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Abstract

Genomic studies are now being undertaken on thousands of samples requiring new computational tools that can
rapidly analyze data to identify clinically important features. Inferring structural variations in cancer genomes from
mate-paired reads is a combinatorially difficult problem. We introduce Fastbreak, a fast and scalable toolkit that
enables the analysis and visualization of large amounts of data from projects such as The Cancer Genome Atlas.
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Introduction
Genomic analysis of cancer and other genetic diseases is
changing from the study of individuals to the study of
large populations. This is exemplified by large scale pro-
jects such as The Cancer Genome Atlas (TCGA), a
multi-institution consortium working to build a compre-
hensive compendium of genomic information that pro-
mises to reveal the molecular basis of cancer, and lead to
new discoveries and therapies. Currently, TCGA centers
are targeted to undertake the integrated analysis of 20-
25 cancer types using more than twenty thousand sam-
ples [1,2]. This endeavor provides investigators with an
unprecedented view of the genomic aberrations that de-
fine many human cancers [3]. Cancer cells display di-
verse genetic structure even within a single individual
[4]. Analysis of these structural variations (SVs) across
thousands of individuals requires tools that must execute
quickly and minimize systematic bias and errors.
Structural variants can be inferred from mapped
mate-pair sequencing data by analyzing read pairs that
have unlikely positions or orientations relative to each
other and several methods and applications for this
purpose have been presented [5,6]. However, identifying
groups of unlikely reads that support a particular struc-
tural variation can involve computations that become
combinatorially complex as the number of reads in-
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creases. Algorithms such as BreakDancer [6] that make
pairwise comparisons between reads have running times
that scale nonlinearly with input size and are thus ex-
pensive to apply to large data sets consisting of many
high coverage genomes. We present Fastbreak, a toolset
that has been designed to enable efficient and paralleliz-
able SV analysis of next-generation sequencing data. The
algorithm and associated tools are available as open
source software at http://code.google.com/p/fastbreak/
and incorporates several features:

Scalable rule-based approach: The system uses a set of
rules designed to detect the signatures of SVs in a
single pass over the data and accumulate this
information in efficient, parallelizable data structures.
These rules can be further tailored to focus on the
signature of cancer-associated SVs, greatly reducing
false positives (see Rules used in sample analysis).
Robust analysis: Because of variations in coverage and
quality in the large amounts of data available, the
software chains together different tools and statistical
methods to identify both statistically anomalous files
and those sections of the data that are free from
systematic bias (see Robustness of analysis and quality
assurance of data).

Visual data mining: The tool incorporates a set of
novel visualizations allowing for interactive exploration
and the presentation of the results at different scales
(see Interaction visual representation).
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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Figure 1 Separation of tumor from blood by Fastbreak (left) and BreakDancer (right). The separation of the tissue type (cancer versus
blood), showing kernel density estimates along the first coordinate of a multidimensional scaling (MDS) solution derived from the mutual
information distance [7] between samples, demonstrates that Fastbreak is robust against sample collection and instrumentation biases. The blood
sample densities are shown in green, while the pooled cancer samples are shown in grey. For Fastbreak (left) the blood samples show a high c-
index [8] for the blood cluster (0.97) and no significant correlation (—0.01) between SVs detected in genes and their corresponding coverage; for

BreakDancer [6], the blood samples show a lower c-index for the blood cluster (0.68) and a weak correlation (0.28) between SVs detected in
genes and their corresponding coverage, an undesired confounding property. Both applications were run only on samples and regions that
passed our QA process. Without this restriction, variation along the primary coordinate of MDS is dominated by batch effects unrelated to tissue type.
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By incorporating these features, Fastbreak has been
used for detecting SVs in hundreds of TCGA samples
and found to execute quickly and produce conservative
results (Figures 1 and 2).

Fastbreak's rule based approach both allows the running
time to scale linearly with input size and is linearizable in
the sense that the analysis of a single file can be distribu-
ted across a number of commodity servers enabling rapid
analysis of large datasets. Analysis of a single sample can
take hours on a single machine. The analysis of a large
data set can be distributed by sample, producing linear
speedups. In our own testing we were able to efficiently
utilize approximately 80 cores in this manner, allowing us
to process hundreds of files in days. Beyond this point, we
found that the analysis was bottlenecked by the speed of
our file server. If more machines are available, the lineariz-
able nature of the analysis allows it to be further distribu-
ted using Google’s MapReduce paradigm (as implemented
by Apache Hadoop) providing further log-linear speedups
and eliminating the bottleneck of a single file server. Run-
ning times for various files and a comparison to Break-
Dancer are provided in Table 1.

