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Abstract

The weighted stochastic simulation algorithm (wSSA) recently developed by Kuwahara and Mura and the refined
wSSA proposed by Gillespie et al. based on the importance sampling technique open the door for efficient
estimation of the probability of rare events in biochemical reaction systems. In this paper, we first apply the
importance sampling technique to the next reaction method (NRM) of the stochastic simulation algorithm and
develop a weighted NRM (wNRM). We then develop a systematic method for selecting the values of importance
sampling parameters, which can be applied to both the wSSA and the wNRM. Numerical results demonstrate that
our parameter selection method can substantially improve the performance of the wSSA and the wNRM in terms
of simulation efficiency and accuracy.

1 Introduction
Biochemical reaction systems in living cells exhibit sig-
nificant stochastic fluctuations due to a small number of
molecules involved in processes such as the transcrip-
tion and translation of genes [1]. A number of exact
[2-7] or approximate simulation algorithms [8-19] have
been developed for simulating the stochastic dynamics
of such systems. Recent research shows that some rare
events occurring in biochemical reaction system with an
extremely small probability within a specified limited
time can have profound and sometimes devastating
effects [20,21]. Hence, it is important that computational
simulation and analysis of systems with critical rare
events can efficiently capture such rare events. However,
the existing exact simulation methods such as Gillespie’s
exact SSA [2,3] often require prohibitive computation to
estimate the probability of a rare events, while the
approximate methods may not be able to estimate such
probability accurately.
The weighted stochastic simulation algorithm (wSSA)

recently developed by Kuwahara and Mura [22] based
on the importance sampling technique enables one to
efficiently estimate the probability of a rare event.

However, the wSSA does not provide any method for
selecting optimal values for importance sampling para-
meters. More recently, Gillespie et al. [23] analyzed the
accuracy of the results yielded from the wSSA and pro-
posed a refined wSSA that employed a try-and-test
method for selecting optimal values for importance sam-
pling parameters. It was shown that the refined wSSA
could further improve the performance of wSSA. How-
ever, the try-and-test method requires some initial gues-
sing for the sets of values from which the parameters
can take. If the guessed values do not include the opti-
mal value, then one cannot get appropriate values for
the parameters. Moreover, if the number of parameters
is greater than one, a very large set of values need to be
guessed and tested, which may increase the likelihood of
missing the optimal values and also increase computa-
tional overhead.
In this paper, we first apply the importance sampling

technique to the next reaction method (NRM) of the
SSA [4] and develop a weighted NRM (wNRM) as an
alternative to the wSSA. We then develop a systematic
method for selecting optimal values for importance sam-
pling parameters that can be incorporated into both the
wSSA and the wNRM. Our method does not need initial
guess and thus can guarantee near optimal values for
the parameters. Our numerical results in Section 5
demonstrate that the variance of the estimated
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probability of the rare event provided by the wSSA and
wNRM with our parameter selection method can be
more than one order magnitude lower than that pro-
vided by the wSSA or the refined wSSA for a given
number of simulation runs. Moreover, the wSSA and
wNRM with our parameter selection method require
less simulation time than the refined wSSA for the same
number of simulation runs. When this paper was under
review, a method named doubly weighted SSA (dwSSA)
was developed to automatically choose parameter values
for the wSSA [24]. The dwSSA reduces the computa-
tional overhead required by the wSSA and the refined
wSSA to select parameter values, but it produces similar
variance for the estimated probability as the refined
wSSA.
The remaining part of this paper is organized as fol-

lows. In Section 2, we first describe the system setup
and then briefly review Gillespie’s exact SSA [2,3], the
wSSA [22] and the refined wSSA [23]. In Section 3, we
develop the wNRM. In Section 4, we develop a systema-
tic method for selecting optimal values for importance
sampling parameters and incorporate the parameter
selection procedure into both the wSSA and the NRM.
In Section 5, we give some numerical examples that
illustrate the advantages of our parameter selection
method. Finally in Section 6, we draw several
conclusions.

2 Weighted stochastic simulation algorithms
2.1 System Description
Suppose a chemical reaction system involves a well-stir-
red mixture of N ≥ 1 molecular species {S1, ..., SN} that
chemically interact through M ≥ 1 reaction channels
{R1, ..., RM}. The dynamic state of this chemical system
is described by the state vector X(t) = [X1(t), ..., XN(t)]

T,
where Xn(t), n = 1, ..., N, is the number of Sn molecules
at time t, and [·]T denotes the transpose of the vector in
the brackets. Following Gillespie [8], we define the
dynamics of reaction Rm by a state-change vector νm =
[ν1m, ..., νNm]

T, where νnm gives the changes in the Sn
molecular population produced by one Rm reaction, and
a propensity function am(x) together with the funda-
mental premise of stochastic chemical kinetics:

am(x)dt � the probability, given X(t) = x, that one reaction Rm will occur

in the next infinitesimal time interval [t, t + dt).
(1)

2.2 Gillespie’s exact SSA
Based on the fundamental premise (1), Gillespie devel-
oped an exact SSA to simulate the occurrence of every
reaction when the time evolves [3]. Specifically, Gilles-
pie’s SSA simulates the following event in each step:

E : no reaction occurs in the time interval [t, t + τ ], and a reaction Rμ

occurs in the infinitesimal time interval (t + τ , t + τ + dτ ).
(2)

It has been shown by Gillespie [2,3] that τ and μ are
two independent random variables and have the follow-
ing probability density functions (PDF) and probability
mass function (PMF), respectively,

p(τ ) = a0(x) exp(−a0(x)τ ), τ > 0, (3)

and

pμ = aμ(x)
/
a0(x), μ = 1, . . . ,M, (4)

where a0(x) =
∑M

m=1 am(x). Therefore, Gillespie’s direct
method (DM) for the SSA generates a realization of τ
and μ according to PDF (3) and PMF (4), respectively,
in each step of the simulation, and then updates the sys-
tem state as X(t + τ) = x + νμ.

2.3 Weighted SSA
In order to estimate the probability of a rare event that
occurs with an extremely low probability in a given time
period, Gillespie’s SSA may require huge computation.
Recently, the wSSA [22] and the refined wSSA [23] were
developed to estimate the probability of a rare event
with substantial reduction of computation. Following
Kuwahara and Mura [22], and Gillespie et al. [23], we
define the rare event ER as follows:

ER is an event that starting at time 0 in state x0, the system will first reach

any state in a specific set � at some time ≤ T, and the probability of

ER is very small, i.e., P(ER) � 1.
(5)

If we employ the SSA to estimate P(ER), we would
have to make a large number n of simulation runs, with
each starting at time 0 in state x0 and terminating either
when some state x Î Ω is first reached or when the sys-
tem time reaches T. If k is the number of those n runs
that terminate for the first reason, then P(ER) is esti-
mated as P̂(ER) = k

/
n. Since P(ER) ≪ 1, n should be

very large to get a reasonably accurate estimate of P(ER).
The wSSA employs the importance sampling technique
to reduce the number of runs needed to estimate P(ER).
Specifically, wSSA generates τ from its PDF (3) in the

same way as used in Gillespie’s DM method, but gener-
ates the reaction index μ from the following PMF:

qμ = bμ(x)
/
b0(x), μ = 1, . . . ,M, (6)

where bμ(x) = gμ aμ(x), μ = 1, ..., M,

b0(x) =
∑M

μ=1 bμ(x) and gμ, μ = 1, ..., M are positive con-

stants that need to be chosen carefully before simula-
tions are run. Suppose a trajectory J generated in a
simulation run contains h reactions and the ith reaction
occurs at time ti, then the wSSA changes the PDF of the
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trajectory from PJ =
∏h

i=1 aμi(xi) exp(−a0(xi)(ti − ti−1))
to QJ =

∏h
i=1 bμi(xi)/b0(xi)a0(xi) exp(−a0(xi)(ti − ti−1)),

where t0 = 0. By choosing appropriate gμ, μ = 1, ..., M,
one can increase the probability of the trajectories that
lead to the rare event. If k trajectories out of n simula-
tion runs lead to the rare event, then the importance
sampling technique tells us that an unbiased estimate of
P(ER) is given by

