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An improved algorithm for the piecewise-smooth Mumford and Shah functional is presented. Compared to the previous work
of Chan and Vese, and Choi et al., extensions of the key functions u* are replaced by updating the level set function based on
an artificial image that is composed of the diffused image and the original image. The low convergence problem of the classical
algorithm is efficiently solved in the proposed approach. The resulting algorithm has also been demonstrated by several cases.
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1. INTRODUCTION

Image segmentation is one of the fundamental tasks of com-
puter vision. Its goal is to partition a given image into regions
that contain distinct objects. Active contours or “snakes” can
be used to segment objects automatically. This framework
has been used successfully by Kass et al. [1] to extract bound-
aries and edges. One potential problem with this approach is
that the initial curve has to surround the objects to be de-
tected, and interior contours can not be detected automat-
ically. An algorithm to overcome this difficulty was first in-
troduced by Osher and Sethian [2]. Chan and Vese [3] used
a limiting version of Mumford and Shah (MS) [4] function,
where the image was modeled as a piece-constant function.
After that, they [5] extended the model to segment image us-
ing a particular multiphase level set formulation. However,
the MS model in piecewise-constant case cannot detect ob-
jects successfully from noisy images. To overcome the draw-
back, Chan and Vese [6] showed how the piecewise-smooth
MS segmentation problem could be solved using the level set
method, and they had given the piecewise-smooth optimal
approximations of a given image. Although the piecewise-
smooth MS model works better, it requires the initial curve
to be close to the boundaries, or the convergence of the curve
to object boundary will be too slow, and for highly noisy
images, it will almost collapse. Le and Vese [7] addressed
the segmentation problem of images corrupted with addi-
tive or multiplicative noise by decomposing the images into
three components, such as a piecewise-constant component,

a smooth component and noise. Motivated by the Chan and
Vese approach, Lie et al. [8] proposed a variant of a PDE-
based level set method, they solved the segmentation prob-
lem in a different way, that is, by introducing a piecewise-
constant level set function. Instead of using the zero level of
a function to represent the interface between subdomains,
the interface is represented implicitly by the discontinuities
of a level set function. Tsai et al. [9] addressed the prob-
lem of simultaneous image segmentation and smoothing by
approaching the Mumford-Shah [4] paradigm from a curve
evolution perspective. In particular, they defined a set of de-
formable contours as the boundaries between regions in an
image where one could model the data via piecewise smooth
functions and employ a gradient flow to evolve these con-
tours.

In this paper, we propose a very efficient partial differ-
ence equation (PDE)-based algorithm to solve the low con-
vergence problem of the piecewise-smooth MS segmentation
functional. Different from the classical algorithms [6, 10], so-
lution of the extensions of complementary functions u* and
u~ is replaced by updating the level set function on a com-
pound image. The compound image can be regarded as an
intermediate version of the original image so that the evo-
lution of curves can be performed on it to adjust the pose
and provide an additional drive force to speed up the con-
vergence. In this paper, the piecewise-constant MS algorithm
is applied to provide an additional drive force. So, the re-
sulting algorithm has some advantages of being piecewise-
constant MS model, such as faster speed of the evolution of
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curves, better properties in edge preserving, and the evolu-
tion of curves being independent of the choice of the initial
curve.

The rest of this paper is organized as follows. Section 2
describes the MS functional along with several variants,
and introduces the notation. Section 3 describes the im-
proved algorithm. Some results of the numerical experiments
are given in Section 4, which is followed by conclusion in
Section 5.

2. MUMFORD-SHAH MODEL

The Mumford-Shah model is a variational problem for ap-
proximating a given image by a piecewise smooth image
of minimal complexity. Let Q € RY be a bound domain
with Lipschitz boundary, modeling the image domain. Let
up : Q — Rrepresent a grayscale image. To find the segmen-
tation T’ of uy, Mumford-Shah piecewise smooth segmenta-
tion [4] is defined to carry out the following minimization:

inf Enis (u, T | 1)
u,I'

(1)
:J (u—uo)zdx+,uJ [Vul?dx + T,
Q o\r

where p and v are positive parameters, u is the image inten-
sity. It allows the segmented “objects” to have smoothly vary-
ing intensities. Chan and Vese [6] showed how the piecewise-
smooth MS segmentation problem was solved using the level
set method. In their model, two functions u™ and u~ are in-
troduced, such that

u(x) = u"(VH(¢(x) +u (x)(1 - H(¢(x))),  (2)

where H(z) is Heaviside function, and the authors regular-

ized it as
(1+garctan (E)> (3)
Ui €

The two functions u* and u~ are assumed to be C! func-
tions on ¢ = 0 and ¢ < 0, respectively, and with continu-
ous derivatives up to all boundary points, that is, up to the
boundary {¢ = 0}. Substituting this expression into (1), one
can obtain

