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The modeling of the dynamics of interaction between ERK and STAT signaling pathways in the cell needs to establish the biochem-
ical diagram of the corresponding proteins interactions as well as the corresponding reaction-diffusion scheme. Starting from the
verbal description available in the literature of the cross talk between the two pathways, a simple diagram of interaction between
ERK and STAT5a proteins is chosen to write corresponding kinetic equations. The dynamics of interaction is modeled in a form of
two-dimensional nonlinear dynamical system for ERK—and STAT5a —protein concentrations. Then the spatial modeling of the
interaction is accomplished by introducing an appropriate diffusion-reaction scheme. The obtained system of partial differential
equations is analyzed and it is argued that the possibility of Turing bifurcation is presented by loss of stability of the homogeneous
steady state and forms dissipative structures in the ERK and STAT interaction process. In these terms, a possible scaffolding effect
in the protein interaction is related to the process of stabilization and destabilization of the dissipative structures (pattern forma-
tion) inherent to the model of ERK and STAT cross talk.
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1. INTRODUCTION

One of the features distinguishing a modern dynamics is its
interest in framing important descriptions of the real pro-
cesses in the form of dynamical systems. We call dynamical a
system of first-order autonomous ordinary differential equa-
tions solved with respect to their derivatives. In some cases
partial derivatives are included too and the corresponding
systems are called spatial dynamical systems. The process of
translation of observed data into a mathematical model in
this case is called dynamical modeling (Beltrami [1]) and spa-
tial one in particular. Dynamical systems belong to one of
the main mathematical concepts. It is clear that dynamical
systems constitute a particular case of the numerous mathe-
matical models that can be built as a result of studies of the
world that surrounds us. In view of the fact that there are
different types of dynamical models, we restrict our consid-
erations on none but models described by dynamical systems
defined above.

The system analysis of intracellular processes and espe-
cially signaling, excitation, andmitosis (growth and division)
in eukaryotes is so complex that it defies understanding by

verbal arguments only. The insight into details of biochemi-
cal kinetics of cell functions requires mathematical modeling
of the type practiced in the classical dynamics, that is, by dy-
namical systems. They are systems of differential equations
arrived at in the process of studying a real phenomenon. In
this paper we propose a dynamical modeling of intracellu-
lar processes. For this purpose the molecular mechanism of
ERK (extracellular-signal-regulated kinase) and STAT (sig-
nal transducer and activator of transcription) pathways in-
teraction is presented verbally and by a corresponding bio-
chemical diagram. On this basis we write out a system of
nonlinear ordinary differential equations (ODEs) expressing
the kinetic mass action. Then we show at equilibrium that
the ODEs become quadratic equations, whose solution de-
scribes the equilibrium concentrations. To understand how
stable the equilibrium is, we use a small perturbation term
to see how the differential equations governing the rate of
change of the perturbation can be approximated. Next we
use the standard Routh-Hurwitz condition to characterize
the stability type of the steady state (equilibrium). What is of
essential interest further is the question “how could we han-
dle diffusion-reaction (partial differential) equations by first
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analyzing diffusion along one dimension, then proceeding to
Turing bifurcation analysis?” We perform stability analysis
on this reaction-diffusion system again by solving for the
equilibrium and then studying its perturbations. At the end
by analogy with the dynamical behavior of ERK and STAT in-
teraction we propose a hypothetical scaffolding mechanism
of the process.

The motivation and purposes above-mentioned lie in the
following circumstance: on one hand the complexity of in-
tracellular space is inscribed by the huge amount of inter-
acting proteins and their molecular pathways and networks.
On the other one, the heterogeneous distributions of protein
concentrations in the form of cellular compartments play a
crucial role in the regulation of all processes in the cell. In
this way, cellular complexity is inherently space-temporal,
described physically as reaction-diffusion processes not only
between organelles and cytosol, but as a set of interactions
between compartments and cytosol. The traditional approx-
imation scheme of well-stirred reactor is a simplification due
to the added complexity of modeling diffusion as well as the
lack of straightforward experimental techniques to provide
the necessary measurements needed to fully describe a space-
temporal model (Eungdamrong and Iyengar [2]). If the time
resolution of the system is large enough, this approximation
is valid for many materials with fast diffusion rates and/or
small volumes. At this condition, diffusion acts simply as a
mechanism to slow down the apparent associative or disasso-
ciative rate constant, and transport between compartments
may be effectively treated as gradients between spatially aver-
aged concentrations of the transported species. However, the
concentration gradients of enzymes within cells that mod-
ulate signal transduction belie this simplification (Khurana
et al. [3]; Holdaway-Clarke et al. [4]; Lam et al. [5]; Be-
lenkaya et al. [6]). With experimental and technological ad-
vancements allowing finer temporal and spatial resolution,
the development of space-temporal (i.e., reaction-diffusion)
modeling intracellular kinetics to traditional systems biology
has become much more tractable. That is why here we in-
troduce both methodological foundation by proposing a spe-
cific technique of reaction-diffusion modeling and its compu-
tational implication to concrete example of ERK and STAT
protein interaction. The specificity of this approach is also
in the combining of an appropriate scheme of modeling
with its analysis by the method of stability and bifurcation
theory of dynamical systems. Similar approaches suggested
that analyzing chemical systems were previously proposed
in molecular chemistry (Lengyel and Epstein [7]). They ob-
tained two-dimensional system of Turing type for the case of
chlorine dioxide/iodine/malonic acid reaction and suggested
hypothesis that a similar phenomenon may occur in some
biological pattern formation process as it is in our case. In
this sense our work could be considered as a confirmation of
Lengyel and Epstein hypothesis. In a more general plan (n-
dimensional case) the problem of pattern formation is con-
sidered using rigorous mathematical terms in the paper of
Alber et al. [8].

