
l∈F

x̂Hl (n) W x̂l(n). (19)

An obvious step at this point is to simplify (19) to avoid
the summation over different bases. To do this, we use
Equation (18) to arrange the ST-DFT’s of xl(n), ∀ l ∈ F in
the following format

[XA(n) XC(n) XG(n) XT (n)] = CTH [ x̂A(n) x̂C(n)

x̂G(n) x̂T (n)] . (20)

Using (11), it follows that
⎡
⎢⎢⎣
XA(n)

XC(n)

XG(n)

XT (n)

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝
⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦⊗ CTH

⎞
⎟⎟⎠ .

⎡
⎢⎢⎣
x̂A(n)

x̂C(n)

x̂G(n)

x̂T (n)

⎤
⎥⎥⎦ .
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A GT G T C T A A

(a) A sample DNA window (upper strand of Figure 1)

1   2    3   4   5    6   7   8   9

1

(b) Voss window x A (n)

1   2    3   4   5    6   7   8   9

1

(c) Interleaved window A (n)

1   2    3   4   5    6   7   8   9

1

(d) Voss window x C (n)

1   2    3   4   5    6   7   8   9

1

(e) Interleaved window C (n)

1   2    3   4   5    6   7   8   9

1

(f) Voss window x G (n)

(n) (n)

(n)

1   2    3   4   5    6   7   8   9

1

(g) Interleaved window x̂ G

1   2    3   4   5    6   7   8   9

1

(h) Voss window x T

1   2    3   4   5    6   7   8   9

1

(i) Interleaved window x̂ T

Figure 7 A sample DNA window of lengthM = 9, the corresponding Voss binary windows xl(n), ∀ l ∈ F, and the interleaved versions
x̂l(n), ∀ l ∈ Fwith an interleaving factor R = 3. The interleaved windows are generated by rearranging the original windows in an
R = 3-interleaved format. In this example, data points of x̂l(n) at (1,2,3),(4,5,6),(7,8,9) are mapped from those in xl(n) at (1,4,7),(2,5,8),(3,6,9).

We define ϒv(n): the array of the four Voss-based ST-
DFTs. It can now be written as

ϒv(n) = [ XA(n) XC(n) XG(n) XT (n)
]T

=
(
I4 ⊗ CTH

)
x̂v(n), (21)

where I4 is the 4×4 identitymatrix, and the vector x̂v(n) of
length 4M is an array of the four Voss interleaved windows
starting at index n: x̂l(n),∀ l ∈ F. Using the identity

(A1 ⊗ A2)(A3 ⊗ A4) = (A1A3 ⊗ A2A4), (22)

the Voss-based DNA power spectrum can bemanipulated
into

Sv(n)
.= ϒH

v (n)ϒv(n)

= x̂Hv (n)
(
IH4 ⊗ (CTH)H

) (
I4 ⊗ CTH

)
x̂v(n)

= x̂Hv (n) (I4 ⊗ W) x̂v(n). (23)

In (23), I4 and W are constant matrices ∀n. Hence the
computation of the spectrum Sv(n) for different windows
of a DNA sequence needs only the evaluation of the Voss
interleaved array x̂v(n).

3.2 Computing the DNA spectrum under general
symbolic to numerical maps

Similar to the Voss representation case, any map F �−→
D of γ sequences can be processed using the analysis
of Section 2. It directly follows that the ST-DFT and
spectrum of a single sequence are given by

Xl(n) = CTH x̂l(n),
Sl(n) = x̂Hl (n) W x̂l(n),

where l = 1, 2, . . . , γ . The array of γD-mapped ST-DFTs
ϒd(n) is therefore given by

ϒd(n) = [ X1(n) X2(n) . . . Xγ (n)
]T

=
(
Iγ ⊗ CTH

)
x̂d(n). (24)

The D-based DNA spectrum can easily be shown to be

Sd(n) = x̂Hd (n)
(
Iγ ⊗ W

)
x̂d(n), (25)

where the vector x̂d(n) of length γM is an array of the
γ D-mapped and interleaved windows starting at index
n: x̂l(n),∀ l = 1, 2, . . . , γ . It is clear that for every dif-
ferent map F �−→ D, a new interleaved windows array
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x̂d(n) has to be evaluated in order to compute a spectrum
point Sd(n). In this following, we introduce a different new
approach to recompute (25) without updating x̂d(n) for
every map. Basically, we derive a new expression for Sd(n)

in terms of x̂v(n) and a new constant matrix so that we
incorporate the map dependance in the matrix part rather
than the interleaved array part. In other words, since the
map F �−→ V is already well-defined, we use the map
V �−→ D to complete the chain F �−→ V �−→ D and
hence find the spectrum Sd(n). Consider the following
affine transformation from Voss sequences to a general
array of D-mapped sequences⎡

