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Abstract

Bacterial strains that were genetically blocked in important metabolic pathways and grown under selective conditions
underwent a process of adaptive evolution: certain pathways may have been deregulated and therefore allowed for
the circumvention of the given block. A block of endogenous pyruvate synthesis from glycerol was realized by a
knockout of pyruvate kinase and phosphoenolpyruvate carboxylase in E. coli. The resulting mutant strain was able to
grow on a medium containing glycerol and lactate, which served as an exogenous pyruvate source. Heterologous
expression of a pyruvate carboxylase gene from Corynebacterium glutamicum was used for anaplerosis of the TCA
cycle. Selective conditions were controlled in a continuous culture with limited lactate feed and an excess of glycerol
feed. After 200–300 generations pyruvate-prototrophic mutants were isolated. The genomic analysis of an evolved
strain revealed that the genotypic basis for the regained pyruvate-prototrophy was not obvious. A constraint-based
model of the metabolism was employed to compute all possible detours around the given metabolic block by
solving a hierarchy of linear programming problems. The regulatory network was expected to be responsible for the
adaptation process. Hence, a Boolean model of the transcription factor network was connected to the metabolic
model. Our model analysis only showed a marginal impact of transcriptional control on the biomass yield on substrate
which is a key variable in the selection process. In our experiment, microarray analysis confirmed that transcriptional
control probably played aminor role in the deregulation of the alternative pathways for the circumvention of the block.

Introduction
Since the long term evolution experiment of Lenski et
al. [1], laboratory evolution has attracted much atten-
tion [2]. They demonstrated the adaptive behavior of
mircoorganisms through shaking flask experiments with
regular transfer in fresh culture media [1]. Already, Hoefle
et al. [3] reported the presence of selective pressure in
chemostat experiments. In the fermentation process, the
adaptive evolution of the organisms occurs through ran-
dom genetic mutation and controlled selection [4]. This
process exhibits considerable potential for the design of
industrial production strains [5]. Small product yields,
slow growth, evolutive instability of mutated strains
or toxicity of byproducts are limiting factors that are
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expected to be tackled with adaptive evolution [6]. Addi-
tionally, understanding of how environmental conditions
shape the metabolism can be enhanced through adaptive
evolution. A fine-tuning of enzyme expression levels bal-
ancing the cost and burden of protein production was
demonstrated by Dekel et al. [7]. The genetic basis for
such short-term evolutions has been intensely studied by
using genome resequencing technology [8]. However, the
genetic basis of adaptations is not always obvious. For
example, a rewiring of the regulatory network is reported
to be a source of adaptation [9] in the tolerance of E. coli
to ethanol. Models for evolving regulatory networks were
developed by Crombach et al. [10] and Xie et al. [11].
Constraint-based models of the metabolism are already
in use for predicting maximal yields of organisms and
optimal outcomes of adaptive evolution [12].
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Here, we present the concept of an adaptive evolution
experiment in a bioreactor. In such a process, the evolu-
tive pressure on the microorganisms for either fast growth
or optimal biomass yield on a limiting substrate can be
used to attain or improve the production of a desired
compound. Motivated to know possible endpoints of the
evolution experiment, we developed an algorithm for
computing the endpoints of such an experiment. These
endpoints are alternative flux distributions for the circum-
vention of a metabolic block. We further examined the
role of a regulatory network in the usage of the alter-
native flux distribution and we validated the model by
microarray analysis.

Adaptive Evolution Experiment
The experiment utilized a mutant of the intestinal bac-
terium Escherichia coli which lacks both the pyruvate
kinases PykA/PykF and the phosphoenolpyruvate car-
boxylase (Ppc). The pyruvate kinases are expected to
be the main source of pyruvate on a glycerol min-
imal medium [13]. The Ppc reaction replenishes the
tricarboxylic acid cycle (TCA) with oxaloacetate derived
from phosphoenolpyruvate. It can serve as an alterna-
tive endogenous pyruvate source because oxaloacetate
can be converted back to pyruvate. The Ppc reaction is
reported to be an essential reaction on glycerol minimal
medium [14]. As replacement for the anaplerotic reaction
of Ppc the pyruvate carboxylase gene (pyc) of Corynebac-
terium glutamicum was inserted into the chromosomal
malEG locus under control of the tac-promotor. The Pyc
enzyme catalyzes the carboxylation of pyruvate to form
oxaloacetate [15].
Pyruvate is a precursor metabolite for several amino

acids and also charges the TCA cycle. This is essen-
tial for the growth of the organism. Due to the knock
outs, this strain F41malE::pyc is pyruvate-auxotrophic
(see Figure 1). In contrast to our observation, Nakahigashi
et al. [16] reported growth on glycerol of a �ppc �pykAF
multiple mutant in their knockout study.
In the bioreactor, F41malE::pyc was fed with two car-

