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A systems biology approach to analyse leaf
carbohydrate metabolism in Arabidopsis thaliana
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Abstract

Plant carbohydrate metabolism comprises numerous metabolite interconversions, some of which form cycles of
metabolite degradation and re-synthesis and are thus referred to as futile cycles. In this study, we present a
systems biology approach to analyse any possible regulatory principle that operates such futile cycles based on
experimental data for sucrose (Scr) cycling in photosynthetically active leaves of the model plant Arabidopsis
thaliana. Kinetic parameters of enzymatic steps in Scr cycling were identified by fitting model simulations to
experimental data. A statistical analysis of the kinetic parameters and calculated flux rates allowed for estimation of
the variability and supported the predictability of the model. A principal component analysis of the parameter
results revealed the identifiability of the model parameters. We investigated the stability properties of Scr cycling
and found that feedback inhibition of enzymes catalysing metabolite interconversions at different steps of the
cycle have differential influence on stability. Applying this observation to futile cycling of Scr in leaf cells points to
the enzyme hexokinase as an important regulator, while the step of Scr degradation by invertases appears
subordinate.
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Introduction
Plant metabolic pathways are highly complex, compris-
ing various branch points and crosslinks, and thus
kinetic modelling turns up as an adequate tool to inves-
tigate regulatory principles. Recently, we presented a
kinetic modelling approach to investigate core reactions
of primary carbohydrate metabolism in photosyntheti-
cally active leaves of the model plant Arabidopsis thali-
ana [1] with an emphasis on the physiological role of
vacuolar invertase, an enzyme that is involved in degra-
dation of sucrose (Scr). This model was developed in an
iterative process of modelling and validation. A final
parameter set was identified allowing for simulation of
the main carbohydrate fluxes and interpretation of the
system behaviour over diurnal cycles. We found that Scr
degradation by vacuolar invertase and re-synthesis

involving phosphorylation of hexoses (Hex) allows the
cell to balance deflections of metabolic homeostasis dur-
ing light-dark cycles.
In this study, we investigate the structural and stability

properties of a model derived from the Scr cycling part
of the metabolic pathway described in [1]. Based on the
existing model structure, model parameters were repeat-
edly adjusted in an automated process applying a para-
meter identification algorithm to match the measured
and simulated data. A method for statistical evaluation
of the parameters and simulation results is introduced,
which allows for the estimation of parameter variability.
Statistical evaluation demonstrates that the same nom-
inal concentration courses are predicted for different
identification runs, while small variability in fluxes and
larger variability in parameters can be observed. Further,
the parameter identification results were analysed apply-
ing a principal component analysis (PCA). This leads to
a more extensive investigation with respect to the exten-
sion and alignment of the parameter values in the para-
meter space. In addition, this allows for conclusions
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concerning the identifiability of the parameters and the
confirmation that the cost function is sensitive along
parameter combinations. An investigation of structural
stability properties of Scr cycling showed feedback inhi-
bition of Hex on invertase and sugar phosphates (SP) on
hexokinase likely to be involved in stabilisation of the
metabolic pathway under consideration. Feedback inhi-
bition of hexokinase was more efficient in stabilising Scr
cycling than inhibition of invertase, indicating that, at
this step of the cycle, a superior contribution to stabili-
sation of homeostasis can be achieved.

The central carbohydrate metabolism in leaves of
A. thaliana
Within a 24-h light/dark cycle, two principal modes of
metabolism can be distinguished for plant leaves: photo-
synthesis (day), and respiration (night). During the day,
carbon dioxide is taken up, and storage compounds like
starch (St) accumulate, while this stock is in part
respired during the night. Under normal conditions, a
certain proportion of carbon is fixed as new plant bio-
mass. However, typical source leaves as considered here
are mature, and thus carbon use for growth can be
neglected. Therefore, the carbon balance is completely
determined by photosynthesis, respiration and carbon
allocation to associated pathways or heterotrophic tis-
sues that are not able to assimilate carbon on their own.
Based on this information and known biochemical reac-
tions, a simplified model structure for the interconver-
sion of central metabolites was created (Figure 1).
The compounds SP, St, Scr, glucose (Glc) and fruc-

tose (Frc) are derived from photosynthetic carbon fixa-
tion and linked by interconverting reactions. The flux
vCO2 represents the rate of net photosynthesis, i.e. the