⎢⎢⎢⎣
x1(n)

x2(n)
...

xγ (n)

⎤
⎥⎥⎥⎦

γ×1

= Aγ×4

⎡
⎢⎢⎣
xA(n)

xC(n)

xG(n)

xT (n)

⎤
⎥⎥⎦
4×1

+ bγ×1,

where Aγ×4 and bγ×1 = [b1 b2 . . . bγ

]T are constant
possibly complex valued arrays. It follows that the array
of the D-mapped interleaved windows x̂d(n) can be writ-
ten in terms of the array the Voss-mapped interleaved
windows x̂v(n) in the following form

x̂d(n)γM×1 = (Aγ×4 ⊗ IM
)
x̂v(n)4M×1 + b̂γM×1, (26)

where b̂ defined as

b̂ =
⎡
⎢⎣b1 .. b1︸ ︷︷ ︸

M

b2 .. b2 . . . bγ .. bγ︸ ︷︷ ︸
M

⎤
⎥⎦

is an array of γ M-element blocks, each block is M rep-
etitions of one element of b. Substituting for x̂d(n) in
(24) results in a new formula for the array of D-mapped
ST-DFTs ϒd(n) into

ϒd(n) =
(
Iγ ⊗ CTH

) [
(A ⊗ IM) x̂v(n) + b̂

]
. (27)

An important result at this point is that the second term
in ϒd(n) is actually equal to 0. This can be verified by
reducing it into the following form

(
Iγ ⊗ CTH

)
b̂ =

⎡
⎢⎢⎢⎢⎣

CTH 0 · · · 0

0 CTH
. . .

...
...

. . . . . . 0
0 . . . 0 CTH

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
b̂1
b̂2
...
b̂γ

⎤
⎥⎥⎥⎥⎦ .

Recall that the sum of elements in CTH is equal to 0.
Therefore, since b̂l is a constant vector, the product(
CTH

)
.b̂l is equal to 0, ∀ l = 1, 2, . . . , γ and hence

(
Iγ ⊗ CTH

)
b̂ =

γ∑
l=1

(
CTH

)
.b̂l = 0. (28)

The ST-DFTs array ϒd(n) can therefore be simplified
using the Kronecker product identity (22) into

ϒd(n) =
(
Iγ ⊗ CTH

)
(A ⊗ IM) x̂v(n)

=
(
A ⊗ CTH

)
x̂v(n). (29)

It follows that the D-based DNA spectrum Sd(n) is

Sd(n) = ϒH
d (n)ϒd(n)

= x̂Hv (n)
(
A ⊗ CTH

)H (
A ⊗ CTH

)
x̂v(n)

= x̂Hv (n) (B ⊗ W) x̂v(n), (30)

where B .= AHA. Equation (30) indicates that when a
certain symbolic to numeric mapping F �−→ D is used,
the DNA power spectrum Sd(n) is completely defined in
terms of the Voss-based interleaved array x̂v(n) along with
constant matrices W and B which is a function of the
transformation matrix A (V �−→ D). Note that if A = I4
then B = I4 at which (30) reduces to (23) which is the
Voss-based spectrum case.

4 Invariance of the DNA spectrum under popular
mappings

The results found in Section 3 can be applied to some
mappings that are widely used in the literature. In specific,
by defining the corresponding transformation matrices A
and B (V �−→ D), closed form expressions for Sd(n) are
obtained. Furthermore, for a number of mappings, we
show that theD-mapped spectrum Sd(n) is in fact a scaled
version of the Voss-based spectrum Sv(n).

4.1 Four-to-four (γ = 4) representations
In this scheme, each Voss sequence is scaled by a possibly
complex coefficient according to the following transfor-
mations matrices

A =

⎡
⎢⎢⎣
a 0 0 0
0 c 0 0
0 0 g 0
0 0 0 t

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

|a|2 0 0 0
0 |c|2 0 0
0 0 |g|2 0
0 0 0 |t|2

⎤
⎥⎥⎦ ,

where a, a, g, and t are real or complex coefficients used to
scale xA(n), xC(n), xG(n), and xT (n), respectively. The cor-
responding array of ST-DFT’s ϒd(n) is subsequently given
by

ϒd(n) =

⎛
⎜⎜⎝
⎡
⎢⎢⎣
a 0 0 0
0 c 0 0
0 0 g 0
0 0 0 t

⎤
⎥⎥⎦⊗ CTH

⎞
⎟⎟⎠ x̂v(n),
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and the DNA spectrum Sd(n) is

Sd(n) = x̂Hv (n)

⎛
⎜⎜⎝
⎡
⎢⎢⎣

|a|2 0 0 0
0 |c|2 0 0
0 0 |g|2 0
0 0 0 |t|2

⎤
⎥⎥⎦⊗ W

⎞
⎟⎟⎠ x̂v(n).

