
Hindawi Publishing Corporation
EURASIP Journal on Bioinformatics and Systems Biology
Volume 2009, Article ID 617281, 12 pages
doi:10.1155/2009/617281

Research Article

Reverse Engineering of Gene Regulatory Networks:
A Comparative Study

Hendrik Hache, Hans Lehrach, and Ralf Herwig

Vertebrate Genomics-Bioinformatics Group, Max Planck Institute for Molecular Genetics,
Ihnestraße 63-73, 14195 Berlin, Germany

Correspondence should be addressed to Hendrik Hache, hache@molgen.mpg.de

Received 3 July 2008; Revised 5 December 2008; Accepted 11 March 2009

Recommended by Dirk Repsilber

Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an
intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent
years leading to a wide range of mathematical approaches. In practice, different mathematical approaches will generate different
resulting network structures, thus, it is very important for users to assess the performance of these algorithms. We have conducted
a comparative study with six different reverse engineering methods, including relevance networks, neural networks, and Bayesian
networks. Our approach consists of the generation of defined benchmark data, the analysis of these data with the different methods,
and the assessment of algorithmic performances by statistical analyses. Performance was judged by network size and noise levels.
The results of the comparative study highlight the neural network approach as best performing method among those under study.

Copyright © 2009 Hendrik Hache et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Deciphering the complex structure of transcriptional regula-
tion of gene expression by means of computational methods
is a challenging task emerged in the last decades. Large-scale
experiments, not only gene expression measurements from
microarrays but also promoter sequence searches for tran-
scription factor binding sites and investigations of protein-
DNA interactions, have spawned various computational
approaches to infer the underlying gene regulatory networks
(GRNs). Identifying interactions yields to an understanding
of the topology of GRNs and, ultimately, of the molecular
role, of each gene. On the basis of such networks computer
models of cellular systems are set up and in silico experiments
can be performed to test hypotheses and generate predictions
on different states of these networks. Furthermore, an inves-
tigation of the system behavior under different conditions is
possible [1]. Therefore reverse engineering can be considered
as an intermediate step from bioinformatics to systems
biology.

The basic assumption of most reverse engineering algo-
rithms is that causality of transcriptional regulation can be

inferred from changes in mRNA expression profiles. One
is interested in identifying the regulatory components of
the expression of each gene. Transcription factors bind to
specific parts of DNA in the promoter region of a gene
and, thus, effect the transcription of the gene. They can
activate, enhance, or inhibit the transcription. Changes of
abundances of transcription factors cause changes in the
amount of transcripts of their target genes. This process
is highly complex and interactions between transcription
factors result in a more interwoven regulatory network.
Besides the transcription factor level, transcriptional regula-
tion can be affected as well on DNA and mRNA levels, for
example, by chemical and structural modifications of DNA
or by blocking the translation of mRNAs by microRNAs [2].
Usually these additional regulation levels are neglected or
included as hidden factors in diverse gene regulatory models.
Unfortunately, data on protein concentration measurements
are currently not available in a sufficient quantity for
incorporation in reverse engineering analysis. Therefore,
gene expression profiles are most widely used as input for
these algorithms. Probably this will change in future reverse
engineering research.



2 EURASIP Journal on Bioinformatics and Systems Biology

Several reverse engineering methods were proposed in
recent years which are based on different mathematical
models, such as Boolean networks [3], linear models [4],
differential equations [5], association networks [6, 7], static
Bayesian networks [8], neural networks [9], state space
models [10, 11], and dynamic Bayesian networks [12–14].
There are static or dynamic, continuous or discrete, linear
or nonlinear, deterministic or stochastic models. They can
differ in the information they provide and, thus, have to be
interpreted differently. Some methods result in correlation
measures of genes, some calculate conditional independen-
cies, and others infer regulation strengths. These results can
be visualized as directed or undirected graphs representing
the inferred GRNs. For that, a discretization of the results
is necessary for some methods. Each concept has certain
advantages and disadvantages. A historical perspective of
different methods applied until 2002 is given by van Someren
et al. [15]. de Jong [16] and more recently Gardner and Faith
[17] discuss further details and mathematical aspects.

In order to perform a comparative study we have chosen
six reverse engineering methods proposed in literature based
on different mathematical models. We were interested in
applications for the analysis of time series. The methods
should be freely downloadable, easy in use, and having
only a few parameters to adjust. We included two relevance
network methods; the application ARACNe by Basso et al.
[6], which is based on mutual information and the package
ParCorA by de la Fuente et al. [18], which calculates
partial Pearson and Spearman correlation of different orders.
Further, the neural network approach GNRevealer by Hache
et al. [9] is compared. As an example for a Bayesian
approach, the Java package Banjo [13] for dynamic models is
employed. The state space model LDST proposed by Rangel
et al. [10] and a graphical Gaussian model by Schäfer and
Strimmer [7] in the GeneNet package are as well included
in our study. We implemented the applications in a reverse
engineering framework starting with artificially generated
data to compare the different applications under the same
conditions.

Artificial data has been used because validation and
comparison of performances of algorithms have to be
accomplished under controlled conditions. It would have
been desirable to include experimentally determined gold
standard networks that represent the knowledge of all
interactions validated by single or multiple experiments.
Unfortunately, there are not enough gold standard networks
and appropriate experimental data available for a large
comparative study. For such a study one needs a sufficiently
large amount of data of different sizes, different types, that
is, steady state or time series, from different experiments,
for example, overexpression, perturbation, or knockdown
experiments. Therefore we performed in silico experiments
to obtain the required data for our performance tests.

Quackenbush [19] pointed out, that the use of artificially
generated data can help to provide an understanding of
how data are handled and interpreted by various methods,
albeit the datasets usually do not reflect the complexity
of real biological data. Their analysis involved various
clustering methods. The application to synthetic datasets

by computational methods is as well proposed by Mendes
et al. [20] for objective comparisons. Repsilber and Kim
[21] followed also the approach of using simulated data and
presented a framework for testing microarray data analysis
tools.