sum of photosynthesis and respiration. Carbon
exchange with the environment and intracellular inter-
conversions are linked through the pool of SP. This
pool is predominantly constituted by the phosphorylated
intermediates glucose-6-phosphate and fructose-6-phos-
phate. SP can reversibly be converted to St through the
reaction vSt. The reaction vSP®Scr represents a set of
reactions leading to Scr synthesis. Among them, the
reaction of Scr phosphate synthase is considered the
rate-limiting step [2]. Scr can either be exported, for
example, by a transport to sinks vSP®Sinks, or cleaved
into Glc and Frc by invertases, vInv. The free Hex can
be phosphorylated by vGlc®SP and vFrc®SP, respectively.
These reactions are catalysed by the enzymes glucoki-
nase and fructokinase.

Mathematical model structure
Time-dependent changes of metabolite concentrations
during a diurnal cycle can be described by a system of
ordinary differential equations (ODE). With c being the
m-dimensional vector of metabolite concentrations, N
being the m × r stoichiometric matrix and v being the
r-dimensional vector of fluxes, the biochemical reaction
network can be described as follows:

dc
dt

= Nv(c,p), (1)

with v(c,p) indicating that the fluxes are dependent on
both, metabolite concentrations c and kinetic parameters
p. Thus, based on the model structure (Figure 1) of our
system, the concentration changes of the five-state vari-
ables: SP, St, sucrose, Glc and Frc are defined as:

ċSP =
1
6
vCO2 − vSP→Scr − vSt + vGlc→SP + vFrc→SP,

ċSt = vSt,

ċScr =
1
2

· vSP→Scr − 1
2

· vScr→Sinks − vInv,

ċGlc = vInv − vGlc→SP,

ċFrc = vInv − vFrc→SP.

(2)

The stoichiometric coefficients account for the inter-
conversions of species with a different number of carbon
atoms. For example, the reaction νSP®Scr has a stoichio-
metric coefficient value of 1 in the SP state equation,
while in the Scr state equation, this value is 0.5 because
SP contains 6 carbon atoms and Scr contains 12 carbon
atoms. The stoichiometric coefficients for the reaction
catalysed by invertase are 1 in all the respective state
equations because this reaction represents the cleavage
of the disaccharide Scr into two monosaccharides: Glc,
and Frc. St content is expressed in Glc units, i.e. a car-
bohydrate with six carbon atoms. The rates of the ODE
system (Equation 2) are determined in three ways: by

vCO2

vSt

vInv

vSP Scr�

vGlc SP�

vFrc SP�

vScr Sinks�

Leaf Cell
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Figure 1 Model structure of the central carbohydrate
metabolism in leaves of A. thaliana. SP, sugar phosphates; St,
starch; Scr, sucrose; Glc, glucose; Frc, fructose. v represent rates of
metabolite interconversion.
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measurements (model inputs), carbon balancing and
kinetic rate laws.

Model input and carbon balancing
The rate of net photosynthesis vCO2 was fed into the
model using experimental data taken from [1]. Interpo-
lated values of the measurements were applied to the SP
state equation.
For modelling St synthesis and carbohydrate export,

we used the following phenomenological approach.
Although based on experimental data, the rate of net St
synthesis was still subject to the identification process. It
was defined as

vSt = vSt,min + p1(vSt,max − vSt,min), (3)

with vSt, min and vSt, max being derived from the mea-
sured concentration changes, i.e. the derivatives of the
interpolated minimal and maximal concentrations. The
parameter p1 varied between 0 and 1 and was deter-
mined in the process of parameter identification.
The rate of carbohydrate export

vScr→Sinks =
1
6
vCO2 − vSt − (

vC,min + p2
(
vC,max − vC,min

))
(4)

was dynamically determined by balancing the exter-
nal flux vCO2, the internal St flux vSt and measured
minimal and maximal total concentration changes of
soluble carbohydrates vC, min and vC, max, respectively.
vC, min and vC, max were calculated as already described
for vSt, min and vSt, max by interpolating and differen-
tiating with respect to time. In this way, the mechanis-
tically and quantitatively unknown carbohydrate export
can be calculated using measurement data of one flux
(vCO2) and two concentration changes (vSt, vC, min/max).
As with p1, the parameter p2 varied between 0 and 1
and was determined in the process of parameter
identification.
This balancing formed the boundary condition for the

system in Equation 2 and the model described the dis-
tribution of overall carbon flux through the internal
reactions. The experimental setup as well as results of
experimental data on carbohydrates and net photosynth-
esis are presented explicitly in [1].