P̂(ER) =
1
n

k∑
j=1

Pj
J

Qj
J

=
1
n

k∑
j=1

∏h
i=1 a

j
μi(xi)

/
aj0(xi)

∏h
i=1 b

j
μi(xi)

/
bj0(xi)

=
1
n

k∑
j=1

h∏
i=1

wj
i,

(7)

where j and i are indices of the trajectories and reac-
tions in a trajectory, respectively, bjμi(xi) = γμa

j
μi(xi), and

wj
i =

pjμi

qjμi

=
ajμi(xi)

/
aj0(xi)

bjμi(xi)
/
bj0(xi)

, (8)

which can be obtained in each simulation step.
Kuwahara and Mura [22] did not provide any method

for choosing gμ, although their numerical results with
some pre-specified gμ for several reaction systems
demonstrated that the wSSA could reduce computation
substantially. Gillespie et al. [23] analyzed the variance
of P̂(ER) obtained from the wSSA and refined the wSSA
by proposing a try-and-test method for choosing gμ. In
the try-and-test method, several sets of values are pre-
specified for gμ, μ = 1, ..., M. A relatively small number
of simulation runs of the standard SSA are made for
each set of the values to obtain an estimate of the var-
iance of P̂(ER), and then the set of values that yielded
the smallest variance is chosen. Although the try-and-
test method provides a way of choosing gμ, it requires
some guessing to get several sets of pre-specified values
for all gμ and also some computational overhead to esti-
mate the variance of P̂(ER) for each set of values. More
recently, the dwSSA was developed in [24] to automati-
cally choose parameter values for the wSSA by applying
the cross-entropy method originally proposed in [25] for
optimizing the importance sampling method.

3 Weighted NRM
The wSSA is based on the DM for the SSA, which
needs to generate two random variables in each simula-
tion step. However, the NRM of Gibson and Bruck [4]

requires only one random variable in each simulation
step. In this section, we apply the importance sampling
technique to the NRM and develop the wNRM.
The key to making the wSSA more efficient than the

standard SSA is to change the probability of each reac-
tion appropriately but without changing the distribution
of the time τ between any two consecutive reactions.
Since the NRM determines the reaction occurring in a
simulation step by choosing the reaction that requires
the smallest waiting time, it seems difficult to change
the probability of each reaction without changing the
distribution of τ. However, we notice that the PDF of τ
in (3) only depends on a0(x) not individual aμ(x).
Hence, we can change the probability of each reaction
by changing the corresponding propensity function but
without changing the distribution of τ, so long as we
keep the sum of the propensity functions equal to a0(x).
To this end, we define

dm(x) =
bm(x)a0(x)

b0(x)
, m = 1, . . . ,M, (9)

where bm(x) = gmam(x) is defined in the same way as
in the wSSA. It is easy to verify that

d0(x) =
∑M

m=1 dm(x) = a0(x). If we generate τm from an
exponential distribution p(τm) = dm(x) exp(-dm(x)τm), τm
> 0, as the waiting time of reaction channel m, and
choose μ = argm min{τm, m = 1, ..., M} as the index of
the channel that fires, then it can be easily shown that
the PDF of τ = min{τm, m = 1, ..., M} follows the expo-
nential distribution in (3) and that the probability of
reaction μ is qμ = dμ(x)/d0(x) = bμ(x)/b0(x). If we repeat
this procedure in each simulation step, we would have
modified the first reaction method (FRM) [3] for the
standard SSA and got a weighted FRM (wFRM). Clearly,
the wFRM is not efficient since it generates M random
variables in each step. However, following Gibson and
Bruck [4], we can convert the wFRM into a more effi-
cient wNRM by reusing τms.
In the FRM, we used τm to denote the putative waiting

or relative time for the mth reaction channel to fire. Fol-
lowing Gibson and Bruck [4], we will use τm to denote
the putative absolute time when the mth reaction chan-
nel will fire. Suppose that the μth reaction channel fires
at time t in the current step. After updating the state
vector and propensity functions, we calculate new dm(x),
m = 1, ..., M, which we denote as dnewm (x). Then, we gen-
erate a random variable τ̃μ from an exponential distribu-
tion with parameter dnewμ (x) and set τμ = t + τ̃μ. For
other channels with an index m ≠ μ, we update τm as
follows:

τm ← dm(x)
/
dnewm (x)(τm − t) + t. (10)
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Following Gibson and Bruck [4], we can show that the
new τm -t, m = 1, ..., M, are independent exponential
random variables with parameters dnewm (x), m = 1, ..., M,
respectively. Therefore, in the next step, we can choose
μ = argm min{τm, m = 1, ..., M} as the index of the chan-
nel that fires as done in NRM, update t as t = τμ, and
then repeat the process just described. Clearly, the
wNRM only needs to generate one random variable in
each step. We can further improve the efficiency of the
wNRM by using the dependency graph G and the
indexed priority queue P defined by Gibson and Bruck
[4]. The dependency graph G tells precisely which pro-
pensity functions need to be updated after a reaction
occurs. The indexed priority queue P can be exploited
to find the minimum τm and the reaction index in each
step more efficiently than finding the reaction index
from the PMF (4) directly as done in the DM. However,
some computational overhead is needed to maintain the
data structure of P.
Essentially, our wNRM runs simulation in the same

way as the NRM except that the wNM generates τm
using a parameter dm(x) instead of am(x). To estimate
the probability of the rare event P̂(ER), we calculate a

weight wμ = pμ

qμ
= aμ(x)/a0(x)

dμ(x)/d0(x)
= aμ(x)/dμ(x) in each step

and get P̂(ER) using (7). The wNRM is summarized in
the following algorithm:
Algorithm 1 (wNRM)

1. k1 ¬ 0, k2 ¬ 0, set values for all gm; generate a
dependency graph G.
2. for i = 1 to n, do
3. t ¬ 0, x ¬ x0, w ¬ 1.
4. evaluate am(x) and bm(x) for all m; calculate all
dm(x).
5. for each m, generate a unit-interval uniform ran-
dom variable rm; τm = ln(1/rm)/dm(x).
6. store τm in an indexed priority queue P.
7. while t ≤ T, do
8. if x Î Ω, then
9. k1 ¬ k1 + w, k2 ¬ k2 + w2

10. break out the while loop
11. end if
12. find μ = argm min{τm, m = 1, ..., M} and τ =
min{τm, m = 1, ..., M} from P.
13. w ¬ w × aμ(x)/dμ(x).
14. x ¬ x + νμ, t ¬ τ.
15. Find am(x) need to be updated from G; evalu-
ate these am(x) and the corresponding bm(x); calcu-
late all dnewm (x).

16. for all m ≠ μ, τm ← dm(x)
dnewm (x) (τm − t) + t; gener-

ate a unit-interval uniform random variable rμ;

τμ ← − ln(rμ)
dnewμ (x) + t; update P.

17. dm(x) ← dnewm (x).
18. end while
19. end for
20. σ 2 = k2 − k21
21. calculate P̂(ER) = k1/n, with a 68% uncertainty of
±σ /

√
n.

Note that Gibson and Bruck [4] argued that the NRM
is more efficient than the DM of Gillespie’s SSA for the
loosely coupled chemical reaction systems. On the other
hand, Cao et al. [5] optimized the DM and argued that
the optimized DM is more efficient for most practical
reaction systems. Regardless of the debate about the effi-
ciency, here we propose the wNRM as an alternative of
the wSSA which is based on the DM. While our simula-
tion results in Section 5 demonstrate that the wNRM is
more efficient than the refined wSSA for the three reac-
tion systems tested, the wSSA may be more efficient in
simulating some other systems.
As in the wSSA, Algorithm 1 does not provide a

method for selecting the values of parameters gm, m = 1,
..., M. Although we could incorporate the try-and-test
method in refined wSSA into Algorithm 1, we will
develop a more systematic method for selecting para-
meters in the next section. This parameter selection
method will be applicable to both the wSSA and the
wNRM and can significantly improve the performance
of both algorithms as will be demonstrated in Section 5.