An artificial data generator has to be independent of the
reverse engineering algorithms to avoid a bias in the test
results. In addition, the underlying artificial GRN of a data
generator has to capture certain features of real biological
networks, such as the scale-free property. For this study we
used the web application GeNGe [22] for the generation of
scale-free networks with an mRNA and protein layer with
nonlinear dynamics and performed in silico perturbation
experiments.

Having specified artificial networks the computed and
the true networks can be compared and algorithmic per-
formance can be assessed with statistical measures. We
used various measures in this study, such as a sensitivity,
specificity, precision, distance measure, receiver operator
characteristic (ROC) curves, and the area under ROC curves
(AUCs).

By means of these measures we characterized the reverse
engineering method performances. It is shown that the
sensitivity, specificity, and precision of all analyzed methods
are low under the condition of this study. Averaged over
all results, the neural network approach shows the best
performances. In contrast, the Bayesian network approaches
identified only a few interactions correctly. We tested dif-
ferent sets of data, including different sizes and noises to
highlight the conditions for better performances of each
method.

2. Methods and Applications

A variety of reverse engineering methods has been proposed
in recent years. Usually a computational method is based
on a mathematical model with a set of parameters. These
model specific parameters have to be fitted to experimental
data. The models vary from a more abstract to a very
detailed description of gene regulation. They can be static or
dynamic, continuous or discrete, linear or nonlinear, deter-
ministic or stochastic. An appropriate learning technique has
to be chosen for each model to find the best fitting network
and parameters by analyzing the data. Besides these model
driven approaches, for example, followed by Bayesian net-
works and neural networks, there are statistical approaches
to identify gene regulations, for example, relevance networks.

For this study we have chosen reverse engineering
applications which belong to one of the following classes:
relevance networks, graphical Gaussian models, Bayesian
networks, or neural networks. In this section we will give an
overview of the basic models and discuss the applications we
used. All software can be downloaded or obtained from the
algorithm developers. An overview is given in Table 1.

2.1. Relvance Networks. Methods based on relevance net-
works are statistical approaches that identify dependencies
or similarities between genes across their expression profiles.



EURASIP Journal on Bioinformatics and Systems Biology 3

Table 1: Reverse engineering applications used in this study. The applications can be downloaded or obtained from the algorithm developers.
See references for more details.

Name Type Info Reference

ARACNe relevance network with
mutual information

C command line Basso et al. [6]

ParCorA
relevance network with
partial Pearson or
Spearman correlation

C command line de la Fuente et al. [18]

GNRevealer neural network C++ command line Hache et al. [9]

Banjo Bayesian network Java command line Yu et al. [13]

LDST state space model Matlab script Rangel et al. [10]

GeneNet graphical Gaussian model R script Schäfer and Strimmer [7]

They do not incorporate a specific model of gene regulation.
In a first step correlation is calculated for each pair of genes
based on different measures, such as Pearson correlation,
Spearman correlation, and mutual information. The widely
used Pearson correlation indicates the strength of a linear
relationship between the genes. In contrast to that Spear-
man’s rank correlation can detect nonlinear correlations as
well as mutual information. It is assumed that a nonzero
correlation value implies a biological relationship between
the corresponding genes. The algorithm ARACNe developed
by Basso et al. [6] uses the Data Processing Inequality (DPI)
for that purpose. In each triplet of fully connected nodes
in the network obtained after the first step, the edges with
the lowest mutual information will be removed. In contrast,
de la Fuente et al. [18] use partial correlations in their
proposed method to eliminate indirect interactions. A partial
correlation coefficient measures the correlation between two
genes conditioning on one or several other genes. The
number of genes conditioning the correlation determines
the order of the partial correlation. In the program package
ParCorA by de la Fuente et al. [18] the partial correlations
up to 3rd order for Pearson and 2nd order for Spearman
correlation are implemented. We compared all provided
correlation measures.

An inferred network from a relevance network method is
undirected by nature. Furthermore, statistical independence
of each data sample is assumed, that is, that measurements
of gene expression at different time points are assumed to
be independent. This assumption ignores the dependencies
between time points. Nevertheless, we applied these methods
on simulated time series data to study the predictive power of
these approaches.

2.2. Graphical Gaussian Models. Graphical Gaussian models
are frequently used to describe gene association networks.
They are undirected probabilistic graphical models that allow
to distinguish direct from indirect interactions. Graphical
Gaussian models behave similar as the widely used Bayesian
networks. They provide conditional independence relations
between each gene pair. But in contrast to Bayesian networks
graphical Gaussian models do not infer causality of a
regulation.Graphical Gaussian models use partial correlation
conditioned on all remaining genes in the network as a

measure of conditional independence. Under the assumption
of a multivariate normal distribution of the data the partial
correlation matrix is related to the inverse of the covariance
matrix of the data. Therefore the covariance matrix has to
be estimated from the given data and to be inverted. From
that the partial correlations can be determined. Afterwards a
statistical significance test of each nonzero partial correlation
is employed.

We used the graphical Gaussian implementation
GeneNet by Schäfer and Strimmer [7]. It is a framework for
small-sample inference with a novel point estimator of the
covariance matrix. An empirical Bayes approach to detect
statistically significant edges is applied to the calculated
partial correlations.