bon sources: Glycerol as main carbon source and lactate,
which can be converted to pyruvate by one enzymatic step
(Figure 1). By limiting the supply of lactate, an evolutive
pressure was applied to the population in the bioreac-
tor. Through random mutation events (e.g., in regulatory
sequences of in genes encoding regulators, or in enzymes)
some mutants may modify the biomass yield. Mutants
that generate more biomass from the limiting substrate
tend to prevail against less efficient mutants. In the exper-
iment, adaptive evolution proceeded until the established
mutant became independent from the external pyruvate
source and was again pyruvate prototrophic on glycerol.
The bioreactor was being operated continuously. Both
the dilution rate D [h−1] and the input concentration

of lactate were controlled to facilitate the prevalence of
mutants with an improved yield [17].
The evolved pyruvate-prototrophic mutants had to use

alternative endogenous pathways to produce pyruvate.
These alternative pathways may proceed via biotechno-
logical interesting compounds, such as the amino acids
serine, or tryptophane, or as the aromatic pathway inter-
mediate: chorismate.
Hence, the production of pyruvate was not the goal, but

a means to attain interesting byproducts of the alternative
pathways (Figure 2). In the following section, we will use
a metabolic network model to explore the possibilities of
evolutive adaptation [12].

Model
The genome-scale metabolic reconstruction iAF1260 [18]
contains 2077 reactions, 1039 metabolites, and additional
thermodynamic information. Orth et al. [19] reviewed
current flux balance analysis methods to give an overview
of the possibilities of working with constraint based mod-
els. The following section analyzes the solution space of
the network iAF1260 with respect to adaptive evolution.

Constraint based model (CBM)
The metabolic compounds C of the network participate
as reactants and products in the reactions, described by
the vector of reactions J ∈ R

m in [mmol h−1gDCW−1]
(gDCW: gram dry cell weight). The stoichiometric infor-
mation for balanced compounds was described by the
matrix N0 ∈ R

n0×m and for unbalanced compounds by
Ne ∈ R

ne×m, with n0 and ne as the number of balanced and
unbalanced compounds, respectively. To denote the exter-
nal substrate availability, the vector b ∈ R

ne was utilized as
a boundary (e.g., if glycerol was available bglyc was negative
and if lactate was not available blac = 0). Furthermore, the
growth rate was fixed to the dilution rate Jμ = D due to
chemostat conditions. Since thermodynamic constraints
on reactions exist, some reactions are irreversible and the
direction of the flux is fixed. The following equality and
inequality constraints were collected in the constraint set
Ka

0 = N0 J ; b ≤ Ne J
Jμ = D ; Jj ≥ 0 for somej (thermodynamic restrictions)

(1)

which can be further analyzed by using objective func-
tions for optimization.

Optimization
Properties of the constraint set Ka of Equation (1) can be
examined by applying different objective functions. A lin-
ear objective function is given by f = cτ J. Minimizing f
results in an optimal value fopt and a particular solution
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Figure 1 Strain F41malE::pyc. The mutant F41malE::pyc has a deletion of the two pyruvate kinase (Pyk) genes pykA and pykF, of the
phosphoenolpyruvate carboxylase (Ppc) and an insertion of pyruvate carboxylase (Pyc). On the agar plate, F41malE::pyc was not able to grow on
glycerol minimal media and was compared to the wild type LJ110 wt. With additional lactate, F41malE::pyc grew. Various endogenous pathways
may lead to pyruvate prototrophy.

Jopt. Applying objective functions will often result in non-
unique optima. Consequently, the set of optimal solutions
has to be further analyzed. By extending the constraints
in Equation (1) with the equation fopt = cτ J enforcing
the optimal objective function value, a new constraint set
Kb is obtained. The set Kb can be further analyzed by
applying other objective functions.
Yield: The yield is defined as growth per substrate

uptake μ J−1
up,S. If the biomass is in a steady state in the
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Figure 2 Scheme of adaptive evolution experiment. Simplified
scheme of the strains employed and produced in the adaptive
evolution experiments. Active pathways are shown in black and
repressed pathways are shown in gray color.

chemostat, the growth rate μ is determined by the dilu-
tion rate D. For optimization purposes, the yield can be
maximized by minimizing the substrate uptake Jup,S →
min.
Turnover rate: With a balanced metabolite the con-

sumption and production rate are equal, which is a mea-
sure for the turnover. We define the turnover rate as the
production rate of a compound. The objective function