Kinetic rate equations
The rate of Scr synthesis (vSP®Scr) was assumed to fol-
low a Michaelis-Menten enzyme kinetic:

vSP→Scr =
Vmax,SP→Scr(t) · cSP
Km,SP→Scr + cSP

, (5)

Rates of Scr cleavage (vInv), Glc phosphorylation
(vGlc®SP) and Frc phosphorylation (vFrc®SP) were
defined by Michaelis-Menten kinetics including terms

for product inhibition (Equations 6-8) as described in
[3] and [4]:

vInv =
Vmax,Inv(t) · cScr

Km,Inv

(
1 +

cFrc
Ki,Frc,Inv

)
+ cScr

(
1 +

cGlc
Ki,Glc,Inv

) ,
(6)

vGlc→SP =
Vmax,Glc→SP(t) · cGlc(

Km,Glc→SP + cGlc
) (

1 +
cSP

Ki,SP,Glc→SP

) ,
(7)

vFrc→SP =
Vmax,Frc→SP(t) · cFrc(

Km,Frc→SP + cFrc
) (

1 +
cSP

Ki,SP,Frc→SP

) .
(8)

where Vmax(t) values represent time-variant maximal
velocities of enzyme reactions, Km are the Michaelis-
Menten constants representing substrate affinity of the
enzyme and Ki are the inhibitory constants. Changes in
maximal velocities of enzyme reactions were described
over a whole diurnal cycle by a cubic spline interpola-
tion for Vmax(t). This course is defined by the sample tk
= {3,7,11,15,19,23} h and values for Vmax(tk), which are
subject to parameter identification. This description
reflects changes of enzyme activity, mainly resulting
from changes in enzyme concentration. Measurements
of enzyme activities supported this assumption [1]. The
kinetic rate law for the invertase reaction included a
mixed inhibition by the products Glc and Frc, while
hexose phosphorylation (vGlc®SP, vFrc®SP) was assumed
to be inhibited non-competitively by SP. The model
description, simulation and parameter identification was
performed using the MATLAB SBToolbox2 [5].

Parameter identification
Parameters were automatically adjusted applying a para-
meter-identification process representing the minimiza-
tion of the sum of squared errors between measurement
and simulation outputs by changing the parameter
values within their bounds. For an overview of the for-
mulation of such problems, see, e.g. [6]. In this context,
the outputs which correspond to the model states are
the concentration values of SP, St, Scr, Glc and Frc
measured over a whole diurnal cycle at chosen time
points. For a more detailed description of the quantifica-
tion procedure and time points, refer to [1]. Measure-
ments and simulations were carried out for A. thaliana
wild type, accession Columbia (Col-0), and a knockout
mutant inv4 defective in the dominating vacuolar inver-
tase AtßFruct4 (At1G12240).
The final parameters have been identified using a par-

ticle swarm algorithm [7] that minimizes the sum of
quadratic differences between measurement and
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simulation. This identification algorithm contains a sto-
chastic component that enables overriding of local
minima. We used the algorithm provided by the
MATLAB/SBToolbox2 with its default options. The
possible parameter ranges were constrained by different
lower and upper bounds known from our own experi-
ments (Vmax) and the literature (Km, Ki). The model and
the complete set of parameters and the best-fit compari-
son plots can be found in [1].

Statistical fit analysis
The model was intended not only to reproduce experi-
mental data but also to allow predictions of variables
and parameter values, for which no data were obtained.
Therefore, the model was analysed for the variability of
parameters and fluxes, which both are used for predic-
tions. In [1], we performed 75 parameter-identification
runs for the wild-type and the mutant. Within the cho-
sen numerical accuracy, the algorithm converged to the
same nominal cost function values in Ni,Col0 = 72 and
Ni,inv4 = 71 cases, respectively. To give an impression of
the fitting quality of the metabolite concentrations, all
the Ni simulation runs and measurements for both gen-
otypes’ Frc concentration are shown in Figure 2 exem-
plarily. The measurement error bars, i.e. the
measurement standard deviations, are calculated from
Nr = 5 replications. The comparisons of measurements
with simulations for the whole set of metabolites are
shown in [1].
We were able to identify significant differences in car-