2.3. Neural Networks. A neural network can be considered as
a model for gene regulation where each node in the network
is associated with a particular gene. The value of the node
is the corresponding gene expression value. A directed edge
between nodes represents a regulatory interaction with a
certain strength indicated by the edge weight. The dynamic
of a time-discrete neural network of n nodes is described by
a system of nonlinear update rules for each node value xi:

xi[t + Δt] = xi[t] + Δt

⎡
⎣aiS

⎛
⎝∑

j

wi jx j[t] + bi

⎞
⎠− dixi[t]

⎤
⎦

∀i ≤ n.
(1)

The parameters of the model are the weights W := {wij |
i, j = 1, . . . ,n}, where wij represents the influence of node j
on node i, activation strengths a := {ai | i = 1, . . . ,n}, bias
parameters b := {bi | i = 1, . . . ,n}, and degradation rates
d := {di | i = 1, . . . ,n}. The effects of all regulating nodes are
added up and have a combined effect on the connected node.
The sigmoidal activation function S(x) = (1 + e−x)−1 realizes
a saturation of the regulation strength. Self-regulation and
degradation are implemented in the mathematical model as
well.

A learning strategy for the parameters is the Backpropa-
gation through time (BPTT) algorithm described by Werbos
[23] and applied to genetic data by Hache et al. [9]. The



4 EURASIP Journal on Bioinformatics and Systems Biology

BPTT algorithm is an iterative, gradient-based parameter
learning method which minimizes the error function:

E(x, x̂) := 1
2

∑

t

∑

i

[xi[t]− x̂i[t]]2 (2)

by varying the parameters of the model (W, a,b,d) during
every iteration step. x is the computed values vector and
the values x̂ are the given expression data of the mRNAs at
discrete time points. The computed matrix W of regulation
strength is a matrix of real values, which has to be discretized
to obtain a binary or ternary matrix, representing, ultimately,
the topology.

2.4. Dynamic Bayesian Networks. A Bayesian network is a
stochastic probabilistic graphical network model defined by a
directed acyclic graph (DAG) which represents the topology
and a family of conditional probability distributions. In
contrast to other models nodes represent random variables
and edges conditional dependence relations between these
random variables. A dynamic Bayesian network is an
unfolded static Bayesian network over discrete time steps.
Assuming that nodes are only dependent of direct parents in
the previous time layer, the joint probability distribution of a
dynamic Bayesian network can be factorized:

P(X) = P(X[0])
∏

t

∏

i

P
(
Xi[t] |Xpa[i][t − Δt]

)
, (3)

where X = {X1[0], . . . ,Xn[t]} is the set of random
variables Xi[t] with value xi[t] for each node i at time
t. Xpa[i][t − Δt] represents the set of parents of node i
in the previous time slice t − Δt. The temporal process is
Markovian and homogeneous in time, that means a variable
Xi[t] is only dependent of parents at the time point t − Δt
and the conditional distribution does not change over time,
respectively.

For discrete random variables the conditional probability
distributions can be multinomial. With such a distribution
nonlinear regulations can be modeled, but a discretization
of continuous data is needed. The number of parameters in
such a model increases exponentially with the number of
parents per node. Therefore, this number is often restricted
by a maximum. The program package Banjo by Yu et al.
[13], which we used in this study as an representative for
a Bayesian method, follows a heuristic search approach.
It seeks in the network space for the network graph with
the best score, based on the Bayesian Dirichlet equivalent
(BDe) score. A score here is a statistical criterion for
model selection. It can be based on the marginal likelihood
P(D|G) for a dataset D given a graph structure G. The
BDe score is a closed form solution for the integration
of marginal likelihood, derived under the assumption of
a multinomial distribution with a Dirichlet prior. See, for
example, Heckerman et al. [24] for more details. It requires
discrete values as input. A discretization is performed by the
program. For that, two methods are provided; interval and
quantile discretization. The number of discretization levels
can be specified as well. We used the quantile discretization
with five levels. The output network of Banjo is a signed
directed graph.

2.5. State Space Models. A further reverse engineering
approach is a state space model. They constitute a class
of dynamic Bayesian networks where it is assumed that
the observed measurements depend on some hidden state
variables. These hidden variables capture the information of
unmeasured variables or effects, such as regulating proteins,
excluded genes in the experiments, degradations, external
signals, or biological noise.

A state space model is proposed by Schäfer and Strimmer
[7]. The model for gene expression includes crosslinks from
an observational layer to a hidden layer:

xt = Axt−1 + Byt−1 + wt,

yt = Cxt + Dyt−1 + vt .
(4)

Here, yt denotes the gene expression levels at time t and xt the
unobserved hidden factors. The matrix D captures gene-gene
expression level influences at consecutive time points and the
matrix C denotes the influence of the hidden variables on
gene expression level at each time point. Matrix B models
the influence of gene expression values from previous time
points on the hidden states and A is the state dynamics
matrix. The matrix CB + D has to be determined, which
captures not only the direct gene-gene interactions but also
the regulation through hidden states over time. A nonzero
matrix element [CB + D]i j denotes activation or inhibition
of gene j on gene i depending on its sign.

3. Data

For the comparative study of reverse engineering methods
we generated a large amount of expression profiles from
various GRNs and different datasets. We performed in silico
perturbation experiments by varying the initial conditions
randomly within the network and data generator GeNGe
[22]. A discretization step is followed if required by the
reverse engineering application internally, for example, by
DBN with a quantile discretization.

In a first step we generated random scale-free networks
in GeNGe to obtain GRNs of different sizes. Directed scale-
free networks are generated in GeNGe with an algorithm
proposed by Bollobás et al. [25], for each generated network
a mathematical model of gene regulation is constructed. We
assembled a two-layer system, with an mRNA and a protein
layer. The kinetics of the concentration of an mRNA and
protein pair, associated to an arbitrary gene, are described
by

d[mRNA]
dt

= k1ϕν

(
xt1 , . . . , xtν

)− k2[mRNA],

d[Protein]
dt

= k3[mRNA]− k4[Protein],

(5)

where k1 and k3 are the maximal transcription rate of
the mRNA and translation rate of the corresponding
protein, respectively. k2 and k4 are the degradation rates.
ϕν(xt1 , . . . , xtν ) is dependent of ν concentrations {xti} of
the proteins acting as transcription factors of the gene. A
transcription factor is indexed by ti ∈ T . Note that all the



EURASIP Journal on Bioinformatics and Systems Biology 5

parameters, k1, . . . , k4, ν, the transcription function ϕν, and
the set T of transcription factor indices are gene specific and
can vary between genes.