JMTR
i = 0.5

∑
j

|Jj νi,j| → min (2)

results in a minimal turnover rate (MTR) of a balanced
compound Ci with νi,j as a stoichiometric coefficient. A
yield optimal minimal turnover rate (YMTR) was com-
puted by extending the constraints with the fixed minimal
substrate uptake rate Jup,S = Jmin

up,S as outlined above and
then using JMTR

i → min as an objective. Compounds
with high turnover rates are more attractive targets for
blockades in the adaptive evolution experiment, because
if their main pathway is blocked the alternative pathways
have to realize a high flux with potentially high forma-
tion of byproducts. TheMTR were compared with YMTR
in Figures 3 and 4. If the MTR is high, a blockade of
these metabolites will result in a strong dependency from
an external supply. If the YMTR is high compared to
the MTR, the organism can improve its yield by realiz-
ing a high flux via this metabolite. Both is preferable for
exerting an evolutive pressure.
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Figure 3Minimal and yield optimal minimal turnover rates. Idea
of minimal turnover rates (MTR) and yield optimal minimal turnover
rates (YMTR). If μ > 0, the MTR via the metabolite E1 has to be greater
than zero. The MTR for M1 and M2 are zero, because the paths are
alternatives. If the substrate uptake rate is minimal (yield optimal), the
YMTR via M2 is greater than zero. The YMTR via M1 is zero because
the path via M1 is less efficient than via M2.

Reconstruction of alternative synthesis routes of a
metabolite
The adaptive evolution in the experiment was based on
the circumvention of a metabolic block by mutation and
selection events (see Figure 2). This section presents an
approach to predict pathways for the circumvention of
the block. First, a method for computing combinations
of reactions which are able to produce the metabolite of
interest (MOI) Ci was developed (problem illustrated in
Figure 5). Second, this method was applied recursively to
reconstruct alternative pathways from the external sub-
strate to the MOI.
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Figure 4 Turnover rates. Turnover rates of a selection of important
metabolites with their number of reactions in the framed rectangle
for growth on glycerol. The thickness of the black bar indicates the
YMTR [mmol gDCW−1 h−1] (upper number) and the gray bar
denotes the MTR (lower number). The abbreviations of metabolites
are presented in Section “Abbreviations”.

1. Determine all reactions JCi , where Ci participates as
a product. Compute their minimal rate by solving the
problems |JCi,j| → min subject to Ka and test with a flux-
variability-analysis (FVA) [20] whether the reaction rates
can vary.
2. Construct a constraint set KCi by fixing

all varying reactions of JCi to their minimal
rate. Let l be the number of constraints in KCi .
KCi =

{
JCi,1 = Jmin

Ci,1 , . . . , JCi,l = Jmin
Ci,l

}
3. Starting with k = 1, compute the optimal yields of( l

k
)
combinations of the joint constraints Ka ∪ (

KCi\Krk
)
,

where Krk ⊆ KCi is a possibility to release k reactions. All
Krk that result in a feasible solution are joint in the setKk .
4. If there is a feasible solution for the set restricting all

previously found solutionsKa∪
(

∪
∀z≤k

Kz

)
, increase k and

repeat step 3.
In this manner, all minimal combinations of alternative

reactions to produce Ci were obtained. To reconstruct the
alternative pathways from a substrate to the MOI, this
algorithm had to be used recursively. At first it was applied
to the MOI, then to the reactants of the last reactions to
the MOI and then to the reactants of those reactions and
so on.
The computational effort is high due to the recursive

usage of the algorithm. Because the point of interest was
the buildup of a metabolite’s carbon core, it was only nec-
essary to track the reactants that carry parts of the carbon
core for the metabolite. To decide whether or not a reac-
tant contributes to the carbon core, we used the following
equivalence relation:

Definition 1. Given a set of cofactors Co, two metabo-
lites Ci and Cj are equivalent up to Co (Ci

Co∼ Cj) if

• a reaction Ci +Cok → Cj or Ci → Cj +Cok exists, or
• a metabolite Cx exists, for that is known, that

Ci
Co∼ Cx ∧ Cj

Co∼ Cx, or
• a reaction Ci + Cx → Cj + Cy with Cx

Co∼ Cy exists.

Those cofactors were chosen as H+, HO4P, NH4, H2O.
For example, ATP, ADP, and AMP are equivalent up to
these cofactors.
Furthermore, the production of many metabolites was

possible via alternative end reactions but amounted to the
same precursor metabolites. This fact also reduced the
computational effort, because the multiple evaluation of
common precursors was avoided.
The recursive application of the algorithm is an alter-

native approach for computing the elementary modes in
this special task. Computing the elementary modes for
a model like iAF1260 would be an extreme computing-
intensive task, even if methods for network compression
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Figure 5 Alternative paths to a metabolite of interest (MOI). Illustration to identify reactions which can contribute to the production of a MOI.
The metabolites E1, E2 and the MOI are essential for growth (MTR > 0). For E2 there is no alternative. Thus J8 can not vary for a fixed growth rate.
The alternatives (J3,J5), (J3,J6), (J3,J7), (J4,J5), (J4,J6), and (J4,J7) have to be identified.

are used [21]. The algorithm proposed above reduces the
computational effort by excluding some reactants as a
source for the carbon core of a metabolite.