Now, we extend this result to certain transformations
where numeric values of the scale factors a, a, g, and t are
specified.
§ Tetrahedral mapping.
The so-called tetrahedral representation has been pro-

posed in [13,29]. In this mapping scheme, the four
nucleotides are represented by four equal length vectors
oriented towards the corners of a tetrahedron. Projecting
the basic tetrahedron on a plane will reduce the dimen-
sionality of the representation to two. This mapping can
be defined by the mapping matrix

A =

⎡
⎢⎢⎣
1 + j 0 0 0
0 −1 + j 0 0
0 0 −1 − j 0
0 0 0 1 − j

⎤
⎥⎥⎦ .

It can be easily seen that in this case: |a| = |c| = |g| =
|t| = √

2 which implies that B = 2I4. The corresponding
DNA spectrum is

Sd(n) = 2x̂Hv (n) (I4 ⊗ W) x̂v(n) = 2Sv(n). (31)

Since B = αI4(α = 2), the tetrahedral-based DNA
spectrum is a scaled version of the Voss-based spectrum.
§ Quaternion mapping.
A more involved step is to replace the complex number

set of the tetrahedral mapping with its algebraic gener-
alization, the set of quaternions. Quaternions have been
used to map DNA sequences F �−→ H [30] and are sim-
ply defined as hypercomplex numbers given by p ∈ H =
{a + bi + cj + dk|a, b, c, d ∈ R}, where i,j,k are complex
coefficients such that i2 = j2 = k2 = ijk = −1 and
|p| = √

pp∗ = √
a2 + b2 + c2 + d2. The transformation

matrix is given by

A =

⎡
⎢⎢⎣
i + j + k 0 0 0

0 i − j − k 0 0
0 0 −i − j + k 0
0 0 0 −i + j − k

⎤
⎥⎥⎦ .

In this case, |a| = |c| = |g| = |t| = √
3,B = 3I4. The

corresponding DNA spectrum is

Sd(n) = 3x̂Hv (n) (I4 ⊗ W) x̂v(n) = 3Sv(n) (32)

§ Higher order mappings.
An alternative Quaternion transformation is given by

A = diag(1+ i+ j+k, 1+ i− j−k, 1− i− j+k, 1− i+ j−k),
which results in B = 4I4 and consequently Sd(n) =

4Sv(n). In general, for a complex representation system
with η dimensions and equal amplitude coefficients: B =
ηI4 and hence the spectrum Sd(n) = ηSv(n).

4.2 Four-to-three (γ = 3) mappings
In order to reduce the DNA spectrum computational
cost, several mappings have been proposed with smaller
numbers of sequences.
§ Z-curve mapping.
One such important symbolic-to-numeric map is the

Z-curve mapping [24], which is a unique 3-dimensional
curve representation whose sequences have values 1
and −1. One advantage of the Z-curve mapping is that
each of its three sequences has a biological interpretation.
This scheme is given by

⎡
⎣ x(n)

y(n)

z(n)

⎤
⎦ = 2

⎡
⎣ 1 0 1 0
1 1 0 0
1 0 0 1

⎤
⎦
⎡
⎢⎢⎣
xA(n)

xC(n)

xG(n)

xT (n)

⎤
⎥⎥⎦−
⎡
⎣ 1
1
1

⎤
⎦ .

Therefore, the transformation matrices are

A =
⎡
⎣ 2 0 2 0
2 2 0 0
2 0 0 2

⎤
⎦ , B =

⎡
⎢⎢⎣
12 4 4 4
4 4 0 0
4 0 4 0
4 0 0 4

⎤
⎥⎥⎦ .

Matrix B in this case can be written as

B = 4

⎛
⎜⎜⎝I4 +

⎡
⎢⎢⎣
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

= 4 (I4 + B1 + B2) .

Note that the term involving B1 in Sd(n) can be manip-
ulated into

Sd(n)|B1 = x̂Hv (n) (B1 ⊗ W) x̂v(n)

= 4x̂Hv (n)

⎡
⎢⎢⎣
W W W W
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x̂A(n)

x̂C(n)

x̂G(n)

x̂T (n)

⎤
⎥⎥⎦

= 4x̂Hv (n)

⎡
⎢⎢⎣
W
(∑

l∈F x̂l(n)
)

0
0
0

⎤
⎥⎥⎦ .