The approach in this paper takes into account the speci-
ficity of cell signaling of ERK- and STAT-pathways involved

in a corresponding kinetic scheme different from those in the
papers of Lengyel and Epstein [7] and Alber et al. [8] and
applies appropriate mathematical methods (Lyapunov’s sta-
bility and Tihonov’s theorem). The significance and utility
of our specific approach to modeling dynamically a possi-
ble scaffolding mechanism and dynamical nature of ERK and
STAT interaction is discussed in the last two sections.

2. THE INTERACTION BETWEEN ERK AND
STAT PATHWAYS: A DYNAMICALMODEL

It is known that growth factors typically activate several sig-
naling pathways. On this basis the specificity of biological re-
sponses is often achieved in a combinatorial fashion through
the concerted interaction of signaling pathways (Pawson et
al. [9]). The explanation is that many of the signaling path-
ways and regulatory systems in eukaryotic cells are controlled
by proteins with multiple interaction domains that medi-
ate specific protein-protein and protein-phospholipid inter-
actions, and thereby determine the biological output of re-
ceptors for external and intrinsic signals. In the mentioned
paper of Pawson et al. [9] the authors discuss the basic fea-
tures of interaction domains, and suggest that rather sim-
ple binary interactions can be used in sophisticated ways to
generate complex cellular responses. In the paper of Shuai
[10], the protein STATs (signal transducer and activator of
transcription) is found to play important roles in numerous
cellular processes including immune responses, cell growth
and differentiation, cell survival and apoptosis, and oncoge-
nesis. The STAT target genes include SOCS/CIS, a class of in-
hibitory proteins that interfere with STAT signaling through
several mechanisms. (SOCS is an abbreviation of suppres-
sor of cytokine signaling and CIS means cytokine inducible
SH2 domain containing). The protein SOCS/CIS can block
access of STAT to receptors or inhibit JAKs or both (Alexan-
der [11]). (JAK is an abbreviation of Janus kinase). On the
other hand, SOCS-3 can bind to and sequester such named
Ras-GAP (Cacalano et al. [12]). The suppressors of cytokine
signaling (SOCS, also known as CIS and SSI) are encoded.
By immediate early genes they act in a feedback loop to in-
hibit cytokine responses and activation of signal transducer
and activator of transcription (STAT). The activity of sig-
nal transducer activator of transcription 5 (STAT5) is in-
duced by an overabundance of cytokines and growth factors
and resulting in a transcriptional activation of target genes
(Buitenhuis et al. [13]). STAT5 plays an important role in
a variety of cellular processes as immune response, prolif-
eration, differentiation, apoptosis. What is of interest from
medical point of view, aberrant regulation of STAT5 has been
observed in patients with solid tumors, chronic and acute
myeloid leukemia.

In the papers of Wood et al. [14]; Pircher et al. [15],
it is suggested that the STAT5 functional capacity of bind-
ing DNA could be influenced by the mitogen-activated pro-
tein kinase (MAPK)-pathway. Moreover, it is known that
the serine phosphorylation of signal transducers and ac-
tivators of transcription (STAT) 1 and 3 modulates their
DNA-binding capacity and transcriptional activity. In a later
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paper of Pircher et al. [15] the interactions between STAT5a
and the MAPKs (extracellular signal-regulated kinases ERK1
and 2) are analyzed. In vitro phosphorilation of the gluta-
thione-S-transferase-fusion proteins using active ERK only
worked when the fusion protein contained wild-type STAT5a
sequence. Transfection experiments with COS cells showed
that kinase-inactive ERK1 decreased GH stimulation of
STAT5-regulated reporter gene expression. These observa-
tions show for the first time a direct physical interaction be-
tween ERK and STAT pathways. They identify also serine 780
as a target for ERK.

From the results described in the work of Pircher et
al. [15] a model for interaction between ERK and STAT5a
in CHOA cells can be derived (Figure 1), we call it a model of
Pircher-Petersen-Gustafson-Haldosen or PPGH-model (di-
agram). As it is seen from Figure 1, in unstimulated cells
STAT5a is complexed with inactive ERK that binds to STAT5a
via its C-terminal substrate recognition domain to an un-
known region on STAT5a. Then via its active site it binds
to the C-terminal ERK recognition sequence in STAT5a. On
the other hand, upon GH stimulation, MEK activates ERK
through phosphorilation of specific threonine and tyrosine
residues in ERK. As shown in the paper of Pircher et al. [15],
the cytosol and nuclear extracts of in vitro cells were an-
alyzed using Western blotting method; by using antibodies
against ERK1/2, active ERK1/2, and STAT5a. The relation in
Figure 1 was derived from theWestern blotting qualitative re-
sults. Later, other publication revealed the insides of the two
ERK/MAPK and JAK/STAT pathways. It is already known
that during growth factor stimulation, the ERK phosphoryla-
tion cascade is linked to cell surface receptor tyrosine kinases
(RTKs) and other upstream signaling proteins with onco-
genic potential (Blume-Jensen and Hunter [16]). The MAP
kinases ERK1 and ERK2 are 44- and 42-kDa Ser/Thr kinases,
with ERK2 levels higher than ERK1 (Boulton et al. [17, 18]).