Evaluation for F41malE::pyc
In the experiment (see Figure 2) pyruvate was chosen as
the metabolite of interest. In the model iAF1260, pyru-
vate appeared in 59 reactions as a reactant, it had a
high MTR and YMTR (Figure 4) and several alterna-
tive synthesis routes are known. Hence a metabolic block
of pyruvate formation seemed suitable to study adaptive
evolution.
The above algorithmwas employed to reconstruct alter-

native pathways from the carbon source glycerol to pyru-
vate. With k = 2, all minimal combinations of reactions to
produce pyruvate were obtained (results see Figure 6). The
recursive usage of the algorithm above resulted in a variety
of flux distributions that represented alternative pathways

from glycerol to pyruvate, which were summarized in flux
maps. Several flux distributions utilized the same pre-
cursors but differed in an alternative reaction from one
precursor to another. The flux distributions were catego-
rized using key metabolites and manual post-processing
(see Figure 7 and Additional file 1: Table S1). In this
manner, eight alternative pathway classes were found (see
Table 1 and Figure 8).
After performing multiple independent evolution

experiments with the pyruvate-auxotrophic mutant
F41malE::pyc (see Figure 1), a total of five pyruvate-
prototrophic strains with different characteristics were
isolated after 200–300 generations each. One of the
strains (K98-62) showed an increased enterobactin
secretion. This property was part of the predicted shiki-
mate pathway class (Figure 8). The strain was exposed
to different media where pyruvate prototrophy had no
growth benefits and the phenotype remained stable. This

Figure 6 Yields for alternative pyruvate formation. Possible reactions to produce pyruvate (sorted by model predicted biomass yield on
glycerol) computed by the proposed algorithm. The black bars show the predicted biomass yields on glycerol without regulation, gray bars with the
regulatory network iMC1010v2. The bars for wild type and F41malE::pyc use combinations of reactions to pyruvate. Other bars are tagged by their
final reaction to pyruvate: DHAPT - Dihydroxyacetone phosphotransferase (DhaK, DhaL, DhaM), SERD-L - L-Serine deaminase (TdcG, SdaA, SdaB,
TnaA), SERD-D - D-Serine deaminase (DsdA), TRPAS2 - Tryptophanase-L-tryptophan (TnaA), EDA - 2-Dehydro-3-deoxyphosphogluconate aldolase
(Eda), CYSDS - Cysteine desulfhydrase (TnaA, MetC), LDH-D - D-lactate dehydrogenase (Ldh), LACD2 - L-lactate dehydrogenase using ubiquinone
(LldD), LACD3 - L-lactate dehydrogenase using menaquinone (LldD), LDH-D2 - D-lactate dehydrogenase (Dld), OAADC - Oxaloacetate
decarboxylase (Eda), ME2 - Malic enzyme NADP (MaeB), ME1 - Malic enzyme NAD (MaeA), MCITL2 - Methylisocitrate lyase (PrpB), ICHORT -
Isochorismatase (EntB), CHRPL - Chorismate pyruvate-lyase (UbiC), ADCL - 4-aminobenzoate synthase (PabC), ANS - Anthranilate synthase (TrpD,
TrpE), CYSTL - Cystathionine-b-lyase (MalY, MetC), SHCHCS2 - 2-Succinyl-6-hydroxy-2-4-cyclohexadiene-1-carboxylate synthase (MenD). In all cases
either ALATA-L - Alanine transaminase (AlaABC) (shown yields) or DXPS - Deoxy-D-xylulose-5-phosphate synthase (Dxs) contributed to pyruvate
production similar to J3 and J4 in Figure 5. Other essential reactions similar to J8 in Figure 5 were: ACLS - Acetolactate synthase (IlvH or IlvB), ACHBS -
2-Aceto-2-hydroxybutanoate synthase (IlvH or IlvB) and DHDPS - Dihydrodipicolinate synthase (DapA).
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Figure 7 Alternative paths via DHAPT. Alternative paths from glycerol to pyruvate via dihydroxyacetone kinase (DHAPT). The abbreviations of
metabolites are presented in Section “Abbreviations”.

indicated that the pyruvate prototrophy was caused by
a change of the genotype. A sequencing of the whole
genome showed about 400 changes (including three
deletions) compared to the wild type W3110 [22], but
none of them has been yet assigned to be decisive (most
mutated genes were prophage genes, operative genes with
high probability of mutation were explored in detail).
The genotypic alterations do not give an obvious expla-
nation for the phenotype of the evolved strain, e.g., the
enterobactin secretion. In order to clarify the relation
between genotype and phenotype of the evolved strains,
a transcriptional network model was studied.