Recall from (17) that
∑

l∈F x̂l(n) =[ 1 1 · · · 1]T . Take
also into consideration that the sum of elements of any
row or column in W is equal to 0. This implies that
W
(∑

l∈F x̂l(n)
) = 0, at which it is easy to see that

Sd(n)|B1 = 0. Similarly, Sd(n)|B2 = 0. Therefore, only
the first term in B contributed to Sd(n) at which the Z-
curve mapped DNA spectrum is a scaled version of the
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Voss-based DNA spectrum

Sd(n) = x̂Hv (n) (4I4 ⊗ W) x̂v(n) = 4Sv(n). (33)

This ratio is consistent with the result we first derived
in [24] for R = 3, but is now shown to be general for any
value of R. We are now ready to state an important result.

Theorem. Necessary and Sufficient condition for the
invariance of the DNA spectrum. Consider the following
affine transformation from Voss sequences to a general
array of D-mapped sequences

⎡
⎢⎢⎢⎣
x1(n)

x2(n)
...

xγ (n)

⎤
⎥⎥⎥⎦

γ×1

= Aγ×4

⎡
⎢⎢⎣
xA(n)

xC(n)

xG(n)

xT (n)

⎤
⎥⎥⎦
4×1

+ bγ×1,

where Aγ×4 and bγ×1 = [b1 b2 . . . bγ

]T are constant
possibly complex valued arrays. Define the 4 × 4 matrix
B = AHA. The DNA spectrum is invariant under this
map, i.e., Sd(n) = αSv(n) if the transformation matrix
B can be written as B = αI4 + ∑i Bi, where Bi holds
constant rows and/or constant columns ∀ i.

The proof follows by simply observing that ifBi has con-
stant rows and/or constant columns, then Sd(n)|Bi = 0.
We remind the reader at this point that the vector bγ×1
has no bearing on the invariance of the DNA spectrum.
§ Simplex mapping.
The simplex mapping is essentially another tetrahedron

structured mapping that aims to eliminate the computa-
tional redundancy. Its transformations matrices are

A = 1
3

⎡
⎣ 0 −√

2 −√
2 2

√
2

0
√
6 −√

6 0
3 −1 −1 −1

⎤
⎦ , B = 1

3

⎡
⎢⎢⎣

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎤
⎥⎥⎦ .

Matrix B in this case can be written as

B =
(
4
3

)⎛⎜⎜⎝I4 − 1
4

⎡
⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

(
4
3

)
(I4 + B1) .

Similar to theZ-curve case, Sd(n)|B1 = 0. It follows that
the simplex-based DNA spectrum is also a scaled version
of the Voss-based spectrum, and is given by

Sd(n) = x̂Hv (n)

(
4
3
I4 ⊗ W

)
x̂v(n) =

(
4
3

)
Sv(n). (34)

This ratio is consistent with the result in [31] which was
limited to direct DFT and is now shown to be extended to
M/R ST-DFT with any value of R.

4.3 Four-to-two (γ = 2) mappings
Pairing couples of nucleotides together was proposed in
the literature in order to exploit certain biological features
in addition to complexity reduction. For example, it was
suggested that exons are rich in nucleotidesC andG, while
introns have more A and T [29]. This claim inspired the
transformation

A =
[

0 1 1 0
−1 0 0 −1

]
, B =

⎡
⎢⎢⎣
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎤
⎥⎥⎦ .

It is obvious that the DNA spectrum in this case can be
simplified to

Sd(n) = x̂Hv (n)

⎡
⎢⎢⎣
W 0 0 W
0 W W 0
0 W W 0
W 0 0 W

⎤
⎥⎥⎦ x̂v(n), (35)

which obviously is not a scaled version of Sv(n) since B in
this case can not be written as αI4+∑i Bi, where Bi holds
constant rows and/or constant columns ∀ i.

4.4 Four-to-one (γ = 1) mappings
Single sequence representations can be generated by
assigning each nucleotide a certain coefficient [4,13] in
order to keep the single sequence structure using the
transformation array and matrix

A = [ a c g t
]
, B =

⎡
⎢⎢⎣

|a|2 a∗c a∗g a∗t
c∗a |c|2 c∗g c∗t
g∗a g∗c |g|2 g∗t
t∗a t∗c t∗g |t|2

⎤
⎥⎥⎦ .

Note that the coefficients chosen for the tetrahedral,
quaternion, and paired coupled mappings can be reused
along with the single sequence formulation. For example,
the paired couples case can be reformulated in a single
sequence of 1’s and −1’s using A = [−1 1 1 −1

]
and

B =

⎡
⎢⎢⎣

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦ ,

at which the DNA spectrum is

Sd(n) = x̂Hv (n)

⎡
⎢⎢⎣

W −W −W W
−W W W −W
−W W W −W
W −W −W W

⎤
⎥⎥⎦ x̂v(n).