From the diagram in Figure 1 we can write the follow-
ing system of ordinary differential equations for the kinet-
ics of STAT5a/S phosphorylation and ERK activation, de-
scribed by concentration variables e1, e2, s1, s2 denoting con-
centrations of ERK-inactive, ERK-active, STAT- and STAT-
phosphorylated, respectively. It has the form

de1
dt

= �k1e1s1 + k2e2,
de2
dt

= k1e1s1 � k2e2,

ds1
dt

= �k1e1s1 + k3s2 + I ,
ds2
dt

= k1e1s1 � k3s2 � I ,

(1)

where k1 is proportional to the frequency of collisions of ERK
and STAT protein molecules and present rate constant of re-
actions of associations; k2 and k3 are constants of exponen-
tial growths and disintegrations; I > 0 inhibitor source re-
spectively. The source I inhibits the phosphorylation of non-
phosphorylated STAT5a. A more concrete interpretation of
the inhibitor I can be given in connection with the role of
the SOCS proteins in linking JAK/STAT pathway. Biological
responses elicited by the JAK/STAT pathway are modulated
by inhibition of JAK (and respective attenuation of STAT) by
a member of the suppressors of cytokine signaling (SOCS)
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Figure 1: PPGH-diagram for STAT5a interaction with ERK.

proteins. Thus mathematically, as a first approximation we
can write

I = kΣ, (2)

where Σ is a constant concentration of SOCS proteins and k
is a reaction rate constant of inhibition, respectively. It is clear
that if Σ increases, the term I increases too and vice versa.

To analyze (1) we pay firstly attention that only two equa-
tions of the four ones are independent. It is easy to show that
between the concentrations e1, e2, s1, s2 there exist the rela-
tions

e1 + e2 = E, s1 + s2 = S, (3)

where

E = e1(0) + e, S = s1(0) (4)

are initial values in the interval (0,1) of the sums of cor-
responding concentrations of inactive and active ERKs and
nonphosphorylated and phosphorylated STATs. The rela-
tions

e01 = E � e � e02, e02 = k3s
0
2 + kΣ

k2
,

s01 = S� s02, s02 = s02

(5)

present the steady state of (1). The notation e in (4)-(5) is
a noninteracting part of the concentration of ERK proteins.
Moreover, s02 is a positive real root of the quadratic equation

α
(
s02
)2

+ βs02 + γ = 0, (6)

where

α = k1k3
k2

> 0,

β = k1kΣ

k2
� k1k3

k2
� (k1E + k3

)
,

γ = k1ES� k1kΣS

k2
� k5Σ.

(7)
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The eventual negative or complex roots have not physical
sense. From the expressions (7) for β and γ we conclude that
they become respectively positive and negative with large ab-
solute values when Σ is large. Then, from the formula of the
roots of (6)

(
s02
)
1,2 =

�β �
√
β2 � 4αγ

2α
, (8)

it follows that in this case (Σ is sufficiently large) (s02)1 is al-
ways positive and (s02)2 is negative. Moreover we can choose
(s02)1 large by choosing corresponding large Σ (high concen-
tration of SOCS proteins). We could do all this indepen-
dently of the values of E and S (e.g., E sufficiently small and
S large). The smallness of E follows from the consideration
that the inactive ERK concentration could in principle con-
tain both participating e1 and not participating e parts in the
ERK and STAT interaction.

Further we replace e1 and s1 from (3), respectively, in the
second and fourth equations of (1). As a result we obtain the
two-dimensional system

de2
dt

= k4Σ + k1ES�
(
k1S + k2

)
e2 � k1Es2 + k1e2s2,

ds2
dt

= �k5Σ + k1ES� k1Se2 �
(
k1E + k3

)
s2 + k1e2s2,

(9)

having a steady state

e02 = k3s
0
2 + kΣ

k2
, s02 =

(
s02
)
1. (10)

It is clear that if the equilibrium (10) of the two-
dimensional system (9) is stable, then the equilibrium (5)
of the four-dimensional system (1) is stable too. In order to
analyze the stability of the equilibrium (10) we linearize (9)
around (10) by substituting the changes

s2 = s02 + ξ, e2 = e02 + η, (11)

where ξ, η are variations (disturbances) around the steady
state. Then the variation equations of the model (9) take the
form

dξ

dt
= aξ + bη + k1ξη,

dη

dt
= cξ + dη + k1ξη,

(12)

where for the coefficients in the right-hand side, the follow-
ing formulas are valid

a = k1
(
k3s

0
2 + kΣ

)

k2
� k1E � k3 = c � k3,

b = k1
(
s02 � S

)
,

c = k1
(
k3s

0
2 + kΣ

)

k2
� k1E = k1

(
e02 � E

)
,

d = k1
(
s02 � S

)� k2 = b � k2.

(13)

The Routh-Hurwitz conditions for stability of the steady
state (10) have the form

2γ = �(a + d) = k2 + k3 + k1
(
E � e02

)
+ k1

(
S� s02

)
> 0,

ω2
0 = ad � bc = k2k3 + k1k2

(
E � e02

)
+ k1k3

(
S� s02

)
> 0.
(14)

In view of the first formula of (10) we can conclude the fol-
lowing.

(1) At the absence of noninteracting ERK proteins, when
E = e1 + e2 is strictly valid, the conditions (14) are satisfied,
because in this case the inequalities E � e02 > 0, S � s02 > 0
always hold and the coefficients k1, k2, k3 are positive too (by
definition).

(2) When the concentration of noninteracting ERK pro-
teins is sufficiently large, the inequalities (14) become oppo-
site.

(3) For small E, large S and Σ, the following relations are
possible: a > 0, c > 0, b < 0, d < 0 under condition that (14)
hold. These are necessary conditions for such named Turing
bifurcation of the distributed version of the model (12).