bohydrate interconversion rates, which were not obvious
and could not be determined by intuition [1]. For
instance, one finding highlights the robustness of the
considered system in spite of a significant reduction of
the dominating activity of invertase in inv4. During the

whole diurnal cycle, the calculated flux rates for the
invertase reaction in wild-type and inv4 mutant differed
considerably less than did the corresponding Vmax

values for invertase (Figure 3). This observation indi-
cated a possible stabilizing contribution of feedback
mechanisms, for example, by product inhibition of
invertase activity. In section “Stability properties of Scr
cycling”, this aspect is investigated further.
Further, for displaying the variability of parameters,

we chose boxplots that are superior in displaying dis-
tributions for skewed data sets, see, e.g. [8]. To com-
pare identification results for different parameters, we
scaled the identified values represented by their med-
ian and plotted distributions as box-and-whisker plots.
The resulting graphs for all the parameters and flux
values at the time points defined by the time-variant
Vmax are shown in Figures 4 and 5. Outliers are dis-
played as dots. For a comparison of the parameter
quality, values were sorted by their box width in the
ascending order.
The parameter with the largest variability is the inhibi-

tion coefficient of fructokinase in both, the wild type
and the mutant. Still, complete omission of inhibition
structures leads to inferior simulation results (data not
shown). Apart from the variability within the para-
meters, it can be observed that fluxes, such as vInv, have
smaller boxes than some of the associated kinetic para-
meters (here: Ki,Frc,Inv), and that the wild type is less
variable than the mutant (Figures 4 and 5). Further, the
simulated concentrations show a relatively small varia-
tion (Figure 2). The result may be influenced by the
number of runs, the algorithm’s internal parameters, the
algorithm itself or by the estimation bounds and should
not be taken as confidence intervals of the parameter
values. Therefore, the presented results only give an
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Figure 2 Comparison of measurements (error bars: standard deviations; Nr = 5 replicates) and simulations (lines; Ni,Col-0 = 72 and Ni,

inv4 = 71 identification runs) of Frc concentrations in leaf extracts. (a) Wild-type (black), (b) mutant (grey). Time 0 h = 06:00 a.m. daytime.
Concentrations are given in μmol per gFW (leaf fresh weight).
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impression as to how the parameter variability is distrib-
uted for the chosen statistical setup.
Our observation that some parameter values have a

much higher variability than the corresponding concen-
tration and flux simulations is consistent with that of
Gutenkunst et al. [9] in which many systems’ biological
models show the so-called sloppy parameter spectrum.
Gutenkunst et al. [9] analysed several models with a
nominal parameter vector po leading to nominal con-
centration courses. They studied the set of parameter
values p, which lead to similar concentration courses as
the nominal parameter values. For this purpose, they
computed an ellipsoidal approximation of this set using
the Hessian matrix of the c2 function, which is a mea-
sure for the deviation of the concentration courses from
the nominal concentration courses. They found that in
all the studied models, the lengths of the principal axes
of this ellipsoid span several decades and are not aligned
to the coordinate axes. Since parameters may vary along
the long principal axes of the ellipsoid without signifi-
cantly affecting the concentration courses, this means
that many parameter values cannot be determined reli-
ably by fitting the model to experimental data. At the
same time, the model predictions may nevertheless be
reliable.
We analysed whether an analogous property is found

in our Ni parameter sets. For this purpose, we per-
formed a PCA [10]. PCA identifies the principal axes of
a set of vectors. We applied a PCA to the set of vectors
of logarithmic parameters that resulted from the con-
vergent identification runs. For this purpose, we com-
puted the covariance matrix C of the logarithmic
parameter vectors such that Cij = cov(log(pi), log(pj))
corresponding to the ith and jth parameters, pi and pj,
respectively. The eigenvectors of this matrix give the
directions of the principal axes of the set of logarithmic

parameter vectors. The eigenvalues correspond to the
variances of the logarithmic parameters along the prin-
cipal axes and present a measure for the lengths of the
principal axes. An ellipsoid with these properties is
given by ΔpT·C-1·Δp ≤ 1, where Δp = log(p)-log(p°) is
the deviation of the logarithmic parameter vector from
its nominal value.
The longest principal axis of the mutant is approxi-