Impact of transcriptional regulation
The transcriptional network of an organism can be
interpreted as an information processing unit for the cell
transmitting signals from the environment to enzyme
availabilities via gene transcription [23]. Transcriptional
regulation avoids production of enzymes which are
unprofitable under certain environmental conditions.
This contributes to evolutionary fitness. However, a trade-
off exists between fitness advantage due to reduced pro-
tein cost and reduced response time after a change of
environmental conditions [24].
After a directed genetic change of the organism (e.g., a

knockout of pyruvate kinase), the regulatory network is
not necessarily optimal any more. Consequently, random
mutations leading to an altered regulatory network were
expected by Crombach et al. [10] as a driving force for
adaptive evolution.
We intended to study how transcriptional regulation

affects the availability of enzymes that are essential for the
predicted alternative pathways (Table 1). Therefore, the
Boolean transcription factor network (TFN) iMC1010v2
[25] with 104 regulatory genes and an influence on 479
genes was adapted to the metabolic network iAF1260
(see Additional file 2: Table S2). The model provided
Boolean formulas that describe how environmental con-
ditions act on the gene expression via the transcriptional

regulatory network. The TFN had no feedback loops [26].
For this reason, variables describing environmental con-
ditions could be used as an input of the TFN and a unique
Boolean steady state was achieved. As the Boolean steady
state describes on/off gene activities, these were translated
via gene-protein-reaction associations of iAF1260 in reac-
tion constraints. We assumed that a flux can not occur if
genes were off that code for a respective enzyme. The pro-
posed “off” genes extended the set of constraints for the
optimization problem in Equation (1). The transcriptional
constraints reduce the solution space of the metabolic
model. Assuming a fixed biomass composition, the pre-
dicted biomass yield of the metabolic model without such
constraints is greater than or equal to those with addi-
tional transcriptional constraints. We analyzed, as a first
step, the predictive power of the combination ofmetabolic
network (MN) and TFN.

Analysis of themetabolic and transcriptional model

We used data of the transcription factor knockout study
of Haverkorn et al. [27] in order to analyze the predic-
tive effectiveness of the metabolic model restricted by the
transcriptional model. This study contains measurements
of specific growth rates, specific acetate secretion rates
and substrate uptake rates for glucose and galactose for
81 transcription factor and 10 σ and anti-σ factor knock-
outs. Only 41 of the evaluated factors are included in the
iMC1010v2 model. The environmental conditions of the
experiments were expressed in a constraint set such asKa
of Equation (1) and extended by a constraint for the mea-
sured acetate secretion rate and the measured growth rate
to the constraint set of the MN Km. The environmental
conditions of the experiment were used as an input of the
TFN iMC1010v2 and resulted in the constraint set Ktf.
The knockouts of transcription- or σ factors changed the
TFN and resulted in a changed constraint setKtf,−k , where
k denoted the factor which was deleted. The objective
function ofminimal substrate uptake was evaluated on the
constraint sets Km, Km ∪ Ktf, and Km ∪ Ktf,−k yielding
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Table 1 Alternative pathway classes from glycerol to pyruvate

Class Characteristics Max. TFN Microarray

yield prediction LJ110 / F41malE::pyc /

K98-62 K98-62

dihydroxyacetone- dihydroxyaceton (toxic), dhaKLM operon is 0.0404 active active active

path controlled by DhaR (includes

no DhaR)

Entner-Doudoroff- eda and edd controlled by GntR 0.0365 repressed active active

path

serine biosynthesis transamination step from 3-phosphoglycerate 0.0384 active active active

to serine, various degenerating paths to (via L-serine)

pyruvate via L-serine, D-serine, L-cysteine

and L-tryptophane

shikimate path generates chorismate, pyruvate occurs as 0.0214 active active active

a byproduct for tryptophan-, enterobactin-,

tetrahydrofolate-, ubi/menaquinone-

biosynthesis; secretion of enterobactin possible

methylglyoxal path methylglyoxal (toxic) is formed from dhap 0.0365 active active active

and detoxified in 3 different ways to lactate

acCoA synthesis utilize deoxyribonucleotides as carbon shuttle 0.0344 repressed active active

AMP, UMP and GMP are synthesized and

degraded

murein path via synthesis and degradation of murein 0.0297 repressed (active) active

CO2 fixation 2 pyruvate are reinvested to form 0.0269 active active active

2 oxaloacetate; carbon transfer between

glycolysis/pentose phosphate pathway and

TCA occurs only via CO2

aThe yields [gDCWmmol−1] on glycerol were calculated for the experimentally determined maximal growth rate of the evolved strain K98-62 (μ = 0.25 h−1). To
compute the maximal yield for a single alternative pathway (AP) all other APs were restricted to their minimal value. For the prediction of the TFN, the environmental
conditions of the chemostat (MMwith glycerol) were used as an input. The APs have several important reactions for generating a yield. If the average expression level
of genes for enzymes of those important reactions drops below a threshold of 7.0 units, we assumed that the enzymatic capacity to perform the reaction is not present.