If the disturbances ξ and η are sufficiently small, then the
system (12) can be reduced to the following linear oscillator
with attenuation and under external influence

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = f (t), (15)

where the new variable x(t) presents both signals ξ and η.
The function f (t) presents some permanent external influ-
ence on ξ and η. The analysis of (15) is well known and we
present here only the most essential of the results. The func-
tions f (t) and x(t) can be presented in the form of the fol-
lowing Fourier-integrals:

f (t) =
∫ +�

��

F(ω)eiωtdω, x(t) =
∫ +�

��

X(ω)eiωtdω, (16)

where the functions F(ω) and X(ω) are spectral densities of
the functions f (t) and x(t), respectively. By substituting (16)
in (15) we obtain
∫ +�

��

X(ω)
(� ω2 + ω2

0 + 2iωγ
)
eiωtdω =

∫ +�

��

F(ω)eiωtdω,

(17)

from where we find

X(ω) = F(ω)
(
ω2
0 � ω2

)
+ 2iωγ

. (18)

If the attenuation γ is small, what seems possible in view
of the formulas (14), then X(ω) can be too large, when the
external frequency ω is near the resonant frequency ω0. Thus
in the Fourier spectral density of x(t) the most large are
X(ω0) and X(�ω0), when we can talk about resonance phe-
nomenon in signaling.

3. MULTICOMPONENT ONE-DIMENSIONAL
DYNAMICAL SYSTEMWITH DISTRIBUTED
VARIABLES

The role of diffusion in reaction-diffusion systems of the
cell becomes significant when reactions are relatively faster
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(but not too very) than diffusion rates and is known in
the literature as spatial distributed process. Sometimes the
term crowding is used to denote a more specific type of spa-
tial distribution (Takahashi et al. [19]). The physicochemical
essence of this phenomenon lies in the circumstance that the
state of phosphorylation of target molecules with spatially
separated membrane-localized protein kinases and cytoso-
lic phosphatases depends essentially on diffusion (Kholo-
denko et al. [20]). The crucial coupling of diffusion and
noise is implied by the fact that subcompartments diffusively
formed by localized proteins can definitely alter the effect
of noise on signaling outcomes (Bhalla [21]). The very high
protein density in the intracellular space, commonly called
molecular crowding, can augment the spatial effect. Conse-
quently, molecular crowding can also alter protein activi-
ties and break down classical reaction kinetics (Schnell and
Turner [22]). In the remainder of this article, we develop a
mathematical approach that can be used to model and sim-
ulate the consequences of spatial distribution. Although we
will only consider MEK/ERK and JAK/STAT-signaling path-
ways, most discussions in this paper should also be applica-
ble to other intracellular phenomena. They involve reaction-
diffusion processes as EGF signaling pathway, interleukins
IL2, IL3, and IL6 signaling pathways, inhibition of cellular
proliferation in Gleevec, PDGF signaling pathway, or TPO
signaling pathway.

It is known that signalling pathway MEK/ERK can be ac-
tivated and regulated by dynamic changes in their organiza-
tion both in time and space. The JAK-STAT signaling cascade
is also characterized by the activation of a JAK-kinase that
is bound to the cytoplasmic domain of a cell surface recep-
tor such as the erythropoietin receptor (EpoR) (Swameye et
al. [23]). Moreover, in the paper of Ketteler et al. [24] it is
shown that a receptor harbouring the GFP (Green Fluores-
cent Protein) inserted near the two STAT5 binding sites in the
EpoR cytoplasmic domain retains full biological activity. In a
similar way, we know from Kolch [25] that the ERK pathway
features dynamic subcellular redistributions closely related to
its function. As a rule the activation of Raf-1 and B-raf ensue
with the binding to Ras resulting in the translocation of Raf
from the cytosol to the cell membrane. Many questions arise
however in both JAK/STAT and MEK/ERK for clarifying dy-
namic details of time-space effects. In order to answer them
we should develop a general approach to modeling the spe-
cial relocalization process in the cell.

The variation of signal components along time and space
(in the cell) can be described by such a named diffusion-
reaction equation, having the form

∂c

∂t
= f (c) + k

∂2c

∂x2
, (*)

where c is the concentration of the signal component (as a
rule—some protein), t is the time, k is a diffusion coefficient
of signal molecules, f is a velocity of production and con-
sumption of the signal component, what is in principle non-
linear function of c (Georgiev et al. [26]). In this way (*) is a
nonlinear differential equation in partial derivatives. Its de-
duction can be found in the book of Berg [27].

The diffusive coefficient predetermines the range of dif-
fusion signal components by the well-known formula for the
dependence of the range radius on the squared root of the
diffusive coefficient. It is known that the signal network par-
ticipating in the morphogenesis of the biological develop-
ment is considered as dependent on the local activation of the
components and their global inhibition (Berg [27]; Nagorcka
and Mooney [37]; Painter et al. [28]). What is of interest in
our paper is the possibility that similar space localized re-
actions can be modeled by small diffusive coefficients for the
components with positive feedback loops (activation) and by
large diffusion coefficients for the components with negative
feedback loops (inhibition). Concerning these, here the con-
cepts of stability and instability are widely treated in general
sense and applied to corresponding ERK and STAT spatial
models. For this purpose, Lyapunov’s method of first approx-
imation is systematically applied. In the literature, the sta-
bility analysis of reaction-diffusion equations (rde) is often
connected with the realization of possibility that dynamical
systems in the infinite phase space are to be reduced to low-
dimensional systems. These are problems of reduction possi-
bly solvable by such named methods of projection, based on
the known Fredholm theorem (Iooss and Joseph [38]).

In this section we introduce a generalization of the
monocomponent rde in the form (*) to multicomponent
case of many concentrations. For this purpose we define
firstly some general notions. We call systems with distributed
variables when the connections between neighbor points of
space are taken into account by the diffusion law of molecu-
lar motion from the higher to lower concentrations. In one-
dimensional case (not monocomponent) when the diffusion
occurs along space coordinates, the full system of differential
equations by accounting the diffusive terms can be written in
the form

∂ci
∂t

= fi
(
c1, c2, . . . , cn

)
+Qi(x), i = 1, 2, . . . ,n, (19)

where the functions Qi(x) define dependence of the concen-
trations c1, c2, . . . , cn on the space coordinate x, and the non-
linear functions fi(c1, c2, . . . , cn) in the right-hand side cor-
respond to a “point” model, that is, with concentrated pa-
rameters. The very spatial distribution in the cell is presented
by reaction-diffusion process of interaction between proteins
and protein-complexes of the signaling pathway and takes
place in some intracellular volume described below.