mately four times longer than the longest axis of the
wild-type. This observation reflects the comparatively
large boxes of the mutant box plots. For the mutant, the
covariance matrix C is singular, with six eigenvalues
being equal to zero within numerical tolerance. Two of
those six eigenvalues correspond to the parameters
describing the maximal velocity of the invertase reac-
tions at two different time points (Vmax,Inv at t = 11 and
23 h) i.e. parameters directly connected to the mutation.
These two parameters do not show a variation but are
always at their bounds, which are much lower than in
the wild-type. The analysis of the other four eigenvec-
tors with eigenvalue zero revealed linear combinations
of 29 parameters (all parameters except Vmax,Inv(11),
Vmax,Inv(23) and Vmax,SP®Scr(23)), and their intuitive
interpretation is not obvious.
The above observations indicate that the parameter-

identification problem for the mutant does not have a
unique optimum, and the optima are on the border of
the allowed area. For further analysis, we only analyse
the principal axis with a non-zero variance. We removed
six parameters from the parameter vector and computed
the non-singular matrix C for the remaining parameters.
The spectrum of the lengths of the principal axes is
shown in Figure 6. The lengths were scaled such that
the longest axis has a length of unity (10°). As expected
for a sloppy system, the lengths of the principal axes
span several orders of magnitude.
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Figure 3 Diurnal dynamics of (a) measured maximal invertase activity and (b) simulated rates of Scr cleavage (vInv) for wild-type
(black lines) and mutant (grey lines). Values in (a) represent means ± SD (Nr = 5 replicates), values in (b) represent means ± SD (identification
runs: Ni,Col-0 = 72, Ni,inv4 = 71). Time 0 h = 06:00 a.m. daytime. Concentrations are given in μmol per gFW (leaf fresh weight).
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Next, we verified whether the principal axes are
aligned with the coordinate axes. Gutenkunst et al. [9]
suggest the use of the Ii/Pi ratio to quantify the align-
ment of the principal axes with the coordinate axes.
Here, Ii is the intersection of the ellipsoid with the ith
coordinate axis and Pi is the projection onto ith coordi-
nate axis. A perfectly aligned principal axis has Ii/Pi = 1,
whereas a skewed axis will lead to a deviation of unity.
Gutenkunst et al. [9] give an expression to compute the
Ii/Pi ratio on the basis of a quadratic form defining the
ellipsoid. With our symbols, this expression is

Ii/Pi =
√
1/(C−1)i,i

/√
Ci,i..

The Ii/Pi ratios span several orders of magnitude
(Figure 6). This means that most principal axes are not
aligned with the coordinate axes, as expected for a
sloppy system.

In conclusion, the statistical analysis of the parameter
vectors revealed three important properties of the system:
1. Different parameter-identification runs for the

mutant converge to different edges of the allowed area.
This fact reveals a problem with the identifiability of the
model parameters for the mutant and explains the rela-
tively large variation of the parameter values. In order to
get a unique optimum, more experimental data of the
previously unmeasured variables and a critical reassess-
ment of the lower and upper bounds are needed.
2. The Ni parameter sets show a sloppy parameter

spectrum. This means that many parameter values can-
not be reliably determined by parameter-identification
algorithms that fit the model to experimental data.
3. The box plots in Figures 4 and 5 suggest which

parameters and fluxes are likely to be determined reli-
ably and which are not.
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Stability properties of Scr cycling
As mentioned above, the knockout mutation of the
dominant vacuolar invertase AtßFRUCT4 showed a dra-
matic reduction of cellular invertase activity, whereas
the corresponding flux vInv did not decrease in a corre-
sponding manner (Figure 3). This finding indicated that
the behaviour of the metabolic cycle of Scr degradation