three predictions of substrate uptake, which were then
compared with the measured substrate uptake. The out-
come of the comparison is shown in Figure 9. The analysis
revealed that there was no improvement of the predic-
tion of the metabolic model through the extension with
the transcriptional model. However, this result should be
interpreted with care. First, in case the observed uptake
rate was lower than the predicted uptake rate of the MN,
the model extended by the TFN had to result in an equal
or even worse prediction, because the TFN additionally
restricted the solution space of the MN. Second, if a tran-
scription factor in reality has no impact on the substrate
yield, the prediction of the MN should be equal to the
TFN extended MN, which seemed to be the case in most
predictions. Third, if the TFN is partially incomplete, the
prediction tends to be conservative and does not restrict

the reaction fluxes. Under conditions of aerobic growth on
glucose/galactose (conditions of the study of Haverkorn
et al. [27]) the TFN had a low impact on the substrate
uptake. Therefore, no real assessment of the quality of
the TFN can be made. With this limitation in mind we
present here the analysis of an evolutionary trajectory of
F41malE::pyc.

Analysis for F41malE::pyc and its evolved strains
The wild type strain LJ110 (W3110) [28], the strain
F41malE::pyc and the evolved strains showed differ-
ent growth features. In fact eight alternative metabolic
pathways exist to circumvent the metabolic block of
regular pyruvate formation. This raised the question why
F41malE::pyc was not able to use these eight alterna-
tive metabolic pathways on minimal media (MM) with
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Figure 8 Alternative pathway classes. Illustration of the eight alternative pathway classes to pyruvate. The abbreviations of metabolites are
presented in Section “Abbreviations”.

glycerol. After a cultivation phase of F41malE::pyc in MM
with glycerol, growth could be obtained by adding lac-
tate. This indicated that F41malE::pyc was not poisoned
by toxic metabolites. The useability of some of the eight
alternative pathways was proven by the sheer existence of
the evolved pyruvate prototrophic strains. Therefore, we
examined the hypothesis if transcriptional regulation pre-
vents the transcription of genes which are essential for
the usage of the alternative pathways. We checked how
the transcriptional network impacts the eight alternative
pathways (Table 1) and validated the enzymatic capabil-
ities of the strains by transcript analysis after growth in
different minimal media. The alternative metabolic path-
ways were employed to identify important reactions for
pathway functionality. The gene-protein-reaction asso-
ciations were used to conclude which genes needed to
be transcribed in order to ensure a reaction flux for
functionality of the pathways. To decide whether the
enzymatic capacity for catalyzing a reaction was avail-
able, a threshold for the average measured expression was
used, neglecting regulation on a post-transcriptional level.

For the evaluation we chose a threshold of 7.0. The enzy-
matic capacity necessary for functionality of the eight
alternative pathways as determined by mRNA measure-
ments was summarized in Table 1 (detailed information
see Additional file 1: Table S1) together with the pre-
dicted restrictions by the TFN. The wild type and K98-62
were compared on MM with glycerol; and F41malE::pyc
and K98-62 were compared on MM with glycerol and
lactate. The analysis of the differential expression values
revealed no clear indication for an up/down regulation of
a metabolic pathway. This statement is based on the fol-
lowing two findings which can be drawn from Additional
file 1: Table S1. First, all the genes considered, were being
transcribed under the given conditions. Thus, their gene
product may contribute to pyruvate delivering pathways.
Second, the absence of gross changes in transcripts did not
provide hints towards regulatory changes which would
explain a direct assignment to a pathway. This makes it
more likely that the activity of some enzymes may be
altered due to metabolic feedbacks. We looked for other
systematically up/down regulated genes and found that
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Figure 9 Predictive efficiency of metabolic network (MN) and
transcriptional network (TN). Predictive efficiency of metabolic
network (MN) and transcription factor network (TFN). Shown is the
measured glucose (a)/ galactose(b) consumption in
[mmol gDCW−1 h−1] of the transcription factor knockout study of
[27] versus the predicted consumption. The measured growth rate
and acetate secretion of the study are used to predict the
glucose/galactose uptake. The green triangles show predictions of
the MN alone, the blue dots show predictions of the TFN combined
with MN and the red squares include the knockouts of the study in
the TFN combined with MN. The big green and blue dots show the
values of the wild type. Statistical analysis of the model: observed
uptake rate ≈ predicted uptake rate, results in an estimated error
variance of 0.2811 for the MN, 0.2816 for MN with TFN and 0.2812 for
MN with TFN and knockout.

genes associated with iron-sulfur cluster assembly were
upregulated in the evolved strain.
The results indicated that estimating from the microar-

ray data, the enzymatic capability of using the alternative
pathways was available in all three compared strains.
The TFN did not predict a transcriptional downreg-
ulation of the pathways in most cases, which was in
accordance with the microarray data, except for the

Entner-Doudoroff-path and alternative acetyl-CoA syn-
thesis path. This means that the hypothesis of restricting
the alternative pathways by transcriptional regulation did
not hold.