The linear scaling and linearizability of the Fastbreak
algorithm are both due to the use of efficient spatial data
structures to accumulate counts of the read pairs that
satisfy a set of rules in a single pass over the data. A sec-
ond set of rules is then applied to all of the regions in the
spatial data structure to calculate the confidence that
structural variation has affected that region. The data
structures are implemented for accumulating both one
dimensional (the position of a single read) and two di-
mensional (such as the positions of two paired reads)
genetic data in coarse (1000 bp) bins. The first set of
rules describes what may be considered an abnormal
read pair and the data structure accumulates both the
density of normal and abnormal read pairs in one and
two dimensions. The second set of rules identifies, classi-
fies and scores possible structural variations based on the
size of abnormal read pair clusters and the local coverage
as represented in these densities. The rules are described
in detail in Rules used in sample analysis.

Prior to analysis, a QA procedure is applied, which
also produces a nonparametric estimate of the distribu-
tion of read pair distances (Figure 3) that can be used
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Figure 2 Kernel density estimates of cancer type samples (glioblastoma versus ovarian cancer) along the first coordinate of a
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multidimensional scaling solution derived from the mutual information distance between samples as analyzed by Fastbreak (left) and
BreakDancer (right). The GBM cancer patient distribution is shown in red (with a c-index of 0.8 for Fastbreak and 0.94 for BreakDancer [8]), and
the ovarian distribution (with a c-index of 0.7 for Fastbreak and 0.95 BreakDancer) in blue. The results show that Fastbreak can distinguish cancer
types without exhibiting strong batch effects. Some of BreakDancer's separation of samples can be attributed to batch effects, as shown in
Figure 1, due to differential coverage between the two cancers.
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Table 1 Running times in minutes for fastbreak,
fastbreak on hadoop on a 9 server cluster, and
BreakDancer

Bam file Fastbreak Fastbreak on BreakDancer
(both passes) hadoop
(pass1 + pass2)
9 gb Tumor 80 4+25 785
20 gb Tumor 91 8+40 812
40 gb Blood 163 9+110 449

Hadoop running times are dominated by the time it takes the longest
reducer to finish, meaning most of the cluster is unused for most of the
time allowing greater throughput when processing many files. BreakDancer
running times appear to scale with the number of abnormal reads, not the
file size; it performs faster on the larger “blood” files than it does on the
smaller “tumor” files.

to fine-tune the rule system. Common problems identi-
fied by this process involve issues of erroneous read
groups within samples and coverage depth discrepan-
cies (see Robustness of analysis and quality assurance
of data) due to changes in protocol and platforms (e.g.,
during the early stages of TCGA). The rule-based sys-
tem can then be optimized by executing a first pass
analysis to identify which parameters give reasonable
differences between paired normal/cancer samples or
across other sets of related samples (see Robustness of
analysis and quality assurance of data). To remove
biases due to coverage differences across a large sample
set, a biclustering algorithm [9] is used to select sub-
groups of genes/patients for direct comparison. An
analysis of the genes disrupted across hundreds of
ovarian cancer and glioblastoma samples (Figure 4)
shows that the Fastbreak results can be used to distin-
guish between tumor and blood samples and, to a
lesser extent, disease types and to identify strong simi-
larities in the types of gene function and pathways that
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Figure 3 Example output from Fastbreak showing a density
plot of the distances between paired-end read mapped
positions. The red line represents cancer samples while blue
represents the blood samples from the same patients. Across all the
samples, distances between mate pairs of 1000 and 7000 base pairs
were found to be more highly prevalent in tumor samples than in
corresponding blood samples.
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are disrupted by structural variation (Robustness of
analysis and quality assurance of data).

