
Hindawi Publishing Corporation
EURASIP Journal on Bioinformatics and Systems Biology
Volume 2011, Article ID 572876, 5 pages
doi:10.1155/2011/572876

Research Article

Inference of Kinetic Parameters of Delayed Stochastic Models of
Gene Expression Using aMarkov Chain Approximation

HenrikMannerstrom,1 Olli Yli-Harja,1, 2 and Andre S. Ribeiro1

1Computational Systems Biology Research Group, Department of Signal Processing, Tampere University of Technology,
P.O. Box 553, 33101 Tampere, Finland

2 Institute for Systems Biology, Seattle, WA 98103, USA

Correspondence should be addressed to Henrik Mannerstrom, henrik.mannerstrom@tut.fi

Received 21 October 2010; Accepted 4 December 2010

Academic Editor: Carsten Wiuf

Copyright © 2011 Henrik Mannerstrom et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose a Markov chain approximation of the delayed stochastic simulation algorithm to infer properties of the mechanisms in
prokaryote transcription from the dynamics of RNA levels. We model transcription using the delayed stochastic modelling strategy
and realistic parameter values for rate of transcription initiation and RNA degradation. From the model, we generate time series
of RNA levels at the single molecule level, from which we use the method to infer the duration of the promoter open complex
formation. This is found to be possible even when adding external Gaussian noise to the RNA levels.

1. Introduction

Gene expression dynamics is influenced by even small
fluctuations on the levels of various molecular species, such
as RNA polymerases and transcription factors. In some cases,
even the presence of a single molecule can cause phenotypic
switching [1]. This makes the cellular metabolism inherently
stochastic [2].

The stochasticity in the abundance of a substance is
in general thought of being noise that obscures a signal
that carries information relevant to the cell. However,
recent evidence suggests that cells may be able to use the
noise component in benefit of their survival [3]. Due to
this, several modelling strategies have been proposed for
accurately accounting for noise in the dynamics of gene
regulatory networks (GRNs) [2, 4–7].

The chemical master equation is a probabilistic descrip-
tion of the dynamics of interacting molecules that fully
captures the stochasticity of their kinetics. However, it is
intractable to solve in the biologically relevant cases.

The stochastic simulation algorithm [8] (SSA) is a Monte
Carlo simulation of the chemical master equation, allowing
the study of complex models of gene expression. In the SSA,
all chemical reactions are assumed instantaneous. However,

several processes during the transcription and translation of
a gene are highly complex, either involving many molecular
species or involving reactions that are not bimolecular (e.g.,
the promoter open complex formation). To account for the
effects of these events on the dynamics of RNA and proteins,
the delayed SSA (DSSA) was proposed [5]. The ability of the
DSSA to model chemical reactions with noninstantaneous
events makes it a good tool to model GRN [6].

Assessing a model’s accuracy and validity is important
[9]. Even if experimental data has been used in model
building, one must also be able to quantitatively rank the
models based on the data. This ranking can be used to
determine realistic parameter values, if these have not been
measured directly, and to choose between models. As single
molecule measurements of gene expression are becoming
available [10], even the most detailed stochastic models can
now be ranked.

Inference methods have been proposed to assess stochas-
tic models of gene expression based on the SSA [11, 12].
Such methods are still lacking for the DSSA. Here, we present
a method that, while requiring additional developments for
analyzing complex gene networks, can be used to determine
underlying features of single gene expression when simulated
by the DSSA.
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One feature in gene expression that has been proposed
to influence noise in RNA and protein levels is the promoter
open complex formation [13]. We use the proposed method
to determine the duration of the promoter open complex
formation from the dynamics of RNA levels of a delayed
stochastic model of transcription.

2. Methods

2.1. Stochastic and Delayed Stochastic Simulation Algorithms.
The Stochastic Simulation Algorithm (SSA) is a Monte Carlo
simulation of the chemical master equation and, thus, is
an exact procedure for numerically simulating the time
evolution of a well-stirred reacting system [8]. Each chemical
species quantity is treated as an independent variable, and
each reaction is executed explicitly. Time is advanced by
stepping from one reaction event to the next. At each step,
the number of molecules of each affected species is updated
according to the reaction formula.