Similar to the previous case, Sd(n) is not a scaled version
of Sv(n).
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Experimental verification. To briefly verify the results
of this section experimentally, we apply Equation (30) to
real DNA sequences, when the Voss, tetrahedral, quater-
nion, Z-curve, and simplex maps are employed. For com-
parison with previous study, we consider first the DNA
sequence F56F11.4 in the C. elegans chromosome III. This
sequence is 8060 nucleotides and has been used as a
benchmark by many researchers [13] to extract the peri-
odicity component at R = 3. The DNA spectra at R = 3
are shown in Figure 8 for the five former mappings, and
are obviously related by the constant scale factors derived
earlier in the section which clearly verifies our results.
Although we lack the space for more general simulations,
it is important to state that all the spectra relations are
maintained experimentally at other values of R associated
with higher order periodicities.
For generality purposes, we test twomore sequences ex-

tracted from the well known Burset-Guigo database [32].

In specific, DNA spectra at R = 3 of the zeta globin gene
(ECZGL2) of length 1563, and the Alouatta seniculus
epsilon-globin gene (ALOEGLOBIM) of length 1691 are
shown in Figures 9 and 10, respectively, for the five for-
mer mappings. It can be seen that the relations are still
preserved.

5 Alternativemeasures of DNA periodicities
Alternative DNA periodicity measures using fast data
transforms [33-35], wavelets, and finite impulse response
(FIR) digital filters [25,36] were recently proposed to
improve the detection performance of these periodicities.
However, each method was obtained separately from the
other using seemingly a different approach. In this section,
we show that our proposed framework can systematically
generate all these results by simply changing a number of
matrices. It therefore provides a generic unified framework
for generating alternative measures of DNA periodicities.
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Figure 8 DNA spectrum Sd(n) at R = 3 of the DNA sequence F56F11.4 when (a) Voss, (b) tetrahedral, (c) quaternion, (d) Z-curve, and
(e) simplex mappings are used.
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Figure 9 DNA spectrum Sd(n) at R = 3 of the DNA sequence ECZGL2 when (a) Voss, (b) tetrahedral, (c) quaternion, (d) Z-curve, and
(e) simplex mappings are used.

For example, we can re-express the matrices D and W
in terms of general digital filters and use these filters to
modify (30) in order to generate new spectrum formu-
las. Furthermore, using symmetry based decompositions
of D and W, we simplify (30) into a formula with low
computational complexity.

5.1 Modified periodicity measures
Recall from Section ‘2’ that matrixW is given by

W = HHDH = (IR ⊗ hT )HC�CT (IR ⊗ hT ).

Obviously,W is completely defined by the real array h and
the generally complex array C. Note that h and C can be
viewed as the impulse responses of two FIR filters defined
by the z-transforms H(z) and C(z).

5.1.1 Updating the real filter h
The FIR filterH(z) is the standard rectangular window fil-
ter and has a low pass frequency response with a −13 dB
attenuation. To improve its filtering performance, we

can use a more general FIR filter, denoted by H̃(z) and
expressed as

H̃(z) = h0 + h1z−1 + · · · + hM
R
z−

M
R ,

which is the Z-transform of the general array h̃ given by

h̃ =
[
h0 h1 . . . hM

R

]
.

From a signal processing perspective, achieving better
performance can be obtained by replacing the rectan-
gular window with another one, H̃(z), that has slightly
wider main lobes but much more attenuated side lobes,
as shown in Table 3. The impulse responses of such win-
dows are depicted in Figure 11a for R = 8 and M = 96.
Better harmonics characterization can be achieved by
giving each nucleotide position within the window a rel-
ative weight in contrast to the rectangular where equal
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Figure 10 DNA spectrum Sd(n) at R = 3 of the DNA sequence ALOEGLOBIM when (a) Voss, (b) tetrahedral, (c) quaternion, (d) Z-curve,
and (e) simplex mappings are used.

weighting is given to all nucleotides. It turns out that the
Blackman window has the best main-to-first side lobe
attenuation behavior as shown in Figure 11b compared to
the rectangular window case and therefore provides the
best smoothing of the DNA spectrum.

Table 3 FIR window Specifications: relative peak side lobe
A1/A0 in dB, approximate width of main lobe�ω,
equivalent Kaiser window coefficient β, and transition
width�ωβ

FIR Window A1/A0 �ω β �ωβ

Rectangular −13 4π/(M/R + 1) 0 1.81πR/M

Bartlett −25 8πR/M 1.33 2.37πR/M

Hanning −31 8πR/M 3.86 5.01πR/M

Hamming −41 8πR/M 4.86 6.27πR/M

Blackman −57 12πR/M 7.04 9.19πR/M

By replacing h with h̃, the matrix H can be in turn
expressed as

H̃ =

⎡
⎢⎢⎢⎢⎣

h0 h1 .. hM/R−1 · · · 0 0 .. 0
...

. . .
...