4 Parameter selection for wSSA and wNRM
Let us denote the set of all possible state trajectories in
the time interval [0 T] as J and the set of trajectories
that first reach any state in Ω during [0 T] as JE. Let
the probability of a trajectory J be PJ. Then, we have
P(ER) =

∑
J∈JE

PJ =
∑

J∈J PJ1(J ∈ JE), where the indica-
tor function 1(J ∈ JE) = 1 if J ∈ JE or 0 if J /∈ JE.
Importance sampling used in the wSSA and the wNRM
arises from the factor that we can write P(ER) as

P(ER) =
∑

J∈J
PJ1(J ∈ JE)

QJ
QJ, (11)

where QJ is the probability used in simulation to gen-
erate trajectory J, which is different from the true prob-
ability PJ if the original system evolves naturally. If we
make n simulation runs with altered trajectory probabil-
ities, (11) implies that we can estimate P(ER) as

P̂(ER) = 1
n

∑
J∈J

PJ1(J∈JE)
QJ

which is essentially (7). The

variance of P̂(ER) depends on QJs. Appropriate QJs yield
small variance, thereby improving the accuracy of the
estimate or equivalently reducing the number of runs
for a given variance. The “rule of thumb” [23,26-28] for
choosing good QJs is that QJ should be roughly
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proportional to PJ1(J ∈ JE). However, at least two diffi-
culties arise if we apply the rule of thumb based on (11).
First, the number of all possible trajectories is very large
and we do not know the trajectories that lead to the
rare event and their probabilities. Second, since we can
only adjust the probability of each reaction in each step,
it is not clear how this adjustment can affect the prob-
ability of a trajectory. To overcome these difficulties, we
next use an alternative expression for P(ER) based on
which we apply the importance sampling technique.
Let us denote the number of reactions occurring in

the time interval [0 t] as Kt and the maximum value of
KT as Kmax

T . Let EK be the rare event occurring at the
Kth (K ≤ Kmax

T ) reaction at any t ≤ T, and P(EK) be the
probability of EK in the original system that evolve natu-
rally with the original probability rate constants. Then,
we have

P(ER) =
Kmax
T∑
K=1

P(EK). (12)

If Q(EK) is the probability of event EK in the weighted
system that evolves with adjusted probability rate con-
stants, the rule of thumb for choosing good Q(EK) is
that we should make Q(EK) approximately proportional
to P(EK). However, it is still difficult to apply the rule of
thumb, because it is difficult to control every Q(EK)
simultaneously. Hence, we relax the rule of thumb and
will maximize the Q(EK) corresponding to the maximum
P(EK) or the one near maximum if the exact maximum
P(EK) cannot be determined precisely. The rationale of
this heuristic rule is based on the following argument. If
P(EKE) is the maximum one among all
P(EK), K = 1, . . . ,Kmax

T , the sum of P(EKE) and its clo-
sely related terms, such as P(EKE−1), P(EKE+1), P(EKE−2)
and P(EKE+2), very likely dominates the sum in the
right-hand side of (12). Maximizing Q(EKE) not only
proportionally increases Q(EKE), and its closely related
terms, such as Q(EKE−1), Q(EKE+1), Q(EKE−2) and
Q(EKE+2), but also significantly increases the probability
of the occurrence of the rare event. Note that a similar
heuristic rule relying on the event with maximum prob-
ability was proposed in [29] for estimating the probabil-
ity of rare events in highly reliable Markovian systems.
Before proceeding with our derivations, we need to

specify Ω. In the rest of the paper, we assume that Ω
contains one single state X defined as Xi = Xi(0) + h,
where h is a constant and i Î {1, 2, ..., N}. Let us denote
the number of firings of the mth reaction channel in the
trajectory leading to the rare event as Km. Then, we have

η =
M∑
m=1

νimKm. (13)

We first divide all reactions into three groups using
the following general rule: G1 group consists of reac-
tions with νimh > 0, G2 group consists of reactions with
νimh < 0, and G3 group consists of reactions with νim =
0. The rationale for the partition rule is that the reac-
tions in G1 (G2) group increase (decrease) the probabil-
ity of the rare event and that the reactions in G3 group
do not affect Xi(t) directly. We further refine the parti-
tion rule as follows. If a reaction Rm is in the G1 group
based on the general rule but am(x) = 0 whenever one
Rm reaction occurs, we move Rm into the G3 group.
Similarly, if a reaction Rm is in the G2 group based on
the general rule but am(x) = 0 whenever one Rm reac-
tion occurs, we move Rm into the G3 group. For most
cases, we only need the general partition rule. The refin-
ing rule described here is to deal with the situation
where one or several Xi(t)s always take values 1 or 0 as
in the system considered in Section 5.3. More refining
rules may be added following the rationale just
described, after we see more real-world reaction
systems.
We typically only need to consider elementary reac-

tions including bimolecular and monomolecular reac-
tions [30]. Hence, the possible values for all νim are 0,
±1, ±2. For the simplicity of derivations, we now only
consider the case where νim = 0, ±1, i.e., we assume that
the system does not have any bimolecular reactions with
two identical reactant molecules or dimerization reac-
tions. We will later generalize our method to the system
with dimerization reactions. Let us define
KG2 =

∑
m∈G2

Km, KG2 =
∑

m∈G2
Km and KG3 =

∑
m∈G3

Km,
then (13) becomes

η = KG1 − KG2 . (14)

Let us denote Kt as the expected value of Kt. Since the
number of reactions occurring in any small time interval
is approximately a Poisson random variable [8], Kt is the
sum of a large number of independent Poisson random
variables when t is relatively large. Then, by the central
limit theorem, Kt can be approximated as a Gaussian
random variable with mean Kt. Indeed, in all chemical
reaction systems [6,19,31] we tested so far, we observed
that Kt follows a unimodal distribution with a peak at
Kt and its standard deviation is small relative to Kt.
Since the mean first passage time of the rare event is
much larger than T [23], the rare event most likely
occurs at a time near T. Based on these two observa-
tions, we argue that P(EKT

) > P(EK) for all K < KT.
Therefore, we should have KE ≥ KT. When EKE occurs,
we have

KG1 + KG2 + KG3 = KE. (15)
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Since both (14) and (15) need to be satisfied in order
for the event EKE to occur and since KG1 ≥ 0, KG2 ≥ 0
and KG3 ≥ 0, we get the second requirement for KE: KE

≥ |h|. Combining the two requirements on KE, we
obtain KE ≥ max{KT , |η|}.
The probability P(EK) can be expressed as

P(EK) =
∫ T
0 P(X(t) ∈ �, Kt = K)dt =

∫ T
0 P(X(t) ∈ �|Kt = K)P(Kt = K)dt.