H(z) =

N | —

inf  E(u*,u,¢ | up)

ut,u=,®lug
- J |ut — u0|2H(¢)dx+J |u= - u0|2(1 — H(¢))dx
Q Q
+‘uL2|Vqu|2H(gb)dx+;4J’Q |Vu’|2(1 — H(¢))dx

+vJQ |VH($))|.
(4)

C )
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FIGURE 1: An image that is composed of u*, u~, and the original
image uy.

Then with ¢ fixed, (4) leads to the two Euler-Lagrange equa-
tions for u* and u~ written as

{(%) : ¢(x, 1) > 0},

ut —uy = pAu,

out

— =0, {(x) : ¢(x, 1) = 0} U Q,
on
_ ~ (5)
U —uy = plAu, {(x) : ¢(x, 1) < 0},
aa”% —0,  {():¢(x1) =0} U

Notice that u* and u~ act as denoising operators on the ho-
mogeneous regions only. No smoothing is done across the
boundary {¢ = 0}, which is very important in image analy-
sis.

Now, keeping u* and u~ fixed, and minimizing Eyns(u*,
u~, ¢ | up) with respect to the function ¢, one can obtain the
motion of the zero level set as the following:

9¢ V¢

3 =5(¢)(VV<W> - |u+—uo|2—y|Vu+|2

(6)
+ |u’—uo|2+‘u|Vu’|2>,

where the delta function is defined as the derivative of the
Heaviside function:

5(z)=1< : ) )

m\e2+ 22

The above (6) with some initial guesses ¢ (t = 0, x) is actually
computed at least near a narrow band of the zero level set.
As a result, computationally, one has to continuously extend
both u* and u~ from their original domain {+¢ > 0} to a
suitable neighborhood of the zero level set {¢ = 0}. Although
u* and u~ can be easily obtained by solving Euler-Lagrange
equations (5), the extensions of u* and u~ are very difficult to
be solved. we have to solve the following degenerate elliptic
linear equations:

uf = V2u*(N,N), {¢ <0},
+
wm o,
on. (8)
ur = V2 (N,N), {¢ >0},
ou~
o =0

Chan and Vese [6] had pointed out three possible ways to
solve the problem, but all of them were difficult to carry out
in practice. So in this paper, a new strategy is proposed to
solve the problem. It will be described in following sections.
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FIGURE 2: Segmenting an artificial image with furry edges: (a) by the improved algorithm with 54 iterations and (b) by the original algorithm

with 725 iterations.
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FIGURE 3: Segmenting a heart image: (a) by the improved algorithm with 201 iterations and (b) by the original algorithm with 1315 iterations.

3. PROPOSED NEW ALGORITHM

To solve the two Euler-Lagrange equations in (5), a new strat-
egy is proposed to drive directly the evolution of curves on a
compound image by an external force to replace the solu-
tion of extensions of u*. Since the evolution of curves cou-
pled with diffusion in the piecewise-smooth MS model, the
resulting image might become very homogeneous in cer-
tain iterations. To drive the evolution of curves, a lot of
approaches, in theory, could be applied for this purpose.
Note that the piecewise-constant MS functional works bet-
ter for homogeneous regions and, in theory, robust, hence
it is the best appropriate candidate to be used for the pur-
pose. As known in previous sections, to keep the evolution

of curves, both u' and u~ have to be continuous extended
from their original domain {+¢ > 0} to a suitable neigh-
borhood of the zero level set {¢ = 0}. Considering that = in
(5) act as a denoising operator on homogeneous regions out-
side or inside the boundaries {¢ = 0}, respectively, therefore
a smoothing diffused image can be obtained by calculating
the union of u* on {¢ > 0} and u~ on {¢ < 0}. Based on
this idea, one can directly develop the level set function ¢ on
the diffused image instead of the extensions of u* and u~.
Because the smoothing operator will blur the boundaries of
objects, the contours or edges of the diffused images will be-
come more and more blurry as the evolution of curves pro-
gresses. To overcome the drawback, a narrowband is defined
on the diffused image and bounded on either side by two
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FIGURE 4: Segmenting of a blood vessel image: (a) by the improved algorithm with 610 iterations and (b) by the original algorithm with 2320

iterations.