0 0 .. 0 · · · h0 h1 .. hM/R−1︸ ︷︷ ︸
M/R

⎤
⎥⎥⎥⎥⎦ ,

and the complex row vector CTH̃ is now given by

CT H̃ =

⎡
⎢⎢⎣h0 .. hM

R −1︸ ︷︷ ︸
M/R

. . . h0e−j2π R−1
R .. hM

R −1e
−j2π R−1

R︸ ︷︷ ︸
M/R

⎤
⎥⎥⎦ .

It can be easily seen that the sum of elements in CT H̃
is still equal to zero as was the case for CTH. Conse-
quently, it follows that the sum of any row or column in
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W̃ = H̃HDH̃ is still equal to zero. This is a fundamen-
tal result which, in turn, implies that all the derivations of
Section 3 are still the same even when h̃ replaces h. In par-
ticular, theV-based DNA spectrum S̃v(n) and theD-based
one S̃d(n) can be stated as

S̃v(n) = x̂Hv (n)(I4 ⊗ W̃)x̂v(n), S̃d(n)

= x̂Hv (n)(B ⊗ W̃)x̂v(n). (36)

Moreover, all the mathematical relations derived in
Section 3 between the D-based spectrum and the Voss-
based one are all still valid even when h is replaced
by h̃.

Experimental verification. To experimentally verify this
result, we consider finding the DNA spectrum S̃d(n) of the
three DNA sequences used in the previous section when
h̃ is set to a Blackman window. The relations between the
spectra when using the Voss, tetrahedral, quaternion, Z-
curve, and simplex mappings are still the same as shown
in Figures 12, 13, and 14.

5.1.2 Updating the complex filter C
Similar to H(z), the FIR filter C(z) can be replaced by a
more sophisticated filter C̃(z) expressed as

C̃(z) = C0 + C1z−1 + · · · + CR−1z−(R−1),

which is the Z-transform of the general array C̃ given by

C̃ = [C0 C1 . . . CR−1] .

Note that, in this case, the elements in array C̃ do not
necessarily add to zero anymore. Consequently, the sum
of elements in any row or any column in D̃ = C̃�C̃T or
W̃ = HHD̃H is not necessarily zero. We also note that

unlike the case of h̃, using C̃ instead of C keeps the spec-
trum formulas in (36) correct but does not preserve the
mathematical relations between the different D-mapped
spectra and the Voss-based spectrum.

5.1.3 Joint optimization of h̃ and C̃
It should be clear at this point that better DNA harmon-
ics detection performance can be potentially achieved
through a joint “optimization” of h̃ and C̃. For example, a
learning paradigm can be used with a least-mean-square
(LMS) criterion to find the optimal set, h̃ and C̃. Alterna-
tively, a biologically induced criterion can yield a substan-
tial boost in performance but it is not clear which criterion
to use. This interesting but challenging research topic is
however outside the scope of this article and will not be
further pursued here.

Example. Standard discrete time transforms have been
proposed to replace the ST-DFT in the periodicity detec-
tion problem. In particular, the short time discrete cosine
transform (ST-DCT), sine transform (ST-DST), and Hart-
ley transform (ST-DHT) were introduced and analyzed
for this purpose [33]. In this example, we show that these
three transforms fit naturally within our proposed anal-
ysis when the two arrays h̃ and C̃ are adjusted correctly
for each case. Although these standard transforms are not
optimized for certain data sets, they can serve as prelim-
inary tests for better periodicity detection. In [33], the
short time DFT, DCT, DST, and DHT at k = M/R where
shown to be given by

X(t)(n) =
R−1∑
r=0

C(t)
r

M
R −1∑

m=r,r+R,...
x(n + mR + r)h(t)(m), (37)
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Figure 12 DNA spectrum S̃d(n)with h̃ set to a Blackman window at R = 3 of the DNA sequence F56F11.4 when (a) Voss, (b) tetrahedral,
(c) quaternion, (d) Z-curve, and (e) simplex mappings are used.

where t ∈ {f , c, s, h} indicates Fourier, cosine, sine, and
Hartley transforms, respectively, C(t)

r = a(t)ejθ
(t)
r + b(t)e−jθ(t)

r

are possibly complex coefficients, and h(t)(m) = (αt)m.
Values of the parameters α, a, b, and θr for every transform
are adjusted according to Table 4. For illustration, setting
α = 1, a = 1, b = 0, and θr = −2πr/R in (37) results
in the ST-DFT case. An efficient implementation to calcu-
late Equation (37) is shown in Figure 15 which generalizes
Figure 3.
This model provides a general framework that encap-

sulates the computation of the short-time Fourier, cosine,
sine, and Hartley transforms at frequency point k =
M/R. Therefore, the same matrix-based analysis of
Sections 2 and 3 can be used. Matrix W will be updated
into