and re-synthesis are strongly determined by strong regu-
latory effects, as the product inhibition of invertase
activity and of the synthesis of SP, as well as the activa-
tion of the synthesis of Scr by the Hex. Steady states in
such strongly regulated systems are prone to instability,
leading to effects as bi-stability or oscillations. The
model defined by Equations 2, 5, 6, 7 and 8 approaches
a stable steady state for given values of the in- and out-
going reactions vCO2, vSt and vScr®Sinks if the overall car-
bon balance is fulfilled, i.e. vCO2 = 6vst + 6vScr→Sinks (data
not shown). Diurnal dynamics are caused by the diurnal
variations of these external fluxes and the diurnal
changes of the enzyme activity. This means that we
have a stable metabolic cycling whose diurnal dynamics
are externally driven. In order to analyse the robustness
of this scheme, we analysed the stability properties of
the metabolic cycle by methods of structural kinetic
modelling (SKM) as described in [11,12]. SKM is a spe-
cific application of generalized modelling [13] in which
normalized parameters replace conventional parameters
such as Vmax or Km in the modelling of metabolic net-
works. SKM in conjunction with a statistical analysis of
the parameter space was used to determine whether a
given steady state of a metabolite is always stable or
whether it may be unstable for certain values of the nor-
malized parameter [12]. We applied this methodology to
our metabolic cycle of Scr degradation and synthesis, i.e.
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Figure 5 Boxplots of the simulated metabolite fluxes for wild-type (left side; Ni = 72) and mutant (right side; Ni = 71). Numbers in
brackets indicate time points in h. Black dots represent outliers. The flux vSP®Scr(23) of inv4 has outliers at 10.3 and 10.5.
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the central part of the system in consideration. In order
to simplify the analysis, we summarised Glc and Frc as
Hex. With this simplification, we obtained the network
shown in Figure 7. Hex can activate v2 as described
in [14]. Hex can also act as feedback inhibitors on v4,
and v5 can be inhibited by the reaction product SP
(Figure 7).
SKM allows analysing models with respect to given

steady-state concentrations c0, and fluxes vj(c0). In this
study, these values are subject to diurnal changes. How-
ever, the relative changes in concentration are small.
Thus, we assumed steady-state concentrations of the
metabolites, which we computed as the mean value of
the concentrations over a whole day/night cycle. In
steady state, flux v1 equals flux v3 = 6vScr®Sinks. We set
v1 = v3 = aF, where F represents the invertase flux. The
parameter a can take values between 0 and 1 and deter-
mines the degree of Scr cycling. For a = 1, no cycling
occurs. For a = 0, the cycling of carbon becomes maxi-
mal, and no carbon enters or leaves the cycle.
SKM defines normalised parameters with respect to

the steady-state concentrations c0 and fluxes vj(c0):

xi =
ci(t)
ci,0

(9)

�ij = Nij
vj(c0)

ci,0
(10)

μj(x) =
vj(c)

vj(c0)
(11)

with i = 1...m (number of metabolites) and j = 1...r
(number of reactions). The vector x describes the meta-
bolite concentrations normalised based on their steady-
state concentrations, the matrix Λ is the stoichiometric
matrix normalised with respect to steady-state fluxes

and steady-state metabolite concentrations, and μ repre-
sents the fluxes normalised related to steady-state flux
values.
As described in [12], x0 = 1 represents the steady state

of the system and the corresponding Jacobian J can be
written as

Jx = �θμ
x (12)

Each element of the matrix θ
μ
x , analogue to scaled

elasticities of metabolic control analysis, represents the
degree of saturation of normalised flux μj with respect
to the normalised substrate concentration xi:

θμ
x =

dμ

dx
(13)

thus indicating the degree of change in a flux as a par-
ticular metabolite is increased [11]. For irreversible
Michaelis-Menten kinetics, as used in our kinetic model,
the values in θ can assume values in the interval of
[0,1]. In the case of allosteric inhibition by a product, as,
for example, feedback inhibition of Hex on invertase
enzymes, the corresponding element in θ assumes values
within the range [-1,0]. Further details on θ for Michae-
lis-Menten kinetics can be found in [11]. The power of
this approach lies in the ability to analyse the stability of
the system by sampling combinations of the elements of
θ which again represent combinations of the original
kinetic parameters.
Considering the metabolic cycle shown in Figure 6

that contains three metabolites and five reactions, the
following Λ (m × r) and θ (r × m) matrices can be
developed:

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

αF
c0,SP

−F
c0,SP

0 0
(1 − α)F
c0,SP

0
F

c0,Scr

−αF
c0,Scr

−(1 − α)F
c0,Scr

0

0 0 0
(1 − α)F
c0,Hex

−(1 − α)F
c0,Hex

⎞
⎟⎟⎟⎟⎟⎟⎠
,(14)