Since P(X(t) Î Ω|Kt = K) is determined by the constant
K, it is independent of t. Hence, we have

P(EK) = P(X(t) ∈ �|Kt = K)
∫ T
0 P(Kt = K)dt. Due to the

unimodal distribution of Kt we mentioned earlier, we

have
∫ T
0 P(Kt = K)dt ≈ 1 for those K � KT;∫ T

0 P(Kt = K)dt ≈ 0.5 for those K close to KT; and∫ T
0 P(Kt = K)dt quickly decreases to zero when K

increases beyond KT. In other words,
∫ T
0 P(Kt = K)dt is

approximately a constant for K ≤ KT and quickly
decreases to zero when K > KT. Now let us consider
event EK with K = |h| in the case |η| > KT. In this case,
P (X(t) Î Ω|Kt = K) is very small because this is an
extreme case where KG2 = 0 and KG3 = 0 if h > 0 or
KG1 = 0 and KG3 = 0 if h < 0. Therefore, we can increase
P(EK) if we increase K, but we do not want to increase

K too much because as we discussed
∫ T
0 P(Kt = K)dt

decreases quickly when K increases in the case K > KT.
Consequently, we suggest that we choose KE = |η| + σKT,
where σKT is the standard deviation of KT which can be
estimated by making hundreds of runs of the standard
SSA. In case KT > |η|, we choose KE = KT based on the

same argument that
∫ T
0 P(Kt = KE)dt decreases quickly if

we further increase KE.
Applying the relaxed rule of thumb, we need to adjust

probability rate constants in simulation to maximize

Q(EKE) = Q(X(t) ∈ �|Kt = KE)
∫ T
0 Q(Kt = KE)dt. Since we

do not change the distribution of τ, we do not change

the distribution of KT and thus
∫ T
0 Q(Kt = KE)dt. Hence,

maximizing Q(EK) is equivalent to maximizing Q(X(t) Î
Ω|Kt = KE). Now we are in a position to summarize our
strategy of applying the important sampling technique
in simulation as follows: we will choose probability para-
meters to maximize Q(X(t) Î Ω|Kt = KE), where

KE = max{KT , |η| + σKT }. (16)

We next consider systems with only G1 and G2 reac-
tion groups and then consider more general systems
with all three reaction groups.

4.1 Systems with G1 and G2 reaction groups
Since we do not have G3 group, (15) becomes

KG1 + KG2 = KE. (17)

Combining (14) and (17), we get KG1 = (KE + η)/2 and
KG2 = (KE − η)/2 if the final state after the last reaction
occurs is in Ω. The last reaction should be a reaction
from G1 group. Otherwise, the state already reached Ω
before the last reaction occurs. Suppose that in simula-
tion the total probability of the occurrence of reactions
in G1 group is a constant QG1 and then the total prob-
ability of the occurrence of reactions in G2 group is
QG2 = 1 − QG1. Then, Q(X(t) Î Ω|Kt = KE) can be
found from a binomial distribution as follows

Q(X(t) ∈ �|Kt = KE) =
(KE − 1)!

(KG1 − 1)!KG2!
Q

KG1
G1

(1 − QG1)
KG2 , (18)

where KG1 = (KE + η)/2 and KG2 = (KE − η)/2 as deter-
mined earlier. Setting the derivative of Q(X(t) Î Ω|Kt =
KE) with respect to QG1 to be zero, we get QG1 and QG2

that maximize Q(X(t) Î Ω|Kt = KE) as follows:

QG1 =
(KE + η)
2KE

QG2 =
(KE − η)

2KE
.

(19)

To ensure that reactions in G1 (G2) group occur with
probability QG1(QG2 ) in each step of simulation, we
adjust the probability of each reaction as follows

qm =

⎧⎨
⎩

QG1 am(x)
aG1 (x)

, m ∈ G1
QG2 am(x)
aG2 (x)

, m ∈ G2,
(20)

where aG1(x) =
∑

m∈G1
am(x) and

aG2(x) =
∑

m∈G2
am(x). It is easy to verify that∑

m∈G1
qm = QG1 and

∑
m∈G2

qm = QG2. As defined in (8),
the weight for estimating the probability of the rare
event is wμ = pμ/qμ if the μth reaction channel fires.

4.2 Systems with G1, G2 and G3 reaction groups
Combining (14) and (15), we get KG1 = KG2 + η and
KG3 = KE − η − 2KG2. Since KG3 ≥ 0, we have
KG2 ≤ (KE − η)

/
2. Suppose that in simulation the total

probabilities of the occurrence of reactions in G1, G2

and G3 are constants QG1, QG2 and
QG3 = 1 − QG1 − QG2, respectively. Then, Q(X(t) Î Ω|Kt

= KE) can be found from a multinomial distribution as
follows

Q(X(t) ∈ �|Kt = KE) =
(KE−η)/2∑
KG2=0

(KE − 1)!
(KG1 − 1)!KG2!(KG3)!

Q
KG1
G1

Q
KG2
G2

Q
KG3
G3

, (21)

where KG1 = KG2 + η and KG3 = KE − η − 2KG2 as
determined earlier. Since there are (KE - h)/2 + 1 terms
of the sum in (21), it is difficult to find QG1, QG2 and
QG3 that maximize Q(X(t) Î Ω|Kt = KE). So we will use
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a different approach to find QG1, QG2 and QG3 as
described in the following.
Let KG1

, KG2
and KG3

be the average number of reac-
tions of G1, G2 and G3 groups that occur in the time
interval [0 T] in the original system. Since we have
KG1 + KG2 + KG3 = KT, we define PG1 = KG1/KT,
PG2 = KG2/KT, and PG3 = KG3/KT. Then, we can approxi-
mate P(X(t) Î Ω|Kt = KE) in the original system, which
is the counter part of Q(X(t) Î Ω|Kt = KE) in the
weighted system, using the right-hand side of (21) but
with QGi, i = 1, 2, 3, replaced by PGii = 1, 2, 3, respec-
tively. This gives

P(X(t) ∈ �|Kt = KE) ≈
(KE−η)/2∑
KG2=0

(KE − 1)!
(KG1 − 1)!KG2!(KG3)!

P
KG1
G1

P
KG2
G2

P
KG3
G3

. (22)

Suppose that the (� + 1)th term of the sum in (22) is
the largest. We further relax the rule of thumb and
maximize the (� + 1)th term of the sum in (21) to find
QG2, QG2 and QG3.
It is not difficult to find the (� + 1)th term of the sum

in (22). Let us denote the (KG2 + 1)th term of the sum
in (22) as f (KG2). We can exhaustively search over all
KG2 = 0, . . . , (KE − η)

/
2, KG2 = 0, . . . , (KE − η)

/
2 to find

�. However, this may require relatively large computa-
tion because the factorials involved in f (KG2). We can
reduce computation by searching over
KG2 = 1, . . . , (KE − η)/2 − 1, KG2 = 1, . . . , (KE − η)/2 − 1,
which are given by

g(KG2 ) =
(KE − η − 2KG2)(KE − η − 2KG2 − 1)PG1PG2

(KG2 + η)(KG2 + 1)P2
G3

. (23)

Specifically, we calculate all g(KG2 ) from (23). If
g(KG2 ) > 1 but g(KG2 + 1) < 1, then f (KG2) is a local
maximum. After obtaining all local maximums, we can
find the global maximum f(�) from the local maximums.
After we find �, we set the partial derivatives of the (�

+ 1)th term of the sum in (21) with respect to QG1 and
QG2 to be zero. This gives the following optimal QG1,
QG2 and QG3

QG1 =
κ + η

KE

QG2 =
κ

KE

QG3 =
KE − η − 2κ

KE
.

(24)

Substituting QG1 and QG2 in (24) into (20), we get the
probability qm, m Î G1 or G2 that is used to generate
the mth reaction in each step of simulation. For G3

group, we get the probability of each reaction as follows

qm =
QG3am(x)
aG3(x)

, m ∈ G3, (25)

where aG3(x) =
∑

m∈G3
am(x).