Conclusion
We have illustrated the idea of an adaptive evolution
experiment in a chemostat bioreactor, where mutation
and selection led to circumvention of a metabolic block.
Constraint-based methods were utilized to identify tar-
gets for blocks and to predict alternative pathways for
this circumvention. We performed the experiment with
a pyruvate-auxotrophic strain F41malE::pyc on glyc-
erol with an additional pyruvate source. The intro-
duced algorithm for the computation of alternative path-
ways was employed to predict pathways from glyc-
erol to pyruvate as possible endpoints of evolution for
the strain F41malE::pyc. The evolution experiment with
F41malE::pyc resulted in five evolved strains. This proved
that the usage of alternative pathways was possible after
adaptive evolution. However, F41malE::pyc was unable to
grow without a pyruvate source. We assumed that tran-
scriptional restriction of the predicted pathways hindered
the growth. Therefore, a Boolean transcription factor net-
work (TFN) was employed to further restrict the solu-
tions of the metabolic network (MN). The prediction of
the TFN together with microarray analysis revealed that
in this case it is improbable that transcriptional regula-
tion was exclusively responsible for the activation of the
proposed alternative pathways during adaptation. It was
shown that mRNA of genes which are important for the
functionality of the predicted pathways were present in all
compared strains.
However, a clear elucidation of the course of genetic

events during adaptation was not yet possible. Metabolic
feedbacks and non-regulatory effects may play an impor-
tant role. We believe that the TFN will help to support
further analysis by giving the possibility to determine the
regulatory effects of metabolic and environmental sig-
nals and to distinguish between cause and effect of the
up/down regulation of a gene. This will warrant further
study in the field of transcription factor networks and
their input in order to understand the whole sequence of
events during adaptive evolution.

Materials andmethods
Strains, medium, and growth conditions
The strains used in the experiments are listed in Table 2.
The minimal medium (MM) (modified after [29]) used for
all experiments consisted of 4.7 g NaH2PO4·2 H2O, 11.5 g
K2PO4, 2.64 g (NH4)2SO4, 0.74 g MgSO4·7H2O, 14.7mg
CaCl2·2H2O, 13.5mg ZnCl2, 2.8mg FeSO4·7H2O, 10μl
1N HCl, 20mg Thiamine, 0.2mM IPTG per liter. In shak-
ing flask experiments 0.5% (w/v) glycerol was used as
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Table 2 Strains

Strain Genetic properties

W3110 (LJ110) F− λ− rpoS(Am) rph-1 Inv (rrnD-rrnE) ([30]; [22])

F41malE::pyc LJ110 �ppc�pykA�pykF�malE − G::Ptac − pyc+ [17]

K98-62 Evolved from F41malE::pyc during longterm cultivation in a chemostat on minimal

medium with glycerol as carbon source; pyruvate-prototrophic (this study)

carbon source.When amixture of glycerol andD,L-lactate
was used the concentrations were 0.4% glycerol and 0.1%
D,L-lactate in order to have constant carbon availability
in all experiments. Cells were cultivated in 250ml shak-
ing flasks filled with 25ml growth medium. Prior to use,
the cells were streaked onto LB-agar plates freshly from
−80◦C frozen stocks and incubated overnight at 37◦C.
Single colonies from LB-agarplates were then adapted
to growth on minimal medium on MM agar plates for
three days. Cultures were initiated directly fromMM agar
plates at OD600 = 0.1. After overnight incubation at
37◦C without shaking the cells were grown at 37◦C and
70 rpm.

Bioreactor

Chemostat fermentations were performed in a Bioengi-
neering fermentor KLF at 37◦C, with stirring rate of
500–1000 rpm, an input air of 1 L/min, controlled pH at 7
and pO2 was kept above 50%. The feeding contained MM
with 5 g/L glycerol and lactate concentrations in the range
from 0.125 g/L down to 0 g/L of 95% L-lactate. The last
100 fermentation hours the feeding contained no lactate.
The glycerol concentration measured in the fermentation
broth was close to zero.

Genome resequencing

For genome resequencing the cells were grown to sta-
tionary phase. Chromosomal DNA was isolated via Phe-
nol/Chloroform precipitation [31]. The resequencing was
performed by LGC Genomics (Berlin, Germany) using
454 FLX Titanium Sequencing. The sequence of K98-62
was mapped to the online available sequence of E. coli
W3110 (AP009048.1).

Transcriptome analysis

For transcriptome analysis strains K98-62 and LJ110 were
compared after growth on minimal medium containing
glycerol as carbon source and K98-62 and F41malE::pyc
were compared after growth on minimal medium con-
taining glycerol and D,L-lactate as carbon source. Cells
were harvested after reaching OD600 = 0.8. The DNA
chips were custom-synthesized by Agilent company and
processed according to the manufacture’s instruction. A
complete description of transcript data will be published
elsewhere, but can be obtained from the authors directly.