For each reaction r, the stochastic rate constant, cr ,
depends on the reactive radii of the molecules involved in the
reaction and their relative velocities. The velocities depend
on the temperature and molecular masses. After setting
the initial species populations, Xi, the SSA calculates the
propensities ar = cr · hr , for all possible reactions, where hr
is the number of distinct molecular reactants combinations
available at a given moment. Then, it generates two random
numbers, τ ∼ Exp(

∑
ar), the time until the next reaction

occurs, and μ, the reaction to occur. The probability for μ = r
is ar/

∑
ar . Finally, the system time t is increased by τ, and

the Xi quantities are adjusted to account for the occurrence
of reaction μ, assuming it to be an instantaneous reaction.
This process is repeated until no more reactions can occur or
for a defined time interval.

Several steps in gene expression, such as transcripts
assembly, are time consuming [14]. Such complex processes
involve many reactions and events that cannot be modelled
as uni- or bimolecular reaction events. To account for
these events, the “delayed SSA” was proposed [5]. It uses
a “waitlist” to store delayed output events. Multidelayed
reactions are represented as A → B + C(τ1) + D(τ2). In this
reaction, B is instantaneously produced and C and D are
placed on a waitlist until they are released, after τ1 and τ2

seconds, respectively.
The delayed SSA proceeds as follows.

(1) Set t = 0, tstop = stoptime, set initial number of
molecules and reactions, and create empty waitlist L.
Go to step (2).

(2) Generate an SSA step for reacting events to get
the next reacting event R1 and the corresponding
occurrence time t + t1. Go to step (3).

(3) Compare t1 with the least time in L, tmin. If t1 < tmin

or L is empty, set: t = t + t1. Update the number of
molecules by performing R1, adding to L both any
delayed products and the time delay for which they
have to stay in L. This time can be chosen from a
defined distribution. Go to step (4).

(4) If L is not empty and if t1 ≥ tmin, set t = t + tmin.
Update the number of molecules and L, by releasing
the first element in L; otherwise go to step (5).

(5) If t < tstop, go to step (2); otherwise stop.

2.2. Delayed Stochastic Model of Transcription. A delayed
stochastic model of transcription that includes the promoter
open complex formation was proposed in Ribeiro et al.
[6]. This model was shown to match the dynamics of
transcription at the single RNA molecule level [15].

Our model is identical, except that it does not include
an explicit representation of the RNA polymerase. This
simplification is valid when the number of RNA polymerases
does not vary significantly over time in the cell, which is likely
to be the case in normal conditions in E. coli (Reaction (1)):

Pro
kt−→ Pro(τPro) + RNA(τRNA), (1)

RNA
kd−→ ∅. (2)

In Reaction (1), Pro (set to 1 in the begin of the
simulation) is the promoter region of the gene while kt is
the stochastic rate constant of transcription initiation and its
value is set to 0.5 s−1. This value assumes that the number
of RNA polymerases available for transcription is always 40
[6] and that the binding affinity between RNA polymerase
and transcription start site equals the one measured for the
lac promoter [16]. The promoter delay, τPro, is set to 40 s,
in agreement with measurements for the lac Promoter [17].
Also, RNA stands for a fully transcribed RNA molecule, and
τRNA is the time that it takes for the transcription process
to be completed, once initiated. This delay accounts for
the promoter open complex formation (40 s), transcription
elongation (mean value 60 s), and termination. Its value is
randomly generated from a Gaussian distribution with a
mean of 102 s and a standard deviation of 14 s. These values
assume a lac promoter and a gene 2445 nucleotides long
[16, 18].

Note that while Reaction (1) has a rate of kt, each
activation cycle includes the open complex formation delay
of τPro seconds, making the effective mean cycle duration
equal to k−1

t + τPro.
Reaction (2) models RNA degradation. kd is the rate of

degradation and is set to 0.0017 s−1 (10 min mean lifetime),
which is within realistic parameter values for E. coli [19].

In Figure 1 are shown, as examples, levels of RNA
molecules produced by independent simulations. The sim-
ulator ran for 6000 s from which the data from the last 3000 s
was used as “steady state” data.

2.3. Approximative Inference. The system is approximated as
a Markov chain with stationary distribution P and transition
matrix T . As we are only considering steady state conditions,
P and T can be built by thoroughly sampling (≈ 1 × 105

samples) from the simulated model. To compensate for the
sampling error both P and T are “smeared out” with a
kernel of N(0, 0.2). For example, if the raw sampling yields
Tθ(i, j) = p, then after the smearing Tθ(i, j) = 0.98p,
Tθ(i, j − 1) = 0.0062p, Tθ(i, j + 1) = 0.0062p.
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Figure 1: RNA levels from six independent simulations.
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Figure 2: Approximated probabilities for values of τPro inferred
using simulated noiseless data from 10 cells. The true value is 40, the
maximum likelihood value is 46.7 and the expected value is 31.8.