Let us assume that the solution of (19) has the form

ci = ci(t, x). (20)

In order to find in explicit form the functions Qi(x), we con-
sider the signal pathway as being contained in a simple intra-
cellular domain having the form of long narrow tube with a
length l and cross section S (Figure 2). In this tube we sepa-
rate an elementary volume ΔV with limit coordinates x and
x + Δx. Thus we have ΔV = SΔx. The mass ΔMx of the
substance (protein or protein-complex) moving through the
tube section with coordinate x is proportional to the gradi-
ent of concentration Δci/Δx in direction x and to the time
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interval [t, t + Δt] when the diffusion occurs

ΔMx = �DΔci(x, t)
Δx

SΔt, (21)

where D is a diffusion coefficient, defined by the properties
of solution substances.

In spite of the other limit of the volume with coordinate
x + Δx, in the opposite direction and during the same time
interval, it diffuses a mass

ΔMx+Δx = D
Δci(x + Δx, t)

Δx
SΔt. (22)

In this way, the total mass variation in the elementary volume
ΔV at the expend of diffusion is

ΔM = ΔMx+Δx + ΔMx = DSΔt

Δx

[�Δci(x, t) + Δci(x + Δx, t)
]
,

(23)

and the variation of concentration ci is presented by

Δci = ΔM

ΔV
= ΔM

SΔx
= DΔt

Δx

[
Δci(x + Δx, t)

Δx
� Δci(x, t)

Δx

]

.

(24)

By limit transition to Δx � 0 we obtain

Δci = DΔt
∂2ci(x, t)

∂x2
. (25)

By definition, in the absence of biochemical reactions in cor-
respondence with (19) we have Qi = lim(Δci/Δt), when the
limit transition Δt � 0 takes place. Thus, at the same transi-
tion we can write

Qi = Di
∂2ci(x, t)

∂x2
, (26)

where the quantities Qi have the same physical sense as in
(1). Therefore, the distributed system (1) in case of one-
dimensional diffusion has the form

∂ci
∂t

= fi
(
c1, c2, . . . , cn

)
+Di

∂2ci(x, t)
∂x2

, i = 1, 2, . . . ,n,

(27)

where the nonlinear functions fi(c1, c2, . . . , cn) correspond
as before to the point model and Di(∂2ci(x, t)/∂x2) corre-
spond to the diffusion transport between the neighbor vol-
umes. Equation (27) presents a system of nonlinear differen-
tial equations in partial derivatives. In order to analyze qual-
itatively and solve quantitatively these equations, it is neces-
sary to fix some initial conditions in the form of initial dis-
tribution of the unknown concentrations ci along the space
coordinate x in the moment t = 0, that is,

ci(0, r) = ϕi(x), i = 1, 2, . . . ,n. (28)

Moreover, the values of concentrations at the boundary of
the reaction volume Vof the signal pathway must be given

N

x x + Δx

S M

Figure 2: Scheme of spatial reaction-diffusion volume in cell (M-
membrane, N-nucleus).

too. If the reaction volume of the pathway is sufficiently large,
then it is not necessary to take boundary conditions.

It is of interest to know the cases when (27) can be re-
duced to a system with concentrated parameters (point sys-
tem). They are the following.

(1) When all coefficients of diffusion vanish, that is, Di =
0. In this case the protein molecules and protein complexes
will not collide each the other and the biochemical reactions
of the signaling pathway will not occur. A signal pathway
does not exist.

(2) If the diffusion coefficients are very large (Di � �),
the diffusion velocity will be large with respect to the rate of
biochemical reactions. Then before the essential variation of
concentrations at the expense of the biochemical reactions,
the protein molecules and protein complexes will displace
through the whole pathway volume. Thus after some very
short time of relaxation, the solution of (27) will approach
very near to the solution of corresponding model with dis-
tributed variable of the pathway.

(3) When the outer conditions (out of the reaction vol-
ume of the pathway) and initial conditions are homogeneous
in whole volume, that is, ϕi(x) = ϕi = const, that means the
diffusion is absent and it is also sufficient to consider only a
point system (with concentrated variables).

The specific applications of systems with distributed vari-
ables (concentrations) of type (27) to mathematical descrip-
tions of spatial relocalization processes in cell present diffi-
cult problems. That is why we will consider only some simple
examples in order to illustrate the application of similar sys-
tems to describing intracellular processes. For this purpose
we should note first of all that the biological systems with
distributed variables (including also signaling pathways) be-
longs to such called active distributed systems. They are char-
acterized by a sequence of properties called qualitative partic-
ularities. These are the emergence of nerve excitation (action
potential) in the nerve cell, autocontraction of the cardiac
cell and other instabilities and bifurcations, leading to vari-
ous regimes of functioning in cell differentiation and prolif-
eration. It is reasonable to expect that paradigmatic models
of type of (27) can be used to describing processes of proteins
distribution in the cell at signaling pathway level. What is of
interest in this case is that the form of nonlinear functions fi,
the relationships between parameters and their values deter-
mine the regime of system functioning: stable, not depend-
ing on time, nonhomogenous space solutions, traveling im-
pulses, synchronic self-oscillations of the whole pathway or
of the separated parts only.