θ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
θ1 0 θ2
0 θ3 0
0 θ4 θ5
θ6 0 θ7

⎞
⎟⎟⎟⎟⎟⎟⎠
. (15)

The Jacobian matrix Jx was calculated according to
Equation 12. The system is guaranteed to be locally
asymptotically stable if all eigenvalues of Jx have nega-
tive real part. It is unstable, if one or more eigenvalues
have positive real parts. The stability of nonlinear sys-
tems where all eigenvalues have non-positive real parts,
but one which has a real part of zero, cannot be

v = F2

v = á1 F

v = (1-á)5 F

v = (1-á)4 F

v = á3 F

Figure 7 Schematic representation of the metabolic cycle of
Scr synthesis and degradation. Inhibitory instances are indicated
by red lines; activation is indicated by green lines. SP, sugar
phosphates; Scr, sucrose; Hex, hexoses; F, reference flux; a, scaling
parameter to describe fluxes as proportions of F.
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analysed with this approach. In the present setting, the
latter case can be ignored since it occurs only for a
lower dimensional subset of the parameter space. To
explore stability properties of the considered Scr cycle,
we performed computational experiments, in which the
parameters in θ and a were set randomly following a
standard uniform distribution on the open interval [0-1].
We analysed different modifications of the metabolic
cycle by varying modes of activation and inhibition.
Each particular metabolic cycle was simulated for 106

different sets of parameters, and resulting maximal
real parts of the eigenvalues were plotted in histograms
(Figures 8 and 9).
First, we analysed the stability properties of a system

without instances of activation and inhibition (Figure
8a), i.e. by setting θ2, θ5 and θ6 to zero. All real parts of
eigenvalues were negative, indicating stability for all the
samples. Yet, if we considered v2 to be activated by Hex
(θ2 > 0), positive real parts occurred, suggesting that the
system may become unstable for certain parameter sets
(Figure 8b). When additional instances of strong feed-
back inhibition (θ5 = θ6 = -0.99), e.g. by Hex or SP [1]
were included, no positive eigenvalues appeared any

more, and the system became stable again for all the
tested parameter values (Figure 8c).
To determine whether feedback inhibition by Hex and

SP contributed equally to stabilisation, we further ana-
lysed systems with (i) weak feedback inhibition of v5 by
SP (θ6 = -0.01) and strong inhibition of v4 by Hex (θ5 =
-0.99), and (ii) strong feedback inhibition of v5 by SP (θ6
= -0.99) and weak inhibition of v4 by Hex (θ5 = -0.01).
The histograms representing the corresponding results
showed that stability of the system for all the samples
was only achieved when v5 was assumed to be inhibited
strongly by SP (Figure 9a,b). Applying this theoretical
model to a physiological context, reaction v5 would be
represented by hexose phosphorylation through hexoki-
nase enzymes, which have been shown to play a central
role in sugar signalling, hormone signalling and plant
development [15]. Our findings point to a strong influ-
ence of hexokinase on system stability and establishment
of a metabolic homeostasis, supporting a crucial role in
plant carbohydrate metabolism. In addition, a prevailing
role of hexokinase in regulating Scr cycling would
explain why a strong reduction of invertase activity
caused only minor changes in the magnitude of Scr
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cycling in the inv4 mutant as already outlined in [1] (see
Figure 3).

Conclusions
Recently, we presented a kinetic modelling approach to
simulate and analyse diurnal dynamics of carbohydrate
metabolism in A. thaliana. Based on simulated fluxes in
leaf cells, we could assign possible physiological functions
of vacuolar invertase in carbohydrate metabolism. Here,
we explicate this model in more detail and perform a sta-
tistical evaluation that proves reproducibility of the predic-
tion of cellular metabolite concentrations and fluxes. The
PCA revealed that the identifiability of the mutant para-
meters could be improved by more measurements. In
addition, it was shown that this system’s biology model
exhibits the property of sloppiness [9], allowing for good
predictions while some parameters show larger variability.
The analysis of stability properties of Scr cycling indicated
an important role of feedback inhibition mechanisms in
stabilisation of futile metabolic cycles, and application of
this concept to plant carbohydrate metabolism supported
a role for hexokinase as a crucial regulator of Scr cycling.
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