In the GRN models we used the logic described by
Schilstra and Nehaniv [26] for the transcription kinetics
ϕν. We distinguish between input genes, which have no
regulatory elements in the model and regulated genes, which
have at least one regulator. Input genes have a constant
linear production. In contrast, regulated genes have no
such production. They can only be expressed, if a regulator
bounds to the corresponding promoter region of the DNA.
Therefore, the transcription factors are essential for the
expression of such genes. Other kinetic schemata are also
conceivable but not considered here. With the assumption of
noncompetitive binding and an individual, gene-dependent
regulation strengths {ati} of each transcription factor ti ∈ T
of the gene, we derived the kinetic law:

ϕν

(
xt1 , . . . , xtν

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ν∏

i=1

[
1 + (2ati − 1)

xti
1 + xti

]

−
ν∏

i=1

1
1 + xti

, for ν /= 0,

1, for ν = 0.
(6)

A regulation strength ati > 0 of transcription factor ti
stands for activation and ati < 0 for inhibition of the
gene’s transcription. The second term in the first case of
(6) implements the assumption that regulated genes do
not have a constant production rate. In each generated
network we set 70% of all regulators as activators and the
others as inhibitors. This ratio is arbitrarily chosen, but
is motivated by the network proposed by Davidson et al.
[27], where more activators than inhibitors can be found.
The regulation strengths {ati} are randomly chosen from a
uniform distribution over the interval (0, 4) and (0,−4) for
activators and inhibitors, respectively.

Time series of mRNAs are obtained by first drawing
randomly the initial concentrations of each component of
the model from a normal distribution with the steady state
value of this component as mean and 0.2 as coefficient of
variation. Steady states are determined numerically in suffi-
ciently long presimulations where changes of concentrations
did not anymore occur. The simulations are then performed
using the initial conditions. With this approach we simulated
global perturbations of the system. We inspected the time
series and selected all time series which show similar
behavior, that is, relaxation in the same steady state over
time. From the simulated mRNA values we picked 5 values
at different time steps during the relaxation of the system as
the input data of all reverse engineering algorithms. Note that
all values are in an arbitrary unit system.

To simulate experimental errors we added Gaussian
noise with different coefficient of variations (cvs) to each
expression value in a final step of data generation. The mean
of the Gaussian distribution is the unperturbed value. The cv
represents the level of noise.

We investigated the impact of different numbers of time
series of mRNAs and noise levels on the reconstruction

results. For this study we generated randomly five networks
of sizes 5, 10, 20, and 30 nodes each. For each network
we simulated 5, 10, 20, 30, and 50 time series by repeating
the simulation accordingly with different initial values, as
described above. For a network of size ten and ten time
series, the data matrix contains 500 values (10 nodes × 10
time series × 5 time points). We added to the profiles noise
with cvs equal to 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. After that
we took from each time series five equidistant time points in
the region, where changes in the expression profiles occur.
Hence, each reverse engineering application had to analyze
600 datasets (5 × 4 network sizes × 5 time series sets ×
6 noise levels). All datasets and models are provided as
supplementary material.

4. Postprocessing

For all results of the relevance network, graphical Gaussian
model, and neural network approaches we performed a
postprocess to obtain a resulting network. Most of the entries
in the resulting matrices are unequal to zero. This represents
a nearly fully connected graph. In contrast the true input
networks are sparse. Hence, we discretized each output
matrix, representing the correlations or regulation weights
between the genes, using an optimized threshold for each
method. Such threshold minimizes the distance measure:

d
(
sen, spe

)
:=
√

(1− sen)2 +
(
1− spe

)2, (7)

where sen is the sensitivity and spe the specificity. See
Figure 1 for definitions. A distance of zero is optimal. We
considered all 600 results for this optimization strategy. The
sensitivity and specificity are the averaged values over all
reconstruction results and are equally weighted, that is, the
distance is a balance between calculated true regulations and
true zeros (nonregulations) among all regulations and non-
regulations, respectively, in the model. A lower threshold
would result in more true regulations but with more false
regulations and less true zeros, that is, the sensitivity is
increased while the specificity is decreased. A higher value
has the opposite effect.

5. Validation

For the validation, we calculated the sensitivity, specificity,
and precision as defined in Figure 1. Sensitivity is the fraction
of the number of found true regulations to all regulations in
the model. Specificity defines the fraction of correctly found
noninteractions to all noninteractions in the model. Since
the number of noninteractions in the model is usually large
compared to false regulations, the specificity is then around
one and does not give much information about the quality of
the method. Therefore, we calculated as well precision, which
is the fraction of the number of correctly found regulations
to all found regulations in the result.

The relevance network and graphical Gaussian
approaches give no information about the direction of
a link. Only undirected graphs can be revealed. Therefore,
we used modified definitions for sensitivity senU, specificity



6 EURASIP Journal on Bioinformatics and Systems Biology

True network Calculated network

1 2

3

4 4

3

1 2

1 2 3 4

1 0 0 0 0

2 0 0 0 0

3 1 1 0 0

4 1 0 1 0

1 2 3 4

1 0 0 0 0

2 0 0 0 0

3 _ _1 1 0 0

4 0 1 1 0

FRTRFI

FZ

_

(a)

Calculated network

0 − 11

1 TR FZ FI

0 FR TZ FR

T
ru

e
n

et
w

or
k

− 1 FI FZ TR

sen: =
TR

TR + FZ + FI
(10)

spe: =
TZ

TZ + FR
(11)

pre: =
TR

TR + FR + FI
(12)

(b)

Figure 1: Definitions. (a) Example of a true (model) network and a calculated network. The adjacency matrix represents the network
structure. (b) Left: gene regulatory models have three discrete states (1: activation, −1: inhibition, 0: nonregulation). We consider the kind
of regulation (activation or inhibition) in the classification of the results according to the models: TR: True regulation; TZ: True zero; FR:
False regulation; FZ: False zero; FI: False interaction. Right: definitions for sensitivity, (10), specificity, (11), and precision, (12).

speU, and precision preU that consider a regulation from
node i to j in the resulted network as true, if there is a link
from node i to j or j to i in the model network, that is, the
network is assumed as undirected.