In the next sections we will restrict the consideration only
to the following basic stages of analyzing distributed systems
(27).
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(1) Finding steady state homogeneous or nonhomoge-
neous in the space solutions constant along the time.

(2) Studying the stability of the found steady state solu-
tions.

(3) Evolution of distributed system along time and ap-
pearance of dissipative structures in the signaling pathway.

4. STABILITY ANALYSIS OF THE HOMOGENEOUS
STEADY STATE OF ERK AND STAT INTERACTION
WITH DIFFUSION

Now we apply the procedure developed in the previous sec-
tion to the dynamical model of ERK and STAT interaction
in the form (12). As a result we obtain the following two-
dimensional system with distributed parameters:

∂ξ

∂t
= aξ + bη + k1ξη +Dξ

∂2ξ

∂r2
,

∂η

∂t
= cξ + dη + k1ξη +Dη

∂2η

∂r2
,

(29)

where r is the space coordinate from the cell membrane to the
nucleus,Dξ ,Dη are coefficients of diffusion of the concentra-
tion deviations (disturbances) ξ, η respectively. In order to
analyze qualitatively and solve quantitatively these equations,
it is necessary to fix some boundary conditions for the gradi-
ents of concentrations at the cell membrane and nucleus in
the form

∂ξ

∂r

∣
∣∣
∣
∣r=0
r=l

= 0,
∂η

∂r

∣
∣∣
∣
∣r=0
r=l

= 0, (30)

where l is the distance between the membrane and nucleus.
The steady state of (29) is homogeneous and has the form

ξ0(t, r) = 0, η0(t, r) = 0. (31)

It is equivalent to the homogeneous equilibrium

e02(t, r) =
(
k3s

0
2 + kΣ

)
/k2, s02(t, r) = s02. (32)

of the model reaction-diffusion system of ERK and STAT in-
teraction

ds2
dt

= �kΣ + k1ES� k1Se2

� (k1E + k3
)
s2 + k1e2s2 +Ds

∂2s2
∂r2

,

de2
dt

= kΣ + k1ES�
(
k1S + k2

)
e2

� k1Es2 + k1e2s2 +De
∂2e2
∂r2

.

(33)

Here Ds = Dξ and De = Dη.
Our mathematical model (1), (2), (29)–(33) of reaction-

diffusion is based on the oversimplified model of (Pircher et
al. [15]), Figure 1, obtained by qualitative and not quantita-
tive Western blotting. That means the mathematical analysis
of our model despite of its high complexity (e.g., high num-
ber of parameters of the system) must be also qualitative and

not quantitative one. In view of this we will use the language
of the nonlinear dynamical systems theory, which is qualita-
tive and very similar to the traditional biochemical one, be-
ing verbal and needing mathematical accuracy (in qualitative
sense). Certainly, similar approach requires verification of a
qualitative correspondence between the effects of theoretical
predictions and experimental measurements. In particular, it
is in concordance with claiming qualitative scaling relation-
ship in terms of Tichonov’s theorem (Tichonov [29]), as we
will do further.

To investigate the stability of (31), (32), we should obtain
the solutions of the linear system

∂ξ

∂t
= aξ + bη +Dξ

∂2ξ

∂r2
,

∂η

∂t
= cξ + dη +Dη

∂2η

∂r2
,

(34)

which is valid for small disturbances ξ, η. If the solution of
(34) attenuates, then the homogeneous steady state (31) (or
(32)) is stable. Otherwise, it is unstable and an emergence of
dissipative structures is possible in principle.

Following the paper (Turing [30]), we search for solution
of the system (34) at boundary conditions (30) in the form

ξ(t, r) = Aeptei2πr/λ, η(t, r) = Beptei2πr/λ. (35)

For infinite one-dimensional space the value of the wave-
length λ changes continuously from 0 to �, and in case of
segment (as it is our case), λ takes discrete values. The com-
plex frequency p is defined from the quadratic equation

⌊
p � a +

(
2π
λ

)2
Dξ

⌋⌊
p � d +

(
2π
λ

)2
Dη

⌋
� bc = 0. (36)

Consider a relationship between the real part of roots of
(36) and the parameter u = (2π/λ)2 (the square of wave
number). Let us now accept thatDξ > Dη, whereDξ is the dif-
fusion coefficient of the molecules of STAT5a protein, which
are larger than that of ERK noted by Dη. If bc > 0, then both
roots p1,2 are real numbers for every value of λ (Figure 3).
If bc < 0, then p1,2 are complexly conjugated numbers for
wavelength in the interval 4π2/u4 � λ2 � 4π2/u3 (Figure 3),
where u3 and u4 are equal to

u3,4 = �(a� d)�
�
�bc

Dξ �Dη
. (37)

In every graph of Figure 3, we can separate 3 regions: (I) both
roots p1,2 have positive real part, that is, Re p1,2 > 0; (II) one
of the roots has a positive and the other—negative real parts,
that is, Re p1 > 0, Re p2 < 0; (III) both roots p1,2 have nega-
tive real parts, that is, Re p1,2 < 0. By using the terminology
of the qualitative theory of dynamical systems, we say that
the linear system (34) for wavelengths of the region I has a
fixed (singular) point of the type of unstable knot (or focus);
for wavelengths of the region (II) a fixed point of the type of
saddle; for wavelengths of the region (III) a fixed point of the
type of stable knot or focus. The boundaries of the region (II)
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Re p1,2 I II III

0
u2

u1
u

(a)

II III

0
u1

(b)

I III

0
u3 u4

(c)

I III II III

0
u3 u4

u2 u1

(d)

III II III

0
u2 u1

(e)

III

0

(f)

Figure 3: Dependence of Re p1,2 on u = (2π/λ)2.

on the straight line of the parameter u are defined by the val-
ues of u1, u2 for which one of the real parts Re p1,2 becomes
zero:

u1,2 =
[(
aDη + d �Dξ

)

�
√
(
aDη + d �Dξ

)2 � 4DξDη(ad � bc)
]

1
2DξDη

.