curves which are a distance 7 apart, that is, the two curves
are level sets {¢ = =7/2}. Here the pixel points that fall
within the narrowband are obtained from the original image.
Moreover a compound image is composed of u™, u~, and the
region of narrowband as shown in Figure 1. Let 7 denote the
width of the narrowband, and the compound image & can be

represented as follows:
o=l 2o fo—fonfin<z) o

By updating the level set function {¢ = 0} on the com-
pound image & by the piecewise-constant MS functional at
each time steps, computation of u* and u~ will be performed
alternatively based on the new location of the level set func-
tion. Consider that the singularity may happen in flat regions
while [V¢| = 0, thus a small parameter € > 0 is applied. The
algorithm can be outlined as follows.

(1) Initialize the distance functions (/)? j (the initial curve),

setn:O,ug’] —u " =ug,and T = 1.5 foreachn >0
until steady state
(2) Compute u " and u” with (5).

(3) Compute the image é as the current “original” image

o
{gb < —%} U uo{|¢| < %} (10)

~ T
u0=u+{¢>z}uu‘

(4) Compute gb,”“ based on the piecewise-constant MS
functional w1th one time step, as the following:

J

A~ 1
?;1 = E{‘P?J + ml(cl¢?+l,j + Gy
+ C3¢Zj+1 + C4¢irfj,1) + At ()

x [ =v(fig — 1)’ + (51 — )1},

(11)

where
o = IQ ﬁ0H8(¢)dx o = JQ ao(l — Hg(</>))dx
' aH(Qdx 7 o (1 He(¢))dx
Cl = ! >
e+ (Pl = B+ (@0 — 9051)/28)°
C2= 2 1 2’
Ve (@ = G )+ (B jor — $lrj0)/20)
Ve (@lor = G/ + (Pl — 911,/2R))
C4 = ! >

e+ (9l = By )/ + (s — $l1y)/2R)’

At
= 04,

C=14+m(Ci+C+Cs+Cy).
(12)

(5) Set¢f; = ”“ and compute ¢! using (6).

4. NUMERICAL EXPERIMENTS

In this section, we present the results of numerical experi-
ments that were obtained using the improved algorithm. All
tests are performed on personal computer (1.7 GHz CPU
with 512MB of RAM) under the MS-Windows operating
system. The algorithm has been implemented in the Visual
C++ 6.0. For comparison we have used the following pa-
rameter values with the time step At = 0.1, space steps
h =Ax = Ay = 1,y = 1.0, and v = 0.0305 % 255 in
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our experiment, which are the same as those in [11]. The
width of narrowband 7, here 7 = 1.5, is used to create the
compound image, which imposes upper and lower limits to
the level set function. An appropriate band width cannot
only avoid detecting some extra contours which do not cor-
respond to physical edges but can also make the algorithm
more computationally efficient. When 7 = 0 or 7 > 5 the
convergence of the curve to object boundary will become
too slow, although the algorithm still stops at the correct
boundaries of objects. By numerical experiment we found
that better results could be obtained with 7 = 1.0 ~ 3.0
for general images. Figure 2 demonstrates an advantage of
the proposed approach in speeding up convergence. Only
54 iterations were necessary to segment the artificial image
with furry edges (Figure 2(a)) by the improved algorithm.
Figure 2(b) shows the results of segmenting the same image
by original algorithm with 725 iterations taken to reach an
essentially state. In Figure 3 we show a heart image where
the classical algorithm fails to stop at the correct bound-
aries, thus, our algorithm can do better on this kind of image.
Figure 4 demonstrates another advantage of the improved al-
gorithm in preventing nonphysical components on the noisy
image (Figure 4(a)). Figure 4(b) also shows the results of seg-
menting the same image by the original algorithm, and con-
siderable nonphysical components were introduced.

5. CONCLUSION

In this paper, we describe an efficient and reliable improved
algorithm for the piecewise-smooth Mumford-Shah seg-
mentation problem with edge preserving. Unlike the classic
algorithms [6, 10], computing the extensions of functions u*
and u~ is replaced by directly updating the level set func-
tion on a compound image using the piecewise-constant MS
method. We have tested the proposed algorithm by some
medical images and other images, and proved that it is more
efficient, and converges faster than classical one; moreover, it
can work better on some highly noisy images that the clas-
sical algorithms fail to convergence. Like the Chan-Vese ap-
proach, however, there are a few parameters to be determined
carefully for better segmentation results. The difficulties are
how to determine the parameters reasonably, which need to
be researched further.
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