Further we calculated a measure which considers an
undirected graph and additionally does not count false
interactions, that is, false identified activations or inhibitions.
The corresponding networks are assumed as undirected with
no interactions type, that is, these are undirected, binary
graphs. Equations (10), (11), and (12) are reduced then to
the usual definition of sensitivity and specificity, respectively.
The modified measures are denoted with senB, speB, preB.

To obtain a single value measure for one result we cal-
culated the combined measure defined in (7). This distance
measure d combines the sensitivity and specificity equally
weighted to a single value measure. Low values indicate good
reconstruction performances. Correspondingly to sensitivity
and specificity, the undirected distance measures are indi-
cated by dU and the binary, undirected measure by dB.

Rather than selecting an arbitrary threshold for discretiz-
ing the resulting matrices it is convenient to use the curves
of sensitivity versus specificity or precision versus recall for
thresholds in interval [0; 1] to assess the method perfor-
mances. The measure recall is equal to the sensitivity. These
curves are called receiver operator characteristics (ROCs). To
obtain a single value measure one can use the area under the
curve (AUC). We calculated AUC of the sensitivity versus
specificity curves as an additional performance measure.
Larger values indicate better performances. Note that a value
less than 0.5 does not mean anticorrelation, since a random
classifier is not represented by the diagonal.

6. Performance Results

We accomplished a systematic evaluation of the perfor-
mances of six different reverse engineering applications using
artificial gene expression data. In the program package
ParCorA there are seven correlation measures implemented,
including Pearson and Spearman correlation of different
orders, which we all used. 600 datasets, with different
numbers of genes, dataset sizes, and noise levels, were
analyzed by each of the total twelve applications.

For all relevance network methods, graphical Gaussian
model, and neural network we determined an optimized
threshold for discretization of the results considering all
datasets. The thresholds are listed in Table 2.

The averaged reconstruction performances over all
datasets with regard to different validation measures are
given in Table 3. Since some applications, such as relevance
networks give no information about the direction of regula-
tion, we calculated as well undirected measures, denoted with
U . Additionally, we computed measures, which considers
undirected results and neglects the kind of interaction
information (activation or inhibition). These measures are
indicated by B.

None of the reconstruction methods outperforms all
other methods. Further, no method is capable of recon-
structing the entire true network structure for all datasets. In
particular sensitivity and precision are low for all methods. A
low precision means that among the predicted regulations,
there are only a few true regulations. In the study the
precision is always lower than 0.3. This is due to the fact that
several input datasets carry a high error level. For example,



EURASIP Journal on Bioinformatics and Systems Biology 7

Table 2: Discretization thresholds for different types of measures.

Application Threshold ThresholdU ThresholdB

GNRevealer (neural network) [NN] 0.14 0.18 0.16

GeneNet (graphical Gaussian model) [GGM] — 0.02 0.02

Partial Pearson correlation, 0th order [PC0] — 0.15 0.10

Partial Pearson correlation, 1st order [PC1] — 0.11 0.09

Partial Pearson correlation, 2nd order [PC2] — 0.09 0.06

Partial Pearson correlation, 3rd order [PC3] — 0.05 0.03

Partial Spearman correlation, 0th order [SC0] — 0.10 0.10

Partial Spearman correlation, 1st order [SC1] — 0.10 0.09

Partial Spearman correlation, 2nd order [SC2] — 0.07 0.06

the input data includes time series with noise up to 50%
(cv = 0.5). This can bias the performance results. On the
other side, the dataset contains small scale time series (5
genes) with up to 50 repetitions and performances are much
better with respect to these data (data not shown).

The neural network approach shows the best results
among the algorithms tested with regard to the distance
measures d and AUC. On average it identifies over 27% of
the directed regulations correctly, the highest value among
all methods. This is remarkable considering the high error
level inherent in several datasets. However, simultaneously
the specificity is quite low. That indicates that many false
regulations were identified. Less than 10% of the found
regulations are true (precision). In contrast, the Bayesian
network approaches, DBN and SSM, have a large specificity
but with a very low sensitivity. Hence the performances are
poor. Only a few regulations were identified and only some
of them are true (low precision).

The relevance network approaches using partial Spear-
man rank correlation show better performances compared to
partial Pearson correlation with regard to the distance mea-
sure and AUC. This might be explainable by the robustness
of the Spearman correlation taking ranks into account rather
than actual expression data which is advantageous inspite
of noisy data. Surprisingly, with higher orders of partial
Pearson and Spearman correlation the distance measures dB

are not increasing. It is around 0.7 for Pearson and 0.68
for Spearman correlation. However, with in average up to
55% (senB = 0.545) of true undirected links could be
identified by 1st-order Pearson correlation, neglecting the
type of interactions. But 0th-order Spearman correlation
identified over 55% (in average) of all nonregulations.

The MI method (ARACNE) found the fewest true
undirected links (low sensitivity senB), except the DBN and
SSM methods. In comparison to the relevance network
approaches, MI has a considerably larger specificity speB,
that is, MI identifies more nonregulations in the network
correctly (true zeros). GGM shows the opposite behavior. It
has a larger sensitivity but a lower specificity compared to
MI.