Because it is difficult to represent such a large data set
statically, we developed a dynamic web application that
visualizes the results of Fastbreak at different scales,
using a set of custom visualization components. This
allows researchers to explore the effects of structural
variation on a genetic level across the entire data set.
The local genetic topology of a disrupted gene is a hier-
archical structure of contiguous regions that may be
visualized as a tree branching to different regions and
chromosomes (Figure 5). The similarity (as measured by
mutual information) of SVs between genes within a dis-
ease defines a network that can be visualized using an
interactive circular plot (Figure 6). Comparisons between
the most frequently disrupted genes in different diseases
can be explored dynamically using an interactive parallel
coordinates plot (Figure 5).

Rules used in sample analysis

The Fastbreak system uses sets of rules, designed to
detect genetic structural variations in high throughput
sequence data. For analysis of glioblastoma (GBM) and
ovarian cancer, these rules have been further refined to
detect features that occur prevalently in disease (can-
cer) samples. To detect these structural variations, rules
have been developed to identify three different sorts of
abnormal read pairs: those with an abnormal distance
between mapped positions; those with inconsistent
orientation; and those mapped to different chromo-
somes. The algorithm compiles a list of such abnormal
("odd") reads in a linear time pass over the data. These
reads are stored in a spatial data structure allowing us
to identify groups of similar odd read pairs that meet
our criteria in a second linear time pass over the fil-
tered data. This data structure uses a system of bins
that limits the resolution of the data, but provides sig-
nificant speed advantages.

In mate pair sequence data, the resolution at which
breakpoints can be confidently detected is dictated by
the longest distance between mate-paired reads that can
be considered normal. In the non-disease (blood) samples
that were analyzed, only 0.1% of the reads had mapped
distances of more than 1000 base pairs. Fastbreak uses
this length to define the size of the bins in its internal
data structure so that most normal read pairs will fall
within a single bin. This eliminates the combinatorial dif-
ficulty of identifying clusters of abnormal read pairs and
is one of the key optimizations that allow the algorithm’s
running time to scale linearly with data size.

The rule set used in the analysis of the cancer samples
was developed to identify clusters of abnormal read pairs
that appear as part of a signature present in the majority
of tumor samples within a set of matched (from the



Bressler et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:15 Page 4 of 8
http://bsb.eurasipjournals.com/content/2012/1/15

Orientation 01 supporting reads >= 0 Orientation 01 supporting reads >= 2

1000 10000
1 1
|
[ /
1000 10000
1 1

Count
100
1
|
\
Count
100
A
|
\

10
1
Ll
L

T L T L L4 A | T L4 L4 Ld
) 4 s 6 ? L} - t] . s [} ? L) -
log(dstance) ogi dstance )
Orientation 01 supporting reads >= 4 Orientation 01 supporting reads >= 8

\ " .
- s \ 9
\ R o
- \ i \ \
 § LS T L i L | L Li L Li
] 4 ] o T L] L a 4 s L] r L] L
og(aatance) og(detance |

Figure 4 Distance distributions of clusters of read pairs of varying sizes. Fastbreak also generates statistics that can be used to determine
thresholds for the minimum number of supported reads required to identify features. The plots above show how larger clusters of abnormal read
pairs are significantly more prevalent in tumor samples. This information is used to define the rule that a minimum of two supporting reads is
required to identify abnormal behavior.

G%‘S RIBC
TSPYL2 HSD17810
KDMSC HUWE1
IQSEC2 MIF98
SMC1A MIRLET7F2

Figure 5 Screen shot of interactive visualization of the local genetic topology of a gene in a single sample highlights links between
regions and chromosomes.
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Figure 6 GBM plot highlights genes with informative occurrences of structural variation across the entire cancer as measured by
mutual information. The plot is rendered using Visquick [10] which allows interactive exploration of the data.
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same patient) tumor and blood samples. Fastbreak was
used to identify the common signature of abnormal read
pairs found in tumor samples. The analysis to determine
the best rule set is run separately for each disease, and
across all the tumors there was found to be an enrich-
ment of mate-pair distances between 1000-7000 bp (see
Figure 3). Pair distances greater than 7000 bp are not
significantly enriched in tumor samples, indicating that
they are caused primarily by random noise or by struc-
tural variations present in the normal tissue relative to
the reference genome used for mapping. This upper limit
of this window is on the same order as the fall off of struc-
tural variations longer than 2000 bp observed by Clark et
al. Through the deep sequencing of a GBM cell line [11].
For the comparative cancer analysis, the rule system
was designed to detect structural variations supported
by orientation chromosome or pair distance in this
1000-7000 bp window. Because some of these reads will
be the product of random noise, an additional analysis is

done to determine how many reads and what percent of
the total coverage of a region are needed to conserva-
tively identify a structural variation. These rules can be
shown to maximize the difference between the distance
distributions of tumor and blood samples (Figure 4).