(38)

It can be shown that under perturbations with wavelength
of the region I in nonlinear distributed system can emerge
waves with final amplitude; under perturbations with wave-
length of the region (II) spatially periodical steady states
regimes (such named dissipative structures) emerge.

5. STABILITY ANALYSIS OF THE INHOMOGENEOUS
STEADY STATE OF ERK AND STAT INTERACTION
WITH DIFFUSION

Let us consider again the distributed nonlinear model (29) of
ERK and STAT interaction under boundary conditions (30)
from the previous section. We pay attention that ξ and η are

finite deviations (disturbances) of the STAT and ERK protein
concentrations from the steady state values (10). The last ob-
tained by equating to zero the right-hand sides of the ERK
and STAT interaction model with concentrated parameters
(i.e., ordinary differential equations) (9). There k1 is con-
sidered as a relatively small (with respect to �a�) coefficient,
proportional to the frequency of collisions of ERK and STAT
protein molecules and presents a rate constant of reactions of
associations, and Σ is sufficiently high (to assure s02 > 0).

In steady state approximation the model (29) takes the
form

Dξ

d2ξ

dr2
= �aξ � bη� k1ξη,

Dη
d2η

dr2
= �cξ � dη � k1ξη.

(39)

Further we assume the inequality Dξ 	 Dη in view of the
fact that the ERKmolecule is smaller than STAT one (Pircher
et al. [15, 31]). This circumstance can be related to the fact
that STAT pathway tends to be much more rapid than the
ERK one. For this purpose we consider the first equation of
(39) to be linear with respect to ξ and can be treated as an
attached system in accordance with the Tichonov’s theorem
(Tichonov [29]). Next we take into consideration that η is a
sufficiently small “constant.” Thus the attached system has a
stable steady state of the center type (then well-known Lya-
punov’s definition of stability is satisfied). After replacing the
steady state value of ξ from the first equation in the second
one (the degenerate system), the last is obtained in the form

Dη
d2η

dr2
= bk1η2 + bcη

a + k1η
� dη. (40)

The corresponding reaction-diffusion equation is

∂η

∂t
= �bk1η

2 + bcη

a + k1η
+ d η +Dη

∂2η

∂r2
, (41)

under boundary condition

∂η

∂r

∣
∣∣
∣
∣r=0
r=l

= 0. (42)

After developing the first two terms in the right-hand side of
(41) in a Taylor’s series centered in η = 0 and retaining only
the terms up to cubic power we obtain

∂η

∂t
= bk21

a3
(a� c)η3 +

bk1(c � a)
a2

η2 +
ad � bc

a
η +Dη

∂2η

∂r2
(43)
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under the same boundary conditions (42). This cubic poly-
nomial approximation means we accept a weak nonlinear-
ity (but not linearization) of the model (29), that is, k1 is
sufficiently smaller than �a� or k2, k3 to assure the approx-
imation validity. The last inequalities follow from the bio-
chemical consideration that the processes of ERK inactiva-
tion and STAT dephosphorylation are faster than that of ERK
and STAT interaction. The last being of molecular recogni-
tion type (Pircher et al. [15, 31]) with possible scaffolding
mechanism to be assumed further.

Let us now substitute in (43) the perturbation solution
η(t, r) = η(r) + ω(t, r), where η(r) is an inhomogeneous
steady state solution of (41) and ω(t, r) is a small variation
(perturbation). We obtain the next variation equation

∂ω

∂t

=
{
3bk21
a3

(a� c)η2+
2bk1(c � a)

a2
η +

ad � bc

a

}

ω +Dη
∂2ω

∂r2
,

(44)

under initial condition (playing the role of a dissipative struc-
ture in this case)

ω(0, r) = ϕ(r), (45)

and boundary conditions

∂ω

∂r

∣
∣∣
∣
∣r=0
r=l

= 0. (46)

By applying the standard procedure similar to that in the pre-
vious Section 4, the solution of (44) can be obtained in the
form

ω(t, r) =
�∑

n=0
ane

Q(η)t cos
√
λnr, (47)

where

an = 2
l

∫ l

0
ϕ(r) cos

√
λnr dr, λn =

(
nπ

l

)2
, (48)

Q(η) = 3bk21
a3

(a� c)η2 +
2bk1(c � a)

a2
η +

ad � bc

a
�Dηλn.

(49)

Next we denote

3bk21
a3

(a� c) = �θ, 2bk1(c � a)
a2

= �τ,
ad � bc

a
�Dηλn = �γ,

(50)

where θ, τ, γ are positive numbers in view of the relations

a<0, b<0, c<0, d<0, Dξ	Dη, c � a=k3 > 0,
(51)

being valid at the absence of noninteracting ERK proteins.
Then the expression (49) takes the form

Q(η) = �θη2 � τη � γ = �θ(η � η1
)(
η � η2

)
. (52)

Here

η1,2 =
1
2θ

(
� τ �

√
τ2 � 4θγ

)
(53)

are the roots of the quadratic polynomialQ(η). There are two
negative steady state values of the deviation η from the steady
state value of the concentration e02 assumed to be larger than
the corresponding deviations. It is easy to show that Q(η) is
negative when the steady state concentration is out of the in-
terval between the two roots mentioned. In this case the per-
turbation solution (47) attenuates and the dissipative struc-
ture (45) is stable, thus it could really exist. For a steady
state deviation smaller than the bigger root and larger than
the smaller one, Q(η) is positive if the structural wave num-
ber λn or diffusion coefficient Dη is sufficiently small and
then the dissipative structure (45) is unstable and disappears.
Thus too low and too high steady state concentrations are in-
dicative for the dissipative structures existence, but the aver-
age ones are not. Following this, in the next section it will
be shown how the well-known scaffolding effect (Stewart et
al. [32]; Schaeffer et al. [33]; Teis et al. [34]) can be related to
the described behavior of η (activated ERK).