In Figures 2 and 3 more details about the performance
of each method are plotted with the error resulting from the
averaging. The performance behavior with regard to different
number of time series, that is, size of dataset, different noise

levels, that is, coefficient of variation, and network size,
that is, different number of nodes is shown. The distance
measures over the number of time series were averaged
over five different networks with four different sizes and six
different noise levels, that is, in total of 120 datasets. In case of
cv and network size, values were averaged over results from
100 and 150 datasets, respectively.

An overall trend is seen for increasing coefficient of
variations. As expected the performances of each method
decreases with increasing cv (middle column). Though,
the distance measures for Banjo does change only slightly,
it remains on a very large value. This indicates a poor
reconstruction performance. SSM shows a similar behavior.
The distance measure dB increases very fast for the graphical
Gaussian model (GGM). However, the values of the measure
decrease noticeable with the size of network. This is in
contrast to all other methods, where for larger networks
a decrease of reconstruction performance is observable.
Surprisingly, the dataset size, that is, the number of time
series does not have a large impact on all methods, except
for SSM, where the distance measure decreases from a high
value. However, in general, more available data would not
always result in a better performance.

Among all partial Pearson correlations methods, the
2nd order outperforms the others. It has a slightly better
performance measure under all conditions. This is similar to
the 2nd order of partial Spearman correlation. It shows the
best performance in all plots. Further, it is always below the
best partial Pearson correlation.

7. Discussion and Conclusion

The comparative study shows that the performances of
the reverse engineering methods tested here are still not
good enough for practical applications with large networks.
Sensitivity, specificity, and precision are always low. Some
methods predict only few gene interactions, such as DBN,
indicated by a low sensitivity and, in contrast to that, other
methods identify many false regulations, such as the corre-
lation measures. We tested different sets of data, including
different sizes and noises to highlight the conditions for
better performances of each method.

DBN performs poorly on all datasets. Under no condi-
tion of the study it shows an appropriate performance. The



8 EURASIP Journal on Bioinformatics and Systems Biology

Table 3: Performance results. Results of each application applied on all 600 datasets. DBN: Dynamic Bayesian network; NN: Neural network;
MI: ARACNE; PC: Partial correlation with Pearson correlation of given order; SC: Partial correlation with Spearman correlation of given
order; SSM: State space model; GGM: Graphical Gaussian model. Type is the performance measure type, that can be D for directed graph,
U for undirected graph, B for binary and undirected graph. sen, spe, pre, and d are defined in (10), (11), (12), and (7), respectively. AUC is
the area under the ROC curve. The averaged values are given with standard deviation in parenthesis. The top value of each type and column
is highlighted in boldface.

Name Type sen spe pre d AUC

DBN D 0.030(0.084) 0.953(0.117) 0.041(0.119) 0.971(0.067) —

U 0.050(0.119) 0.924(0.173) 0.064(0.138) 0.953(0.083) —

B 0.084(0.196) 0.924(0.173) 0.099(0.193) 0.919(0.116) —

NN D 0.276(0.197) 0.660(0.216) 0.091(0.073) 0.800(0.131) 0.324

U 0.334(0.204) 0.617(0.278) 0.208(0.162) 0.768(0.157) 0.350

B 0.539(0.255) 0.574(0.278) 0.281(0.164) 0.628(0.147) 0.557

SSM D 0.027(0.073) 0.973(0.053) 0.052(0.139) 0.973(0.068) —

U 0.030(0.075) 0.975(0.048) 0.094(0.224) 0.970(0.071) —

B 0.049(0.114) 0.975(0.048) 0.153(0.297) 0.951(0.110) —

GGM D — — — — —

U 0.238(0.198) 0.585(0.290) 0.116(0.157) 0.868(0.145) 0.266

B 0.442(0.326) 0.585(0.290) 0.225(0.212) 0.695(0.185) 0.526

MI D — — — — —

U 0.196(0.129) 0.745(0.146) 0.163(0.124) 0.843(0.130) —

B 0.287(0.177) 0.745(0.146) 0.239(0.170) 0.757(0.162) —

PC0 D — — — — —

U 0.177(0.154) 0.659(0.234) 0.106(0.153) 0.891(0.116) 0.253

B 0.513(0.228) 0.492(0.223) 0.220(0.174) 0.703(0.132) 0.506

PC1 D — — — — —

U 0.228(0.161) 0.541(0.226) 0.105(0.131) 0.898(0.126) 0.249

B 0.545(0.225) 0.461(0.214) 0.219(0.168) 0.705(0.135) 0.502

PC2 D — — — — —

U 0.186(0.136) 0.635(0.154) 0.108(0.125) 0.892(0.125) 0.249

B 0.493(0.186) 0.515(0.151) 0.217(0.157) 0.702(0.140) 0.504

PC3 D — — — — —

U 0.221(0.154) 0.573(0.179) 0.108(0.102) 0.888(0.135) 0.250

B 0.526(0.223) 0.484(0.190) 0.217(0.142) 0.701(0.130) 0.506

SC0 D — — — — —

U 0.285(0.195) 0.555(0.217) 0.129(0.135) 0.842(0.141) 0.298

B 0.491(0.247) 0.555(0.217) 0.230(0.175) 0.676(0.139) 0.528

SC1 D — — — — —

U 0.272(0.186) 0.563(0.215) 0.127(0.135) 0.849(0.137) 0.291

B 0.518(0.233) 0.518(0.209) 0.231(0.173) 0.682(0.135) 0.521

SC2 D — — — — —

U 0.256(0.165) 0.588(0.143) 0.125(0.117) 0.851(0.137) 0.290

B 0.500(0.188) 0.542(0.145) 0.229(0.155) 0.678(0.129) 0.523



EURASIP Journal on Bioinformatics and Systems Biology 9

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30 50

Number of time series

(a) DBN—Dynamic Bayesian Network (Banjo)

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

0 0.1 0.2 0.3 0.4 0.5

Noise level

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30

Number of nodes

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30 50

Number of time series

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1
D

is
ta

n
ce

0 0.1 0.2 0.3 0.4 0.5

Noise level

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30

Number of nodes

(b) NN—Neural Network (GNRevealer)