The average expression is the mean value of all normal-
ized Log2 spot intensities over all biological replicates and
colors. If the average expression value of a mRNA was
measured below 6 units, it is uncertain that the mRNA
was present in the probe. If the fold change value was not
significantly different from zero and the average expres-
sion value was above 7.0, we assumed that mRNA of a
gene was present in both compared strains. Observing sig-
nificant fold change values, we studied the strain specific
average expression to assess whether mRNA was present
or not. The mean average expression value over all spots
was 6.93 in the comparison K98-62 versus wild type and
7.37 for K98-62 versus F41malE::pyc. Data to estimate
the enzymatic capability of the predicted pathways was
included in Additional file 1: Table S1.

Constraint based model analysis
In Equation (1), we regarded also ATP requirements
for the maintenance metabolism JATPm in Ka. Although
the maintenance metabolism may vary on different sub-
strates and in the evolved strains, we decided to fix the
rate of this flux for the computations and therefore the
value for an aerobic culture on glucose JATPm = 8.39
[mmol h−1gDCW−1] from Feist et al. [18], which is a the-
oretical calculation. This value, however, does not influ-
ence the structure of the identified pathways, but it has an
impact on the yield numbers in Figures 4 and 6.
Combination of iAF1260 and iMC1010v2: The compu-

tation of a regulatory model combined with metabolic
model was outlined by Covert et al. [32]. The network
iMC1010v2 was originally designed for the metabolic
network iJR904 [33]. The model extension iAF1260 has
a much more detailed reaction of biomass formation.
Hence, some reactions became essential due to model
extension, but were downregulated by the iMC10010v2.
We identified these reactions andmade these independent
from the Boolean regulatory model. Details are shown in
Additional file 2: Table S2.

Abbreviations
accoa: Acetyl-CoA; prpp: 5-Phospho-α-D-ribose-1-diphosphate; acgam6p:
N-Acetyl-Dglucosamine6phosphate; pser: Phospho-L-serine; akg:
Oxoglutarate; pyr: Pyruvate; anth: Anthranilate; r5p: α-D-Ribose-5-phosphate;
aspsa: L-Aspartate-4-semialdehyde; ser-D/L: D/L-Serine; chor: Chorismate; skm:
Shikimate; cys-L: L-Cysteine; succ: Succinate; dha: Dihydroxyacetone; thf:
Tetrahydrofolate; dhap: Dihydroxyacetone-phosphate; thr-L: L-Threonine; e4p:
D-Erythrose-4-phosphate; trp-L: L-Tryptophan; fdp:
D-Fructose-1-6-bisphosphate; uacgam: UDP-N-Acetyl-D-glucosamine; for:
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Formate; 10fthf: 10-Formyltetrahydrofolate; fum: Fumarate; 13dpg:
3-Phospho-D-glyceroyl-phosphate; f6p: D-Fructose-6-phosphate; 2ddg6p:
2-Dehydro3deoxy-D-gluconate6phosphate; glyc: Glycerol; 2dr1p:
2-Deoxy-D-ribose-1-phosphate; glyc-R: R-Glycerate; 2mcit: 2-Methylcitrate;
glyc3p: Glycerol-3-phosphate; 2obut: 2-Oxobutanoate; g3p:
Glyceraldehyde-3-phosphate; 2pg: D-Glycerate-2-phosphate; ichor:
Isochorismate; 23ddhb: 2-3-Dihydro-2-3-dihydroxybenzoate; lac-D/L:
D/L-Lactate; 3pg: 3-Phospho-D-glycerate; malACP:
Malonyl-acyl-carrier-protein; 3php: 3-Phosphohydroxypyruvate; malcoa:
Malonyl-CoA; 4abz: 4-Aminobenzoate; mlthf: 5-10-Methylenetetrahydrofolate;
4adcho: 4-Amino-4-deoxychorismate; mthgxl: Methylglyoxal; 4hbz:
4-Hydroxybenzoate; oaa: Oxaloacetate; 4pasp: 4-Phospho-L-aspartate; pep;
Phosphoenolpyruvate; 6pgc: 6-Phospho-D-gluconate; ppcoa: Propanoyl-CoA.
The abbreviations of iAF1260 [18] for reaction and metabolite names are used.

Additional files

Additional file 1: Alternative pathway classes. Additional file 1 contains
detailed information about the alternative pathway classes from Section
“Abbreviations”.

Additional file 2: Modifications of iMC1010v2, input signals and
predicted inactive genes. Additional file 2 describes how iMC1010v2 can
be adapted to the metabolic model iAF1260. It contains input signals for
three environmental conditions and the according outputs.
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