To account for differences in mapping quality of reads,
each inferred feature is assigned a score which aggre-
gates the mapping quality assigned to all supporting
reads using a probabilistic interpretation, so that the
score assigned to the feature is the probability that not
all of the reads were mismapped. This provides a score
for each identified feature that increases with both the
number of supporting reads and their mapping quality.
For the analysis presented, we specified that, for us to
consider a cluster of abnormal reads a structural vari-
ation, the number of reads that show unusual character-
istics must be greater than two, and must account for
more than 5% of the local coverage. We found that these
rules are well suited to the exome sequenced samples
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that we analyzed, but more or less conservative rules can
be used depending on the quality and coverage of the
data available.

Robustness of analysis and quality assurance of
data

Fastbreak helps to formulate rules for the identification
of biologically relevant features that are robust against
false positives due to differences in coverage and other
batch effects. In addition to sequencing errors, auto-
mated analyses need to remove coverage bias and sample
anomalies. To minimize the effects of disparate coverage
levels between samples and genes, a biclustering method
has been integrated to identify a subgroup of genes and
samples with relatively consistent coverage. Erroneous
individual samples are removed by use of an internal QA
process that analyses different read groups within a sam-
ple to find anomalies. Matched pairs that pass the QA
tests are then processed for secondary analysis.

The example analysis here involves the identification
of structural variants across different cancer types. The
analysis used a data set of 172 GBM patients and 132
ovarian cancer patients. Of these, fewer than 50% (96
GBM samples and 38 ovarian samples) passed the QA
test process (see below). The parameters of the tests can
be changed to include more patients, either through
analysis of fewer chromosome regions, or by lowering
the quality/coverage thresholds.

The QA process is designed to identify biases across
and within samples, and identify chromosome regions
across patients that can be compared. The system identi-
fies regions that have sufficient coverage across patients,
so that biases due to coverage depth are minimized.
Batch effects can be studied by looking for correlations
between coverage and identified features (a generally un-
desired property), and by comparing across samples (see
Figures 1 and 2). As Fastbreak can be optimized to iden-
tify features using rules specific to the system under
study, and can compensate for differences in coverage, it
shows some robustness to changes in conditions and
corresponding batch effects.

The functional significance of the analysis is suggested by
the enrichment of genes related to functions such as extra-
cellular matrix and focal adhesion in the list of most dis-
rupted genes (see Tables 2 and 3). Complete details of the
samples used and a complete list of disrupted genes are
given on the accompanying web site. The functional signifi-
cance of the disrupted genes identified is shown in Table 3.
The gene disruptions can be mined using the interactive
web application outlined in Interaction visual representa-
tion (http://fastbreak.systemsbiology.net). All code asso-
ciated with the web application, and analysis systems, is
made freely available under an open source public license.
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Table 2 Most disrupted genes across the ovarian cancer
and glioblastoma cancer data sets

Gene  Number of disrupted Gene Number of disrupted
name GBM samples name ovarian cancer samples
DNAH9 43 KALRN 17

SYNE1 42 MTOR 17

SYNE2 40 TG 16

TG 40 PAPPA2 15

KALRN 38 SYNE1 15

TRRAP 38 TRIO 15

MLL3 37 CACNA2D3 14

PKHD1 27 TECTA 14

RELN 37 ANK1 13

DNAH8 36 aT 13

Interactive visual representation

A web application providing visualizations of Fastbreak
analysis results was developed to enable an end-user to
explore the data in an intuitive manner. The application
allows a user to view data at three different levels, as
well as search specific regions by chromosome coordi-
nates or gene names. To explore similarities or differ-
ences between cancers, genes that have high structural
variation are visualized in a parallel coordinates plot on
the cancer comparator tab (see Figure 7). Mouse-over
events and an alternate table view allow the user to view
specific information regarding points on the plot and
number of disruptions found for a particular gene.