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30 50

Number of time series

(c) SSM—State Space Model (LDST)

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

0 0.1 0.2 0.3 0.4 0.5

Noise level

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30

Number of nodes

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30 50

Number of time series

Distance measure

Undirected, binary distance measure

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

0 0.1 0.2 0.3 0.4 0.5

Noise level

Distance measure

Undirected, binary distance measure

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30

Number of nodes

Distance measure

Undirected, binary distance measure

(d) GGM—Graphical Gaussian Model (GeneNet)

Figure 2: Performances of applications. The directed distance measure d (black line) and undirected, binary distance measures dB (blue line)
is plotted with standard deviations below. The measure d is not available for all methods. From left to right in each row: distance measures
over number of time series, cv, and network sizes. Each value is an average over all results with the given feature of the abscissa (see text for
more details). A smaller distance indicates a better performance.



10 EURASIP Journal on Bioinformatics and Systems Biology

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30 50

Number of time series

Undirected, binary distance measure

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

0 0.1 0.2 0.3 0.4 0.5

Noise level

Undirected, binary distance measure

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30

Number of nodes

Undirected, binary distance measure

(a) MI—Mutual Information (ARACNE).

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30 50

Number of time series

PC 0
PC 1

PC 2
PC 3

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

0 0.1 0.2 0.3 0.4 0.5

Noise level

PC 0
PC 1

PC 2
PC 3

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30

Number of nodes

PC 0
PC 1

PC 2
PC 3

(b) PC—Partial Pearson Correlation

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30 50

Number of time series

SC 0
SC 1
SC 2

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

0 0.1 0.2 0.3 0.4 0.5

Noise level

SC 0
SC 1
SC 2

0
0.2
0.4

St
d

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

ce

5 10 20 30

Number of nodes

SC 0
SC 1
SC 2

(c) SC—Partial Spearman Correlation

Figure 3: Performance of applications. See also Figure 2. Only the undirected, binary distance measure dB is plotted for partial Pearson and
partial Spearman correlations. Colors indicate the different correlation measures.

specificity is always very large, but with a very low sensitivity.
Only very few regulations were identified and the perfor-
mance does not improve with larger datasets. It is known that
Banjo requires large datasets for better performances [13].
This may be a reason for the observations. A similar behavior
shows the other Bayesian network approach, the state space
model. It is slightly better than DBN, but SSM has as well
very low sensitivity. The predictive power of such a stochastic

approach could not be shown under the conditions in this
study.

The neural network approach shows the best results
among all methods tested. It has a balance between true
positives and true zeros. This is due to the appropriately
chosen threshold for the postprocess discretization. Never-
theless, NN predicts many regulations and many of them are
incorrect, that is, it has many false regulations. Even with a



EURASIP Journal on Bioinformatics and Systems Biology 11

large number of datasets, a complete reconstruction is not
possible.

Schäfer and Strimmer [7], the authors of the GeneNet
package including GGM, pointed out that their method
is intended for analysis of small sample sizes. It requires
a large number of genes in the dataset to estimate the
null distribution from the data, which is used for detecting
statistical significant interactions. This behavior is shown
in Figure 2. Increasing number of genes in the dataset
decrease the distance measure dB resulting in a better
performance.

The assumption of statistical independence of each time
point measurement is not satisfied, although ARACNE per-
forms not all that bad. With larger datasets the performance
increases, but decreases, as expected, with noisy data.

The Spearman correlation is a nonparametric measure
for correlation. It does not make any assumption for
the probability distribution of the data. In this study it
outperforms the Pearson correlation, which can only detect
linear relationships. It seems that the rank correlation is
more appropriate for analyzing time series data because of
its robustness against noisy data.

A crucial point in the determination of the distance
measures is the chosen thresholds for discretization of the
resulted matrices of continuous real values. An optimal
threshold as shown in Table 2 was determined for the
methods NN, GGM, all PCs, and all SCs with regard to an
optimized distance measure. The other methods do not need
a discretization, nice the methods provided a ternary matrix
(DBN and SSM) or have already removed all nonsignificant
links form the matrix (MI). A measure, independent of
an artificial postprocessing of the results, is the area under
the curve (AUC) score which we calculated as well. The
advantage of using AUC is to obviate the need for choosing
a discretization threshold. In Table 3 it is shown that a
similar classification of method performances is obtained
with regard to AUC and the distance measure.

Some aspects have not been addressed in this study and
can be investigated further. It would be interesting to see
the performances for larger networks sizes (more than 50
nodes). Some methods, such as GGM, should then show
increased performances. Further, many applications are not
suitable for analyzing such large datasets. For these methods
a reduction of the dimension of the data has to be performed
in order to obtain datasets of appropriate sizes. Different
reduction methods can be investigated for that. Moreover,
it would be interesting to see the impact of missing data on
the reconstruction results, since in real experiments there are
often not all genes included in the dataset.

It is shown that the reliable reconstruction of the
whole GRN is anymore an ambitious intention and needs
further progress. For that, the quality and quantity of gene
expression measurements have to be improved as well as the
performance of current or new algorithms. Benchmarks with
realistic artificial data has to identify those methods which
show the best results under different conditions.

Acknowledgments

This work was funded by the Max Planck Society and by
the European Commission within its FP6 Programme under
the thematic area Life sciences, genomics and biotechnology
for health with the EMBRACE Project (Contract no. LSHG-
CT-2004-512092) and 7th Framework Programme with the
Project APO-SYS (HEALTH-F4-2007-200767).

References

[1] C. Wierling, R. Herwig, and H. Lehrach, “Resources, stan-
dards and tools for systems biology,” Briefings in Functional
Genomics and Proteomics, vol. 6, no. 3, pp. 240–251, 2007.