The log likelihood L(θ;X) of the parameter θ = (τPro),
given a time series X can then be computed by

logL(θ;X) = logPθ(X1) +
N∑

i=1

logTθ(Xi,Xi+1), (3)

where Xi is the RNA level at time i.
The likelihood term is evaluated at suitable points over

the full range of possible τPro values, ranging from zero to
the maximum determined by dividing the mean RNA life
time by the mean RNA level (in our case study, this ratio
around 60). Due to the approximation of Pθ and Tθ , the
likelihood term will be nonsmooth and cannot be used as
such. Instead, a quadratic polynomial is fitted to the point
samples. The quadratic fit was chosen because it gives a
likelihood proportional to a truncated normal distribution.
Similar to the application of Bayes’ theorem with a flat, non
informative prior, the likelihood is converted to a probability
distribution by normalizing it to unit probability.

2.4. Error Model. To simulate measurement error, normally
distributed noise with zero mean and 0.5 standard deviation
was added to the simulated time series used for inference.
Any negative values were zeroed.
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Figure 3: Approximated probabilities for values of τPro inferred
using simulated noiseless data from 100 cells. The true value is 40
and the expected value is 41.5.
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Figure 4: Approximated probabilities for values of τPro inferred
using simulated noiseless data from 1000 cells. The true value is 40
and the expected value is 39.2.

3. Results

In all simulations we set the sample interval to 30 s, as this is
currently the shortest interval possible in real measurements
of RNA numbers at the single molecule level [10]. The
inference was made using these point samples.

We applied the method to sample sizes of 10, 100, and
1000 independent time series of length 2970 s (100 time
points). As no external noise sources are applied to these
data, we refer to it as “noiseless” data. Results are shown in
Figures 2, 3, and 4, respectively. As seen, as the sample size is
increased, the better becomes the inference of the true value
of τPro.

Interestingly, as seen from these results, using this
method it is possible to show, even using a small sample size
of 10, that the time length of the promoter open complex
formation measurably affects the dynamics of RNA levels as
previously shown by confronting numerical simulations with
a null model [13].

We now test the robustness of the method to experi-
mental measurement error. For this, to the previous time
series we add Gaussian noise “noisy data” as described in
the Methods section. Results of the inference, using 10, 100
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Figure 5: Approximated probabilities for values of τPro inferred
using simulated noisy data from 10 cells. The true value is 40, the
maximum likelihood value is 40.6 and the expected value is 32.9.
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Figure 6: Approximated probabilities for values of τPro inferred
using simulated noisy data from 100 cells. The true value is 40 and
the expected value is 40.6.
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Figure 7: Approximated probabilities for values of τPro inferred
using simulated noisy data from 1000 cells. The true value is 40 and
the expected value is 40.6.

and 1000 time series, are shown in Figures 5, 6, and 7,
respectively. As the results show, the accuracy of the method
is not significantly affected when the standard deviation of

the external noise is in the range 0 to 0.5. If the noise level in
the data is increased beyond this, the results become biased.

Finally, we note that using 1000 time series for the infer-
ence procedure, the method takes 15 min to be completed on
a contemporary personal computer.

4. Conclusions

We tested an inference method for inferring, from time
series data, kinetic parameters affecting the dynamics of RNA
levels subject to degradation. When inferring the duration
of the promoter open complex formation, we showed that,
for known values of the RNA degradation rate, the method
is accurate and fast. When a reasonable amount of noise
is added to the data the performance is not significantly
affected.

The inference was shown possible when considering only
one previous sample point, by approximating it with a time-
homogeneous Markov chain. This is especially relevant as,
in E. coli, most RNA mean levels are from 1 to a few [19],
implying that the system may have very little memory of far
past events.

While experimentally challenging, it is already possible
to collect time series of RNA levels of living cells close to
the accuracy assumed by the model. This can be done using
a technique that is based on the ability of the MS2d-GFP
protein complex to bind to a target RNA [20]. This system
possesses some limitations, such as the need to maintain
weak transcription rate so as to distinguish individual RNA
molecules [10].

While the present approximative method proposed is still
far from an analytical likelihood, it can serve as a crude
statistical tool to analyze experimental time series data. In the
future, we aim to extend this method to infer other kinetic
parameters associated with the dynamics RNA and protein
levels in prokaryotes. Also, we will apply this method to
determine from real measurements of RNA levels, if these are
influenced by currently unknown processes.
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