While we can use qm in (25) to generate reactions in
G3 group, we next develop an optional method for fine-
tuning qm, m Î G3, which can further reduce the var-
iance of P̂(ER). We divide G3 group into three sub-
groups: G31, G32 and G33. Occurrence of reactions in
G31 group increases the probability of occurrence of
reactions in QG1 group or reduces the probability of the
occurrence of the reactions in QG2 group, which in turn
increases the probability of the rare event. Occurrence
of reactions in G32 group reduces the probability of
occurrence of reactions in QG1 group or increases he
probability of the occurrence of reactions in QG2 group,
which reduces the probability of the are event. Occur-
rence of reactions in G33 group does not change the
probability of occurrence of reactions in QG1 and QG2

groups, which does not change the probability of the
rare event.
Let KG31

, KG32
and KG33

be the average number of reac-
tions from G31, G32 and G33 that occur in the time
interval [0 T] in the original system. we define
PG32 = KG32/KT, PG32 = KG32/KT and PG33 = KG33/KE. Our
goal is to make Q31 to be greater than PG31 and Q32 to
be less than PG32 to increase the probability of the rare
event. However, this may not feasible when QG3 < PG3.
Hence, we can fine-tune QG31, QG32 and QG33 only when
QG3 ≥ PG3 and propose the following formula to deter-
mine Q31, Q32 and Q33:

QG31 = PG31 +QG3α − PG3β

QG32 = PG32 +QG3(1 − α) − PG3(1 − β)

QG33 = PG33

(26)

where a, b Î (0 1) are two pre-specified constants. It
is not difficult to verify from (26) that
QG31 +QG32 +QG33 = QG3. To ensure that
PG31 ≤ QG31 < QG3 − QG33 and 0 < QG32 ≤ PG32, we
choose a and b satisfying 0 ≤ b < 1 and

1 − PG3
QG3

(1 − β) ≤ α < min{1, 1 +
PG32
QG3

− PG3
QG3

(1 − β)}.
Finally, we obtain qm for m Î G3 as follows

qm =

⎧⎪⎪⎨
⎪⎪⎩

QG31 am(x)
aG31 (x)

, m ∈ G31
QG32am(x)
aG32 (x)

, m ∈ G32
QG33am(x)
aG33 (x)

, m ∈ G33,

(27)

where aG3i(x) =
∑

m∈G3i
am(x), i = 1, 2, 3.
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4.3 Systems with dimerization reactions
So far we assumed that the system did not have any
dimerization reactions, i.e. the system consisted of reac-
tions with |νim| = 0 or 1. We now generalize our meth-
ods developed earlier to the system with dimerization
reactions. If there are dimerization reactions in G1 and
G2 groups, we further divide G1 group into G11 and G12

subgroups and G2 group into G21 and G22 subgroups.
The G11 group contains reactions with νimsign(h) = 1,
where sign(h) = 1 when h > 0 and sign(h) = -1 when h
< 0. The G12 group contains reactions with νimsign(h) =
2. The G21 group contains reactions with νimsign(h) =
-1, while the G12 group contains reactions with νimsign
(h) = -2.
Let us define KG11 =

∑
m∈G11

Km, KG12 =
∑

m∈G12
Km,

KG21 =
∑

m∈G21
Km and KG22 =

∑
m∈G22

Km. Clearly, we
have KG1 = KG11 + KG12 and KG2 = KG21 + KG22. Then, (13)
becomes

KG11 + 2KG12 − KG21 − 2KG22 = η. (28)

Let us consider systems with G1 and G2 groups but
without G3 group. Although we still have KG1 + KG2 = KE

or equivalently KG11 + KG12 + KG21 + KG22 = KE, we cannot
obtain four unknowns KG11, KG12, KG21 and KG22 from only
two equations.
Suppose that KG11

, KG12
, KG21

and KG22
are average

number of reactions from G11, G12, G21 and G22 groups
that occur in the time interval [0 T] in the original sys-
tem. We notice from (20) that we do not change the
ratio of the probabilities of two reactions in the same
group, i.e., qm1 /qm2 = pm1 /pm2 if m1 and m2 are in the
same G1 or G2 group. Therefore, we would expect that
KG12/KG11 ≈ KG12/KG11

and KG22/KG21 ≈ KG22/KG21
. Using

these two relationships, we can write (28) as

λ1KG1 − λ2KG2 = η (29)

where λ1 =
(KG11+2KG12 )

(KG11 +KG12 )
and λ2 =

(KG21 +2KG22 )

(KG21 +KG22 )
.

From (17) and (29), we obtain
KG1 = (λ1KE + η)/(λ1 + λ2) and
KG2 = (λ2KE − η)/(λ1 + λ2). Substituting KG1 and KG2

into (18) and maximizing Q(X(t) Î Ω|Kt = KE), we
obtain

QG1 =
λ1KE + η

(λ1 + λ2)KE

QG2 =
λ2KE − η

(λ1 + λ2)KE
.

(30)

We then substitute QG1 and QG2 into (20) to get qm.
Now let us consider the systems with G1, G2 and G3

reactions. From (29), we have KG1 = (λ2KG2 + η)/λ1, and
from (15) and (29), we obtain

KG2 ≤ (λ1KE − η)/(λ1 + λ2). Since KG3 ≥ 0, we have
KG2 ≤ (λ1KE − η)/(λ1 + λ2). Following the derivations in
Section 4.2, we can get qm for any reaction. More speci-
fically, substituting KG1, KG3 and the upper limit of KG2

into (21), we obtain Q(X(t) Î Ω|Kt = KE). We can also
get P(X(t) Î Ω|Kt = KE) similar to (22) by replacing QGi

in Q(X(t) Î Ω|Kt = KE) with PGi. Then, we determine
the maximum term of the sum in P(X(t) Î Ω|Kt = KE)
and denote the value of KG2 corresponding to the maxi-
mum term as � + 1. We find QG1, QG2 and QG3 by maxi-
mizing the (� + 1)th term of the sum in Q(X(t) Î Ω|Kt

= KE). Finally, we substitute QG1 and QG2 into (20) to get
qm, m Î G1 or G2. For the reactions in G3 group, we
can either substitute QG3 into (25) to obtain qm, or if we
want to fine-tune qm, we use (26) and (27) to get qm.

4.4 wSSA and wNRM with parameter selection
The key to determining probability of each reaction qm
is to find the total probability of each group, QG1, QG2,
QG31, QG31, QG32 and QG33. This requires the average num-
ber of reactions of each group occurring during the
interval [0 T] in the original system, KT, KG11

, KG12
, KG21

,
KG31

, KG31
, KG32

, KG33
. If the system is relatively simple,

we may get these numbers analytically. If we cannot
obtain them analytically, we can estimate them by run-
ning Gillespie’s exact SSA. Since the number of runs
needed to estimates these numbers is much smaller
than the number of runs needed to estimate the prob-
ability of the rare event, the computational overhead is
negligible.
We next summarize the wSSA incorporating the para-

meter selection method in the following algorithm. We
will not include the procedure for fine-tuning the prob-
ability rate constants of reactions in the G3 group, but
will describe how to add this optional procedure to the
algorithm. We will also describe how to modify Algo-
rithm 1 to incorporate the parameter selection proce-
dure into the wNRM.
Algorithm 2 (wSSA with parameter selection)

1. run Gillespie’s exact SSA 103-104 times to get esti-
mates of KT, KG11

, KG12
, KG21

, KG22
, and σKT; determine

KE from (16).
2. if the system has only G1 and G2 reactions, calcu-
late QG1and QG2from (19) if there is no dimerization
reaction or from (30) if there are dimerization reac-
tion(s), if the system has G1, G2 and G3 reactions,
calculate QG1, QG2and QG3from (24).
3. k1 ¬ 0, k2 ¬ 0.
4. for i = 1 to n, do
5. t ¬ 0, x ¬ x0, w ¬ 1.
6. while t ≤ T, do
7. if x Î Ω, then
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8. k1 ¬ k1 + w, k2 ¬ k2 + w2

9. break out the while loop
10. end if
11. evaluate all am(x); calculate a0(x).
12. generate two unit-interval uniform random
variables r1 and r2.
13. τ ¬ ln(1/r)1)/a0(x)
14. calculate all qm from (20) and (25).
15. μ ¬ smallest integer satisfying∑μ

m=1 qm > r2q0.
16. w ¬ w × (aμ(x)/a0(x))/(qμ(x)/q0(x)).
17. x ¬ x + νμ, t ¬ t + τ.
18. end while
19. end for
20. σ 2 = k2 − k21
21. estimate P̂(ER) = k1/n, with a 68% uncertainty of
±σ /

√
n.