[2] G. Ruvkun, “Molecular biology. Glimpses of a tiny RNA
world,” Science, vol. 294, no. 5543, pp. 797–799, 2001.

[3] S. Liang, S. Fuhrman, and R. Somogyi, “Reveal, a general
reverse engineering algorithm for inference of genetic network
architectures,” in Proceedings of the Pacific Symposium on
Biocomputing (PSB ’98), pp. 18–29, Maui, Hawaii, USA,
January 1998.

[4] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear
modeling of mRNA expression levels during CNS develop-
ment and injury,” in Proceedings of the 4th Pacific Symposium
on Biocomputing (PSB ’99), pp. 41–52, Big Island of Hawaii,
Hawaii, USA, January 1999.

[5] T. Chen, H. L. He, and G. M. Church, “Modeling gene
expression with differential equations,” in Proceedings of the
4th Pacific Symposium on Biocomputing (PSB ’99), pp. 29–40,
Big Island of Hawaii, Hawaii, USA, January 1999.

[6] K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-
Favera, and A. Califano, “Reverse engineering of regulatory
networks in human B cells,” Nature Genetics, vol. 37, no. 4,
pp. 382–390, 2005.

[7] J. Schäfer and K. Strimmer, “An empirical Bayes approach to
inferring large-scale gene association networks,” Bioinformat-
ics, vol. 21, no. 6, pp. 754–764, 2005.

[8] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using
Bayesian networks to analyze expression data,” Journal of
Computational Biology, vol. 7, no. 3-4, pp. 601–620, 2000.

[9] H. Hache, C. Wierling, H. Lehrach, and R. Herwig, “Recon-
struction and validation of gene regulatory networks with
neural networks,” in Proceedings of the 2nd Foundations of
Systems Biology in Engineering Conference (FOSBE ’07), pp.
319–324, Stuttgart, Germany, September 2007.

[10] C. Rangel, J. Angus, Z. Ghahramani, et al., “Modeling T-
cell activation using gene expression profiling and state-space
models,” Bioinformatics, vol. 20, no. 9, pp. 1361–1372, 2004.

[11] M. J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, and D.
L. Wild, “A Bayesian approach to reconstructing genetic
regulatory networks with hidden factors,” Bioinformatics, vol.
21, no. 3, pp. 349–356, 2005.

[12] N. Friedman, K. Murphy, and S. Russell, “Learning the
structure of dynamic probabilistic networks,” in Proceedings
of the 14th Annual Conference on Uncertainty in Artificial
Intelligence (UAI ’98), G. Cooper and S. Moral, Eds., pp. 139–
147, Morgan Kaufmann, Madison, Wis, USA, July 1998.

[13] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis,
“Advances to Bayesian network inference for generating causal
networks from observational biological data,” Bioinformatics,
vol. 20, no. 18, pp. 3594–3603, 2004.

[14] A. V. Werhli, M. Grzegorczyk, and D. Husmeier, “Comparative
evaluation of reverse engineering gene regulatory networks



12 EURASIP Journal on Bioinformatics and Systems Biology

with relevance networks, graphical Gaussian models and
Bayesian networks,” Bioinformatics, vol. 22, no. 20, pp. 2523–
2531, 2006.

[15] E. P. van Someren, L. F. A. Wessels, E. Backer, and M. J.
T. Reinders, “Genetic network modeling,” Pharmacogenomics,
vol. 3, no. 4, pp. 507–525, 2002.

[16] H. de Jong, “Modeling and simulation of genetic regulatory
systems: a literature review,” Journal of Computational Biology,
vol. 9, no. 1, pp. 67–103, 2002.

[17] T. S. Gardner and J. J. Faith, “Reverse-engineering transcrip-
tion control networks,” Physics of Life Reviews, vol. 2, no. 1,
pp. 65–88, 2005.

[18] A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes,
“Discovery of meaningful associations in genomic data using
partial correlation coefficients,” Bioinformatics, vol. 20, no. 18,
pp. 3565–3574, 2004.

[19] J. Quackenbush, “Computational analysis of microarray data,”
Nature Reviews Genetics, vol. 2, no. 6, pp. 418–427, 2001.

[20] P. Mendes, W. Sha, and K. Ye, “Artificial gene networks for
objective comparison of analysis algorithms,” Bioinformatics,
vol. 19, supplement 2, pp. ii122–ii129, 2003.

[21] D. Repsilber and J. T. Kim, “Developing and testing methods
for microarray data analysis using an artificial life framework,”
in Proceedings of the 7th European Conference on Advances
in Artificial Life (ECAL ’03), vol. 2801 of Lecture Notes
in Computer Science, pp. 686–695, Dortmund, Germany,
September 2003.

[22] H. Hache, C. Wierling, H. Lehrach, and R. Herwig, “GeNGe:
systematic generation of gene regulatory networks,” Bioinfor-
matics, vol. 25, no. 9, pp. 1205–1207, 2009.

[23] P. J. Werbos, “Backpropagation through time: what it does and
how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–
1560, 1990.

[24] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning
Bayesian networks: the combination of knowledge and statis-
tical data,” Machine Learning, vol. 20, no. 3, pp. 197–243, 1995.

[25] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, “Directed
scale-free graphs,” in Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’03), pp. 132–
139, Baltimore, Md, USA, November 2003.

[26] M. J. Schilstra and C. L. Nehaniv, “Bio-logic: gene expression
and the laws of combinatorial logic,” Artificial Life, vol. 14, no.
1, pp. 121–133, 2008.

[27] E. H. Davidson, J. P. Rast, P. Oliveri, et al., “A genomic
regulatory network for development,” Science, vol. 295, no.
5560, pp. 1669–1678, 2002.


	1. Introduction
	2.Methods and Applications
	3. Data
	4. Postprocessing
	5. Validation
	6. Performance Results
	7. Discussion and Conclusion
	References