W̃ = H̃HD̃H̃ =
(
IR ⊗ h̃T

)H
C̃�C̃T

(
IR ⊗ h̃T

)
,

and therefore theD-based DNA spectrum S̃d(n)when one
of the ST- DFT, DCT, DST, or DHT is employed can be
stated as

S̃d(n) = x̂Hv (n)(B ⊗ W̃)x̂v(n), (38)

where the values of h̃ and C̃ are adjusted according to
Table 5.
Note that similar to the Fourier case, the sum of ele-

ments in C̃ for the cosine and Hartley transforms cases
is equal to zero. Therefore, under these two cases, the
relations between different D-based DNA spectra and the
V-based DNA spectrum are still the same as given in
Section 3.
At this point, it can be concluded that the D-based

DNA spectrum S̃d(n) is completely defined in terms of
the Voss-based array of interleaved windows x̂v(n), the
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Figure 13 DNA spectrum S̃d(n)with h̃ set to a Blackman window at R = 3 of the DNA sequence ECZGL2 when (a) Voss, (b) tetrahedral,
(c) quaternion, (d) Z-curve, and (e) simplex mappings are used.

V �−→ Dmapping matrix A, the real array h̃, and the gen-
erally complex array C̃. This conclusion is summarized in
Figure 16.

5.2 A real approach for the spectrum computation
A real computationally-efficient alternative for the
evaluation of Sd(n) can be found by observing the
special properties of the circulant/toeplitz matrix D
or equivalently the block matrix W. We use the fact
that for a generally-complex matrix Q: yHQy = 0,
∀y ∈ R, if Q is an antisymmetric matrix. We start
by splitting D into its symmetric and antisymmetric
parts

D = 1
2

(
D + DT

)
︸ ︷︷ ︸

symmetric

+ 1
2

(
D − DT

)
︸ ︷︷ ︸
antisymmetric

= Ds + Das,

whereDs is a circulant and Toeplitz real R×Rmatrix given
by

Ds =

⎡
⎢⎢⎢⎢⎢⎣

1 2 cos 2π
R · · · 2 cos 2π(R−1)

R

2 cos 2π
R 1

. . .
...

...
. . . . . . 2 cos 2π

R
2 cos 2π(R−1)

R · · · 2 cos 2π
R 1

⎤
⎥⎥⎥⎥⎥⎦ ,

and Das is a circulant and Toeplitz complex R × R matrix
given by

Das = 2j

⎡
⎢⎢⎢⎢⎢⎣

0 − sin 2π
R · · · − sin 2π(R−1)

R

sin 2π
R 0

. . .
...

...
. . . . . . − sin 2π

R
sin 2π(R−1)

R · · · sin 2π
R 0

⎤
⎥⎥⎥⎥⎥⎦ .
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Figure 14 DNA spectrum S̃d(n)with h̃ set to a Blackman window at R = 3 of the DNA sequence ALOEGLOBIM when (a) Voss,
(b) tetrahedral, (c) quaternion, (d) Z-curve, and (e) simplex mappings are used.

Substituting for D in (15), we get a simple form of the
spectrum S(n)

S(n) = x̂H(n) HHDH x̂(n)

= x̂H(n) HH (Ds + Das)H x̂(n)

= x̂H(n) Ws x̂(n), (39)

Table 4 Parameter settings in Figure 15 to compute the
short time Fourier, cosine, sine, and Hartley transforms

Transform α a b θr

ST-DFT 1 1 0 −2π r/R

ST-DCT −1 1/2 −1/2 (2r + 1)π/2R

ST-DST −1 1/2j −1/2j (2r + 1)π/2R

ST-DHT 1 1
2 (1 − j) − 1

2 (1 − j) 2π r/R

where yHDasy = 0,∀l ∈ F, y = H x̂(n). The block matrix

Ws
.= HHDsH = 1

2
HH
(
D + DT

)
H

is an R × Rmatrix of M
R × M

R blocks. Using (39) to update
the DNA spectrum (19), Sv(n) simplifies into

Sv(n) =
∑
l∈F

x̂Hl (n) Ws x̂l(n). (40)

Following the same analysis of Section 3, (40) can be eas-
ily manipulated into a more elegant completely real form
given by

Sv(n) = x̂Hv (n) (I4 ⊗ Ws) x̂v(n),

or more generally, (30) can be updated into

Sd(n) = x̂Hv (n) (B ⊗ Ws) x̂v(n), (41)

which provides a completely real approach for the com-
putation of the D-mapped spectrum Sd(n). Note that all
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Figure 15 A general multirate DSP structure to compute the short-time DFT, DCT, DST, and DHT.

results and different spectra relations in Section 3 still
hold whenWs replacesW as in (41).