Gene behaviors within a cancer type can be explored by
selecting the OV (ovarian) or GBM (glioblastoma) tab on
the left side of the application (see Figure 6). The cancer
specific visualization level shows mutual information dis-
tances between genes across all patients as a circular plot.
Again, mouse-over events and alternate table views can be
used to view the data in more detail.

The third level of visualization allows a user to view
structural variations at a specific location for a selected

Table 3 Functional enrichment of most structurally
disrupted genes in pooled GBM and ovarian cancer
samples

Functional group Enrichment
Extracellular matrix 7e-6
Focal Adhesion 2e-5
Phospoprotein 3e-5
Guanyl-nucelotide exchange factor Se-4
Cell morphogensis 7e-4
Axonogenesis Te-3

The analysis was performed using the NIH DAVID tool [12,13] (March 2011),
with the background population being those identified through the
biclustering step of the Fastbreak analysis. The p-values are multi-test
corrected using the default NIH David method (Benjamini-Hochberg
correction).


http://fastbreak.systemsbiology.net

Bressler et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:15

http://bsb.eurasipjournals.com/content/2012/1/15

Page 7 of 8

-

Sy

N

£ Home Page

& Cancer Comparator
(] Gene Disruption
&2 Fastbreak

COAD
360

Current Selections "7
Chr:
22

Range:
29,576,000-30,326,000

Gene:

COL22A1: COAD 30,

« Gene Select L4

Gene Symbol:

0.00

.

The parallel coordinates plot below shows the three different cancer types with ther associated structural variation counts for @ach gene. A range of tlems can be selected by
clicking and dragging the mouse on any given column. In this way, genes that display a trend across cancer types can be selected and further explored.

Add Fitered Set | Add Selection

Figure 7 Cancer Comparator Interactive Parallel Coordinates Plot allows the user to explore the relative rank of genes with structural
variations across colon adenocarcinoma (COAD), glioblastoma multiforme (GBM) and ovarian cancer (OV).

GBM ov

43.0 17.0

- T"K /77 0

-1

=1 -

- L
N

L1

= =

=

0.00 0.00

J

patient sample. Comparisons between tissues (tumor
and blood) and patients can be done at this level of the
application. Selection of patients and chromosome loca-
tion can be done in the “data and range selection” win-
dow, while selection of parameters specific to the
visualization can be altered in the “advanced parameters”
window. A depth-first graph traversal of the structural
variant data is used as the underlying data of the

visualization. Results are drawn as a cyclic tree such that
each contiguous region is represented by a pair of or-
thogonal branches. Gene location is shown along the
base and branches of the trees while coverage informa-
tion is displayed below the tree. The thickness of the
branches indicates the number of supporting reads for
the particular structural variation event. Mouse-over and
click events are also implemented to view more
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chromosome and position and only well covered genes are indicated.
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Figure 8 The genes that are most commonly disrupted in glioblastoma (A) and ovarian cancer (B). Genes are arranged in order by
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information regarding a specific SV event. The organic
structure of this visualization allows the viewer to
quickly distinguish between different topologies based
on qualitative differences in tree appearances (Figure 5).

The web application described above may be viewed
and explored at http://fastbreak.systemsbiology.net. A
download of the underlying data and web application
are also available on the site.

Conclusions

The approach implemented has several advantages over
existing approaches. Fastbreak's rule-based algorithm
can be used to reliably and conservatively identify struc-
tural variants of biological significance in the TCGA data
set. In terms of resistance to bias correlated with the di-
verse levels of coverage seen in the exome data, our
results improve upon those produced by BreakDancer
[5], which was not designed with exome data in mind
(see Figures 1 and 2). We have further shown that this
approach can be easily parallelized across commodity
servers, allowing the rapid analysis of petabyte-scale data
sets and provided a new tool for dynamically visualizing
and exploring the genetic topology of cancer samples
inferred by Fastbreak. The combination of these
approaches allows one to produce a novel population-
scale view of genetic structural variation within and
across cancers (Figure 8).

However, Fastbreak provides only a coarse view of
structural variation. It can be used to identify the
regions that have been affected by structural variation,
but does not attempt to describe precisely what vari-
ation has occurred. It is our hope that future tools might
use Fastbreak-like data structures and approaches to
parallelization to accelerate more precise algorithms.
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