If QG3 ≥ PG3 and we want to fine-tune the probability
rate constants of the reactions in the G3 group, we mod-
ify Algorithm 2 as follows. In step 1, we also estimate
KG32

, KG32
and KG33

and choose the value of a and b in
(26). In step 2, we also calculate QG31, QG32 and QG33

from (26). In step 14, we calculate qm for G3 reactions
from (27) instead of (25). Comparing with the refined
wSSA [23], the wSSA with our parameter selection pro-
cedure does not need to make some guessing about the
parameters for adjusting the probability of each reaction
qm, but directly calculate qm using a systematically
developed method. This has two main advantages. First,
our method will always adjust qm appropriately to
reduce the variance of P̂(ER), whereas the refined wSSA
may not adjust qm as well as our method, especially if
the initial guessed values are far away from the optimal
values. Second, as we mentioned earlier, the computa-
tional overhead of our method is negligible, whereas the
refined wSSA requires non-negligible computational
overhead for determining parameters. Indeed, as we will
show in Section 5, the variance of P̂(ER) provided by the
wSSA with our parameter selection method can be
more than one order of magnitude lower than that pro-
vided by the refined wSSA for given number of n. More-
over, the wSSA with our parameter selection method is
faster than the refined wSSA, since it requires less com-
putational overhead to adjust qm.
We can also incorporate our parameter selection

method without the fine-tuning procedure into the
wNRM as follows. We replace the first step of Algo-
rithm 1 with the first three steps of Algorithm 2. We
then modify the fourth step of Algorithm 1 as follows:
evaluate all am(x), calculate all qm from (20) and (25),
and calculate all dm(x) as dm(x) = qma0(x). Finally, we
change the fifth step of Algorithm 1 to the following:

find am(x) need to be updated from G and evaluate
these am(x); calculate all qm from (20) and (25), and cal-
culate all dnewm (x) as dnewm (x) = qma0(x). We can also
fine-tune the probability rate constants of G3 reactions
in the wNRM in the same way as described in the pre-
vious paragraph for the wSSA. Note that since our para-
meter selection method employs a systematic method
for partitioning reactions into three groups as discussed
earlier, our method can be applied to any real chemical
reaction systems.

5 Numerical examples
In this section, we present simulation results for several
chemical reaction systems to demonstrate the accuracy
and efficiency of the wSSA and wNRM with our para-
meter selection method, which we refer to as wSSAps
and wNRMps, respectively, in the rest of the paper. All
simulations were run in Matlab on a PC with an Intel
dual Core 2.67-GHz CPU and 3G-byte memory running
Windows XP.

5.1 Single species production-degradation model
This simple system was originally used by Kuwahara and
Mura [22] and then Gillespie et al. [23] to test the wSSA
and the refined wSSA. It includes the following two che-
mical reactions:

R1 : S1
c1→ S1 + S2, R2 : S2

c2→ ∅. (31)

In reaction R1, species S1 synthesizes species S2 with a
probability rate constant c1, while in reaction R2, species
S2 is degraded with a probability rate constant c2. We
used the same initial state and probability rate constants
as used in [22,23]: X1(0) = 1, X2(0) = 40, c1 = 1 and c2 =
0.025.
It is observed that the system is at equilibrium, since

a1(x0) = c1 × X1(0) = c2 × X2(0) = a2(x0). It can be
shown [22] that X2(t) is a Poisson random variable with
mean equal to 40. References [22,23] sought to estimate
P(ER) = Pt≤100(X2 ® θ|x0), the probability of X2(t) = θ
for t ≤ 100 and several values of θ between 65 and 80.
Since θ is about four to six standard deviations above
the mean value 40, Pt≤100(X2 ® θ|x0) is very small.
Kuwahara and Mura [22] employed the wSSA to

estimate P(ER) and used b1(x) = δa1(x) and b2(x) = 1/
δa2(x) with δ = 1.2 for four different values of θ: 65,
70, 75 and 80. Gillespie et al. [23] applied the refined
wSSA to estimate P(ER) and used the same way to
determine b1(x) and b2(x) but found that δ = 1.2 is
near optimal for θ = 65 and that δ = 1.3 is near opti-
mal for θ = 80. We repeated the simulation of Gille-
spie et al. [23] for θ = 65, 70, 75 and 80 with δ = 1.2,
1.25, 1.25 and 1.3, respectively. We then applied the
wSSAps and the wNRMps to estimate P(ER) for θ =
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65, 70, 75 and 80. This system has only two types of
reaction: R1 is a G1 reaction and R2 is a G2 reaction.
Since the system is at equilibrium with a0(x0) = 2, KT
with T = 100 is estimated to be 200, and thus
KE = KT = 200. Using (19), we get
q1 = QG1 = (KE + θ − 40)/(2KE) and q2 = 1 - q1.
Table 1 gives the estimated probability P̂(ER) and the

sample variance s2 for the wNRMps, the wSSAps and
the refined wSSA, obtained from 107 simulation runs
with θ = 65, 70, 75 and 80. It is seen that P̂(ER) is
almost identical for all three methods. However, the
wNRMps and the wSSAps provide variance almost two
order of magnitude lower than the refined wSSA for θ
= 80, or less than or almost one order of magnitude
lower than the refined wSSA for θ = 75, 70 and 65.
Moreover, the wNRMps and the wSSAps need about
60 and 70% CPU time of the refined wSSA, respec-
tively. Note that the CPU time for the refined wSSA in
Table 1 does not include the time needed for searching
for the optimal value of δ for each θ. The less CPU
time used by the wNRMps is expected since it only
requires to generate one random variable in each step,
whereas the wSSAps and the refined wSSA need to
generate two random variables. It is also reasonable
that the wSSAps requires less CPU time than the
refined wSSA, because the wSSAps needs less compu-
tation to calculate the probability of each reaction in
each step. Figure 1 compares the standard deviation
(σ /

√
n) of P̂(ER) for the wSSAps and the refined wSSA

with different number of runs, n. Since the wNRMps
provides almost the same standard deviation as the
wSSAps, we do not plot it in the figure. It is seen that
the wSSAps consistently yields much smaller standard
deviation than the refined wSSA for all values of n. It
was shown in [24] that the dwSSA yielded similar var-
iance comparing to the refined wSSA. Therefore, our
parameter selection method also substantially outper-
forms the dwSSA in this example.

5.2 A reaction system with G1, G2 and G3 reactions
The previous system only contains a G1 reaction and a
G2 reaction. We used the following system with G1, G2

and G3 reactions to test the wNRMps and the wSSAps:

R1 : S1
c1→ S2, R2 : S2

c2→ ∅, R3 : S3
c3→ S1 + S3, R4 : S1

c4→∅. (32)

In this system, a monomer S1 converts to S2 with a
probability rate constant c1, while S2 is degraded with a
probability rate constant c2. Meanwhile, another species
S3 synthesizes S1 with a probability rate constant c3 and
S1 degrades with a probability rate constant c4. In our
simulations, we used the following values for the prob-
ability rate constants and the initial state:

c1 = 0.1, c2 = 0.1, c3 = 8, c4 = 0.1, (33)

and

X1(0) = 40, X2(0) = 40, X3(0) = 1. (34)

This system is at equilibrium and the mean value of
X2(t) is 40. We are interested in P (ER) = Pt≤10(X2 ® θ|x
(0)), the probability of X2(t) = θ for t ≤ 10. We chose θ
= 65 and 68 in our simulations. To apply the wSSAps
and the wNRMps to estimate P(ER), we divide the sys-
tem into three groups. The G1 group contains reaction
R1; the G2 group includes reaction R2; the G3 group
consists of reactions R3 and R4. When fine-tuning the
parameters, we further divided G3 into a G31 group
which contains reaction R3 and a G32 group which con-
tains reaction R4. Since the system is at equilibrium and
we have a0(x0) = 20, a1(x0) = 4, a2(x0) = 4, a3(x0) = 8
and a4(x0) = 4, we get KT = 200, K1 = 40, K2 = 40,
K3 = 80 and K4 = 40. Therefore, we get KE = KT = 200
and the following probabilities: PG1 = 0.2, PG2 = 0.2 and
PG3 = 0.6.
If θ = 65, we have h = 25. Using (23), we obtained � =