6. HYPOTHETICALMECHANISMOF STAT
SCAFFOLDING ERK PATHWAY

In terms of the above described stability analysis, the magni-
tude of initial disturbance η of activated ERK depends criti-
cally on its own value. Corresponding initial values of η can
amplify or attenuate in a regime of instability or stability re-
spectively. The dynamical interpretation of ERK criticality
consists in the effect above theoretically established that in
some interval of ERK concentration the ERK pathway is un-
stable. That means initial concentration of ERK belonging to
this interval does not conserve its amplitude but amplifies.
Thus ERK pathway is sensitive at intermediate concentrations
of ERK. Out of this interval of average ERK concentrations,
the ERK pathway becomes insensitive, that is, the distribu-
tion conserves its magnitude unchanged.

This purely qualitative consequence from our model can
be explained physically by hypothetical STAT scaffolding
mechanism of ERK signaling, presented in Figures 4 and 5.
Before the latter mechanism can be addressed, we need to
define a scaffold as a protein whose main function is to bring
other protein together for them to interact. Such a protein usu-
ally has many protein binding domains what is not yet es-
tablished for STAT. In the basic work (Pircher et al. [15]) it
is mentioned about “unknown region on STAT5a.” Concern-
ing that we accept the hypothesis that STAT may has several
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Figure 4: Dependence of ERK activation on the inactive ERK concentration.
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Figure 5: Dependence of ERK activation on the scaffold STAT concentration.

binding domains and we try to draw some conclusions from
this assumption. Papers by Bray and Lay [35] and Levchenko
et al. [36] have provided corresponding insights in general
sense into this hypothesis through computer simulations of
signaling pathways with scaffolds. On the basis of these stud-
ies the first idea we can relate to STAT scaffolding mechanism
is presented in Figure 4. It illustrates the principle of balance:
adding too much ERK concentration we can decrease the
output of ERK scaffolded cascade, just as adding too much
scaffold STAT can (Figure 5). The analogy of the presented
simple mechanism with the dynamical behavior of ERK sig-
naling is evident: in both cases ERK pathway amplifies signal
for intermediate concentration of scaffold STAT and does not
amplify it for low and high concentrations.

In Figure 5 it is seen again a scheme like combinatorial
inhibition. Signaling down scaffolded ERK cascade is a ques-
tion of balance: if there is too small STAT concentration, ERK
signaling will be low (left). At an intermediate STAT con-
centration, the ERK signaling will be high (center). Once the
STAT concentration exceeds that of the ERK it binds, the sig-
naling begins to decrease (right).

The most important question now is whether ERK and
STAT interaction really exhibits the scaffold mechanism
predicted in this section. With the exception of unknown

number of binding domains of scaffold STAT, for which ne-
cessity to be measured there is good experimental evidence,
there is not much principal objection against the hypotheti-
cal mechanism suggested here.

7. CONCLUSION

The present analysis shows that diffusion (together with cor-
responding biochemical reactions) is likely to play a critical
role in governing the space-temporal behavior of ERK and
STAT interaction system and should not be ignored. In terms
of the reaction-diffusion interaction in ERK and STAT dy-
namical model presented here, the effect of protein scaffold-
ing can be related to a destabilization of inhomogeneous dis-
tributions of protein concentrations.

In view of the fact that the modeling parameters are
usually gathered from biochemical experiments on purified
components while functional effects arise from cell physio-
logical experiments, one does not aim at numerical agree-
ment between experimental data of scaffolding effect and
some modeling prediction. Instead, the modeler should aim
for correct “scaling relationship” in qualitative sense (rela-
tively large and small). The gradual refinement of a corre-
sponding dynamical model (e.g., (29)) should be an iterative
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process. Once the time scale of activation and deactiva-
tion processes of ERK and STAT interaction are qualita-
tively established, one can investigate the robustness (in-
cluding possible stabilities and instabilities of steady states,
oscillations and spatial patterns of the model) by bifurcation
analysis of system behavior in dependence on its parame-
ters. The use of qualitative analysis (in terms of qualitative
theory of dynamical systems) would be in a possible confir-
mation or rejection the structural stability of the signaling
pathway under consideration. It seems established that the
most signaling networks of protein interactions in the cell
are structurally stable within an order of magnitude varia-
tion in kinetics parameters. That is, our model should not
“blow up,” (i.e., concentration of a reactant goes to infinity
or zero) when the parameters are increased or decreased by
less than ten-fold. If, on the other hand, the structural sta-
bility analysis predicts that some components (concentra-
tions) are sensitive to small perturbations in model param-
eters (rate constants), this would not necessarily mean the
model is incorrect. In similar case it could suggest that the
components might be susceptible to external perturbation,
and experimental means to manipulate the biochemical ac-
tivities of the molecule should be used to verify theoretical
prediction.

The present analysis shows that diffusion is an essen-
tial part of cellular complexity inherent to space-temporal
description not only as a set of complex protein networks
within organelles and the cytosol, but also as that of in-
teractions between compartments and the cytosol. A new
generation of microscopic techniques capable of resolving
the intracellular localization of proteins provides evidence
of the biological significance of process dynamically evolv-
ing in both space and time. Computer simulation of physics-
basedmodels, coupled with quantitative space-temporal data
will allow cell biologists to rigorously develop and test com-
plex hypothesis of the dynamical nature of signaling path-
ways.
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