Computational complexity comparison. To quantify
the computational credit of this real approach, we com-
pare the complexity of (39) to that of (15) of a single
discrete time sequence. Since x̂(n) can be complex as well
according to the mapping used, we find the number of
real multiplications and additions needed to evaluate (39)
when each of x̂(n) and W is either real or complex, as
given in Table 6. Recall that the multiplication of the com-
plex numbers x and y, where x = a + jb and y = c + jd
requires the computation of ac − bd and ad + bc, which
requires four real multiplications and two real additions.

Example. For illustration, we evaluate the spectrum
Sv(n) usingWs when R = 3, and compare the result to the

Table 5 Modified arrays h̃ and C̃ to compute the short time
Fourier-, cosine-, sine-, and Hartley-based DNA spectrum
of (38)

ST-DFT h̃ = h = {(1)i , i = 1, 2, . . .M/R}
C̃ = C = {e−j2π r/R , r = 1, 2, . . . R}

ST-DCT h̃ = {(−1)i , i = 1, 2, . . .M/R}
C̃ = {cos((2r + 1)π/2R), r = 1, 2, . . . R}

ST-DST h̃ = {(−1)i , i = 1, 2, . . .M/R}
C̃ = {sin((2r + 1)π/2R), r = 1, 2, . . . R}

ST-DHT h̃ = h = {(1)i , i = 1, 2, . . .M/R}
C̃ = {cos(2π r/R) + sin(2π r/R), r = 1, 2, . . . R}

formula derived in [37]. In specific, we use (40) to find the
spectrum S(n) as follows

Sv(n) =
∑
l∈F

x̂Hl (n)HHDsHx̂l(n) =
∑
l∈F

�H
l (n)Ds �l(n)

=
∑
l∈F

[Xl0 Xl1 Xl2]

⎡
⎣ 1 −1 −1

−1 1 −1
−1 −1 1

⎤
⎦
⎡
⎣ Xl0
Xl1
Xl2

⎤
⎦ .

Expanding and completing the square, it follows that

Sv(n) =
∑
l∈F

[X2
l0(n) + Xl1(n)(Xl1(n) − Xl0(n))

+ Xl2(n)(Xl2(n) − Xl0(n) − Xl1(n))]

= 1
2
∑
l∈F

2∑
r=0

(Xlr(n) − Xlq(n))2, (42)

where q = (r + 1) mod 3. The matrix-based DNA spec-
trum formula in (42) is consistent with the result derived
using a different approach in [37].

6 Concluding remarks
In this article, we have introduced a matrix based frame-
work for locating hidden DNA periodicities using spectral
analysis techniques that are invariant to the choice of the
symbolic to numerical map. The primary advantage of the
presented approach over some of the previous study is the
decomposition of the spectrum expression into key matri-
ces whose values can be set independently from each other.
Each matrix represents one of the essential components
involved in the computation of the spectrum such as the
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symbolic to numerical map, the data transform, and the
filtering scheme. The above framework is derived under
the assumption that the symbolic to numerical map can
be obtained from the Voss representation using an affine
transformation. This assumption is however quite loose
given that most (if not all) of the proposed maps in the
literature satisfy this requisite. Using the new framework,
we have then shown that the DNA spectrum expression is
invariant under these maps.We have also derived a neces-
sary and sufficient condition for the invariance of the DNA
spectrum in terms of the affine transformation matrix A
(the b vector in the affine transformation does not affect
the DNA spectrum).
This condition can serve as the basis for generating

novel symbolic to numerical map that preserve the DNA
spectrum expression. Finally, in the latter sections of the
article, we have shown the potential of using different fil-
tering schemes, e.g., windows other than the rectangular
one as well as alternate fast data transforms, e.g., the DCT,
DST, and the Hartley transform. A number of simulation
results that verify the findings of this article and a brief
quantitative analysis of the computational complexity of
the new approach were given in the same sections. Future
research study would consider the optimization of the

Table 6 Real multiplications and additions needed for the
evaluation of (39) and (15)

x̂(n),W Real multiplications Real additions

real,real M(M + 1) M2 − 1

real,complex 2M(M + 1) 2(M2 − 1)

complex,real 2M(M + 1) 2(M2 − 1)

complex,complex 4M(M + 1) 2(2M2 + M − 1)

different building blocks, namely the symbolic to numer-
ical map, the data transform, and the filtering scheme.
This, in turn, requires a deep understanding of the bio-
logical significance of different DNA periodicities in order
to set up a meaningful objective function and appropriate
constraints. Ultimately, the framework proposed here can
be incorporated in a more sophisticated system to study
the complex structure of genomic sequences and under-
stand the functionality of its various components. Finally,
this efficient framework can be extended to the analysis
of other types of symbolic sequences of various limited
alphabets, either biological sequences (such as protein
sequences) or even non-biological ones.
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