29. Substituting � into (24), we got QG1 = 0.27,
QG2 = 0.145 and QG3 = 0.585. We then chose a = 0.85
and b = 0.80 and calculated QG31 and QG32 from (26) as

Table 1 Estimated probability of the rare event P̂(ER) and the sample variance s2 as well as the CPU time (in s) with
107 runs of the wNRMps, the wSSAps and the refined wSSA for the single species production-degradation model (31):
(a) θ = 65 and 70 and (b) θ = 75 and 80

(a) θ = 65 θ = 70

P̂(ER) s2 Time P̂(ER) s2 Time

wNRMps 2.29 × 10-3 5.09 × 10-6 14472 1.68 × 10-4 3.40 × 10-8 16140

wSSAps 2.29 × 10-3 5.10 × 10-6 16737 1.68 × 10-4 3.40 × 10-8 18555

Refined wSSA 2.29 × 10-3 3.39 × 10-5 24340 1.68 × 10-4 4.29 × 10-7 25492

(b) θ = 75 θ = 80

P̂(ER) s2 Time P̂(ER) s2 Time

wNRMps 8.42 × 10-6 1.10 × 10-10 15640 2.99 × 10-7 1.82 × 10-13 16260

wSSAps 8.42 × 10-6 1.10 × 10-10 18582 2.99 × 10-7 1.82 × 10-13 18960

Refined wSSA 8.43 × 10-6 3.58 × 10-9 26314 2.99 × 10-7 1.29 × 10-11 26987
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P̂(ER) and QG32 = 0.1678. Similarly, if θ = 68, we got �
= 26, which resulted in QG1 = 0.27 and QG2 = 0.13.
Again, selecting a = 0.85 and b = 0.80, we got
QG31 = 0.430 and QG32 = 0.170. To test whether the
wNRMps and the wSSAps are sensitive to parameters a
and b, we also used another set of parameters a = 0.80
and b = 0.75.
In order to compare the performance of the wNRMps

and the wSSAps with that of the refined wSSA, we also
ran simulations with the refined wSSA. In the refined
wSSA, we chose the following parameters g1 = δ, g2 = 1/
δ and gm = 1, m = 3, 4 to adjust propensity functions.
Since the optimal value of a is unknown, we ran the
refined wSSA for δ = 1.2, 1.25, 1.3, 1.35, 1.40, 1.45, 1.50,
1.55, 1.60, 1.65, 1.70, 1.75 and 1.80 to determine the
best δ. Figure 2 shows the variance of P̂(ER) obtained
from the simulations with the refined wSSA and the

wSSAps. Since the wNRMps yielded almost the same
variance as the wSSAps, we only plotted the variance
obtained from the wSSAps. It is seen that the wSSAps
provides variance more than one order of magnitude
lower than that provided by refined wSSA with the best
δ. Is also observed that the wSSAps is not very sensitive
to the parameters a and b, since the variance obtained
with two different sets of values for a and b is almost
the same.
Table 2 lists P̂(ER) and its variance obtained from n =

107 runs of the refined wSSA, the wNRMps and the
wSSAps. We first ran the wNRMps and the wSSAps
without fine-tuning the probability of reactions in G3

group and calculated qm using (25). We then ran the
wNRMps and the wSSAps with fine-tuning the probabil-
ity of reactions in G3 group and used two sets of para-
meters (a = 0.85, b = 0.80; a = 0.80, b = 0.75) and (26)
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Figure 1 The standard deviation (SD) σ /
√
n of the estimated probability versus the number of simulation runs n obtained with the

refined wSSA (rwSSA) and the wSSAps for the single species production-degradation model (31) with c1 = 1, c2 = 0.025, X1(0) = 1 and
X2(0) = 40 for θ = 65, 70, 75 and 80.
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to calculate qm for the reactions in G3 group. We also
made 1011 runs of the exact SSA to estimate P̂(ER). It is
seen that the wNRMps, the wSSAps and the refined
wSSA all yield the same P̂(ER) as the exact SSA. How-
ever, the wNRMps and the wSSAps with fine-tuning the

probabilities of G3 reactions offer variance more than
one order of magnitude lower than that provided by the
refined wSSA. Without fine-tuning the probabilities of
G3 reactions, the wNRMps and the wSSAps provided a
little bit larger variance but still almost one order of
magnitude lower than that provided by the refined
wSSA. Table 2 also shows that the wNRMps and the
wSSAps needed only 60-70% CPU time needed by the
refined wSSA. Again, the CPU time of the refined wSSA
in Table 2 does not include the time needed for search-
ing for the optimal value of δ for each θ. If we include
this time, the CPU time of the refined wSSA will be
almost doubled.

5.3 Enzymatic futile cycle model
The enzymatic futile cycle model used in [22,23] con-
sists of two instances of the elementary single-substrate
enzymatic reaction described by the following six reac-
tions:

R1 : S1 + S2
c1→ S3,

R2 : S3
c2→ S1 + S2,

R3 : S3
c3→ S1 + S5,

R4 : S4 + S5
c4→ S6,

R5 : S6
c5→ S4 + S5,

R6 : S6
c6→ S4 + S2,

(35)

a b
Figure 2 Variance s2 obtained from 107 runs of the wSSAps and the refined wSSA for the system in (32) with c1 = 0.1, c2 = 0.1, c3 =
8, c4 = 0.1, X1(0) = 40, X2(0) = 40 and X3(0) = 1. wSSAps para 1 represents the wSSAps without fine-tuning the probability of reactions in G3
group; wSSAps para 2 and 3 represent the wSSAps with fine-tuning the probability of reactions in G3 group using two sets of parameters: a =
0.85, b = 0.8 and a = 0.80, b = 0.75. Since the variance of the wSSAps does not depend on δ used in the refined wSSA, it appears as a
horizontal line.

Table 2 Estimated probability of the rare event P̂(ER)
and the sample variance s2 as well as the CPU TIME (in
s) with 107 runs of the wNRMps, the wSSAps and the
refined wSSA for the system given in (32): (a) θ = 65 and
(b) θ = 68

(a) P̂(ER) s2 Time

wNRMps without G3 fine-tuning 1.14 × 10-4 2.77 × 10-7 13381

wSSAps without G3 fine-tuning 1.14 × 10-4 2.74 × 10-7 17484

wNRMps with a = 0.85, b = 0.80 1.14 × 10-4 1.27 × 10-7 13504

wSSAps with a = 0.85, b = 0.80 1.14 × 10-4 1.28 × 10-7 16649

wNRMps with a = 0.80, b = 0.75 1.14 × 10-4 1.29 × 10-7 13540

wSSAps with a = 0.80, b = 0.75 1.14 × 10-4 1.29 × 10-7 17243

Refined wSSA 1.14 × 10-4 1.54 × 10-6 24499

(b) P̂(ER) s2 Time

wNRMps without G3 fine-tuning 1.49 × 10-5 1.14 × 10-8 14087

wSSAps without G3 fine-tuning 1.49 × 10-5 1.09 × 10-8 17285

wNRMps with a = 0.85, b = 0.80 1.49 × 10-5 3.28 × 10-9 13920

wSSAps with a = 0.85, b = 0.80 1.49 × 10-5 3.29 × 10-9 17862

wNRMps with a = 0.80, b = 0.75 1.49 × 10-5 3.32 × 10-9 14018

wSSAps with a = 0.80, b = 0.75 1.49 × 10-5 3.30 × 10-9 17858

Refined wSSA 1.49 × 10-5 7.93 × 10-8 24739

The probability of the rare event estimated from 1011 runs of exact SSA
method is 1.14 × 10-4 for θ = 65 and 1.49 × 10-5 for θ = 68
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This system essentially consists of a forward-reverse
pair of enzyme-substrate reactions, with the conversion
of S2 into S5 catalyzed by S1 in the first three reactions
and the conversion of S5 into S2 catalyzed by S4 in the
last three reactions. We used the same probability rate
constants and initial state as used in [22,23]:

c1 = 1, c2 = 1, c3 = 0.1, c4 = 1, c5 = 1, c6 = 0.1, (36)

and

X1(0) = 1, X2(0) = 50, X3(0) = 0, X4(0) = 1, X5(0) = 50, X6(0) = 0. (37)

With the above rate constants and initial state, X2(t)
and X2(5) tend to equilibrate about their initial value 50.
References [22,23] sought to estimate P(ER) = Pt≤100(X5

® θ|x(0)), the probability that X5(t) = θ for t ≤ 100 and
several values of θ between 25 and 40. We repeated
simulations with the refined wSSA in [23] for θ = 25
and 40. The refined wSSA employed the following para-
meters g3 = δ, g6 = 1/δ and gm = 1, m = 1, 2, 4, 5, and
we used the best value of δ determined in [23]: δ = 0.35
for θ = 25 and δ = 0.60 for θ = 40.
In this system, we always have X2(t) + X5(t) = 100. So

when the rare event occurs at time t, we have X5(t) = θ
and X2(t) = 100 - θ. The rare event is therefore defined
as X5 = 50 + h with h = θ - 50 or equivalently X2 = 50
- h. According to the partition rule defined in Section 4,
R3 is a G2 reaction; R6 is a G1 reaction; R1, R2, R4 and
R5 are G3 reactions.
We ran Gillespie’s SSA 103 times and got an estimate

of KT as KT = 432, and thus KE = KT = 432. When θ =
40, we have h = -10. Using (23) and KE = 432, we
obtained � = 6 Substituting � into (24), we got
QG2 = 6/432, QG2 = 6/432 and QG3 = 410/432. In this
example, there always have certain reactions whose pro-
pensity functions are zero, since we always have X1(t) +
X3(t) = 1 and X4(t) + X6(t) = 1. Due to this special prop-
erty, we calculate the probability of each reaction as fol-
lows. The system has only 4 states in terms of X3(t) and
X6(t): X3(t)X6(t) = 11, 01, 10 or 00. From the 103 runs of
Gillespie’s exact SSA, we estimated the probability of
reactions occurring in reach state as P11 ≈ 1/2, P01 = P10
≈ 1/4 and P00 ≈ 0. Note that reaction R6 only occurs in
states 11 and 01 and we denote its probability in these
two states used in the wSSAps as q116 and q016 and its nat-
ural probability as p116 and p016 . The probability p116 can be
calculated as p116 = 1/22 and p016 can be approximated as
p016 = 1/511 assuming X2(t) = 50 since the system is in
equilibrium. Then, using the relationships:
QG1 = q116 P11 + q016 P01 and q116 /q016 = p116 /p016 , we get
q116 = 0.0725 and q016 = 0.0031. Reaction R3 only occurs
in states 11 and 10 and its probability can be obtained
similarly as q113 = 0.0272 and q103 = 0.0012. In a state s (s

= 11, 01, 10 or 00), we calculate QG3 = 1 − qs6 − qs3 and
then calculated qsm, m = 1, 2, 4 and 5, from (25). Surpris-
ingly, q116 , q

01
6 , q

11
3 and q103 we calculated are very close to

the values used in the refined wSSA which were
obtained by making 105 runs of the refined wSSA for
each of seven guessed values of g. In contrast, we do not
need to guess the values of parameters but calculate
them analytically, and all the information needed in our
calculation was obtained from 103 of Gillespie’s exact
SSA, which incurs negligible computational overhead.
When θ = 25, we have h = -25. Using (23) and

KT = 432, we obtained � = 3. Substituting � into (24),
we got QG1 = 28/432, QG2 = 3/432 and QG3 = 401/432.
Similar to the previous calculation, we got q116 = 0.1269,
q113 = 0.0136, q113 = 0.0136 and q103 = 0.0006 and then
calculated the probabilities of other reactions from (25).
Again q116 , q

01
6 , q

11
3 and q103 we obtained are very close to

the values used in the refined wSSA.
Table 3 lists the simulation results obtained from 106

runs of the wNRMps, the wSSAps and the refined wSSA
for θ = 40 and 25. It is seen that the estimated probabil-
ity P̂(ER) and variance s2 are almost identical for all
three methods, which is expected because the probabil-
ity of each reaction in three methods is almost the
same. This implies that all three methods may have
used near optimal values for the importance sampling
parameters. However, in the previous two systems, the
parameters used by the refined wSSA are far away from
their optimal values, because the wSSAps and the
wNRMps provided much lower variance than the
refined wSSA. It is also seen from Table 3 that the
wSSAps used almost the same CPU time as that used
by the refined wSSA and that the wNRMps used about
80% of the CPU time of the refined wSSA. Again, the
CPU time of the refined wSSA does not include the
time needed to find the optimal value of δ. Figure 3
depicts the standard deviation of the estimated probabil-
ity versus the number of simulation runs n for the

Table 3 Estimated probability of the rare event P̂(ER)
and the sample variance s2 as well as the CPU TIME (in
s) with 106 runs of the wNRMps, the wSSAps and the
refined wSSA for the enzyme futile cycle model (35): (a)
θ = 25 and (b) θ = 40

(a) P̂(ER) s2 Time

wNRMps 1.74 × 10-7 1.81 × 10-13 4183.2

wSSAps 1.74 × 10-7 1.80 × 10-13 5316.9

Refined wSSA 1.74 × 10-7 1.61 × 10-13 5337.2

(b) P̂(ER) s2 Time

wNRMps 4.21 × 10-2 1.51 × 10-3 3589.4

wSSAps 4.21 × 10-2 1.51 × 10-3 4388.3

Refined wSSA 4.21 × 10-2 1.51 × 10-3 4406.6
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wSSAps and the refined wSSA. Since the wNRMps pro-
vides almost the same standard deviation as the
wSSAps, we did not plot it in the figure. It is again seen
that the wSSAps and the refined wSSA yield almost the
same standard deviation for all values of n in this case.
It was demonstrated in [24] that the dwSSA yielded
comparable variance as the refined wSSA. Therefore,
our parameter selection method offers similar perfor-
mance to the dwSSA in this example.

6 Conclusion
The wSSA and the refined wSSA are innovative varia-
tion of Gillespie’s standard SSA. They provide an effi-
cient way for estimating the probability of rare events
that occur in chemical reaction systems with an extre-
mely low probability in a given time period. The wSSA
was developed based on the directed method of the

SSA. In this paper, we developed an alternative wNRM
for estimating the probability of the rave event. We also
devised a systematic method for selecting the values of
importance sampling parameters, which is absent in the
wSSA and the refined wSSA.
This parameter selection method was then incorpo-

rated into the wSSA and the wNRM. Numerical exam-
ples demonstrated that comparing with the refined
wSSA and the dwSSA, the wSSA and the wNRM with
our parameter selection procedure could substantially
reduce the variance of the estimated probability of the
rare event and speed up simulation.

Abbreviations
NRM: next reaction method; wNRM: weighted NRM; wSSA: weighted
stochastic simulation algorithm.
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Figure 3 The SD σ /
√
n of the estimated probability versus the number of simulation runs n obtained with the refined wSSA and the

wSSAps for the enzymatic futile cycle model (35) with c1 = c2 = c4 = c5 = 1, c3 = c6 = 0.1, X1(0) = X4(0) = 1, X2(0) = X5(0) = 50 and X3(0)
= X6(0) = 0 for θ = 25 and 40.
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