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Many missing-value (MV) imputation methods have been developed for microarray data, but only a few studies have investigated
the relationship between MV imputation and classification accuracy. Furthermore, these studies are problematic in fundamental
steps such as MV generation and classifier error estimation. In this work, we carry out a model-based study that addresses some
of the issues in previous studies. Six popular imputation algorithms, two feature selection methods, and three classification rules
are considered. The results suggest that it is beneficial to apply MV imputation when the noise level is high, variance is small, or
gene-cluster correlation is strong, under small to moderate MV rates. In these cases, if data quality metrics are available, then it
may be helpful to consider the data point with poor quality as missing and apply one of the most robust imputation algorithms to
estimate the true signal based on the available high-quality data points. However, at large MV rates, we conclude that imputation
methods are not recommended. Regarding the MV rate, our results indicate the presence of a peaking phenomenon: performance
of imputation methods actually improves initially as the MV rate increases, but after an optimum point, performance quickly
deteriorates with increasing MV rates.

Copyright © 2009 Youting Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Microarray data frequently contain missing values (MVs)
because imperfections in data preparation steps (e.g., poor
hybridization, chip contamination by dust and scratches)
create erroneous and low-quality values, which are usually
discarded and referred to as missing. It is common for
gene expression data to contain at least 5% MVs and, in
many public accessible datasets, more than 60% of the genes
have MVs [1]. Microarray gene expression data are usually
organized in a matrix form with rows corresponding to the
gene probes and columns representing the arrays. Trivial
methods to deal with MVs in the microarray data matrix
include replacing the MV by zero (given the data being in
log domain) or by row average (RAVG). These methods do
not make use of the underlying correlation structure of the
data and thus often perform poorly in terms of estimation
accuracy. Better imputation techniques have been developed

to estimate the MVs by exploiting the observed data structure
and expression pattern. These methods include K-nearest
Neighbor imputation (KNNimpute) and singular value
decomposition- (SVD-) based imputation [2], Bayesian
principal components analysis (BPCA) [3], least square
regression-based imputation [4], local least squares imputa-
tion (LLS) [5], and LinCmb imputation [6], in which the MV
is calculated by a convex combination of the estimates given
by several existing imputation methods, namely, RAVG,
KNNimpute, SVD, and BPCA. In addition, a nonlinear PCA
imputation based on neural networks was proposed for effec-
tively dealing with nonlinearly structured microarray data
[7]. Gene ontology-based imputation utilizes information on
functional similarities to facilitate the selection of relevant
genes for MV estimation [8]. Integrative MV estimation
method (iMISS) aims at improving the MV estimation for
datasets with limited numbers of samples by incorporating
information from multiple microarray datasets [9].
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In most of the studies about MV imputation, the per-
formance of various imputation algorithms is compared in
terms of the normalized root mean squared error (NRMSE)
[2], which measures how close the imputed value is to the
original value. However the problem is that the original
value is unknown for the missing data, thus calculating
NRMSE is infeasible in practice. To circumvent this problem,
all the studies involving NRMSE calculation adopted the
following scheme [2, 4–6, 9–11]: first, a subcomplete matrix
is extracted from the original MV-contained gene expression
matrix; then, entries of the complete matrix are randomly
removed to generate the artificial MVs; Finally, MV impu-
tation is applied. The NRMSE can now be calculated to
measure the imputation accuracy, since the original values
are now known. This method is problematic for two reasons.
First, the selection of artificial missing entries is random and
thus is independent of the data quality—whereas imputing
data spots with low quality is the main scenario in real world.
Secondly, in the calculation of the NRMSE, the imputed
value is compared against the original, but the original is
actually a noised version of the true signal value, and not the
true value itself.

While much attention has been paid to the imputation
accuracy measured by the NRMSE, a few studies have
examined the effect of imputation on high-level analyses
(such as biomarker identification, sample classification, and
gene clustering), which demand that the dataset be complete.
For example, the effect of imputation on the selection of
differentially expressed genes is examined in [6, 11, 12]
and the effect of KNN imputation on hierarchical clustering
is considered in [1], where it is shown that even a small
portion of MVs can considerably decrease the stability of
gene clusters and stability can be enhanced by applying KNN
imputation. The effects of various MV imputation methods
on the gene clusters produced by the K-means clustering
algorithm are examined in [13], the main findings being
that advanced imputation methods such as KNNimpute,
BPCA, and LLS yield similar clustering results, although
the imputation accuracies are noticeably different in terms
of NRMSE. To our knowledge, only two studies have
investigated the relationship between MV imputation of
microarray data and classification accuracy.

Wang et al. study the effects of MVs and their imputation
on classification performance and report no significant dif-
ference in the classification accuracy results when KNNim-
pute, BPCA, or LLS are applied [14]. Five datasets are used:
a lymphoma dataset with 20 samples, a breast cancer dataset
with 59 samples, a gastric cancer dataset with 132 samples,
a liver cancer dataset with 156 samples, and a prostate
cancer dataset with 112 samples. The authors consider how
differing amounts of MVs may affect classification accuracy
for a given dataset, but rather than using the true MV
rate, they use the MV rate threshold (MVthld) throughout
their study, where, for a given MVthld (MVthld = 5n%,
where n = 0, 1, 2, 4, 6, 8), the genes with MV rate less than
MVthld are retained to design the classifiers. As a result,
the true MV rate (which is not reported) of the remaining
genes does not equal MVthld and, in fact, can be much less
than MVthld. Hence, the parameter MVthld may not be a

good indicator. Moreover, the authors plot the classification
accuracies against a number of values for MVthld, but as
MVthld increases, the number of genes retained to design
the classifier becomes larger and larger, so that the increase
or decrease in the classification accuracy may be largely due
to the additional included genes (especially if the genes are
marker genes) and may only weakly depend on MVthld. This
might explain the nonmonotonicity and the lack of general
trends in most of the plots.

By studying two real cancer datasets (SRBCT dataset
with 83 samples of 4 tumor types, GLIOMA dataset with
50 samples of 4 glioma types), Shi et al. report that the
gaps between different imputation methods in terms of
classification accuracy increase as the MV rate increases
[15]. They test 5 imputation methods (RAVG, KNNimpute,
SKNN, ILLS, BPCA ), 4 filter-type feature selection methods
(t-test, F-test, cluster-based t-test, and cluster-based F-test)
and 2 classifiers (5NN and LSVM). They have two main
findings: (1) when the MV rate is small (≤=5%), all
imputed datasets give similar classification accuracies that
are close to that of the original complete dataset; however,
the classification performances given by different datasets
diverge as the MV rate increases, and (2) datasets imputed
by advanced imputation methods (e.g., BPCA) can reach
the same classification accuracy as the original dataset. A
fundamental problem with their experimental design is that
the MVs are randomly generated on the original complete
dataset, which is extracted from the MV-contained gene
expression matrix. Although this randomized MV generating
scheme is widely used, it ignores the underlying data quality.

A critical problem within both aforementioned studies
is that all training data and test data are imputed together
before classifier design and cross-validation is adopted for the
classification process. The test data influences the training
data in the imputation stage and the influence is passed to the
classifier design stage. Therefore, the test data are involved in
the classification design process, which violates the principle
of cross-validation.

In this paper, we carry out a model-based analysis
to investigate how different properties of a dataset influ-
ence imputation and classification, and how imputation
affects classification performance. We compare six popular
imputation algorithms, namely, RAVG, KNNimpute, LLS.L2,
LLS.PC, LS, and BPCA, by measuring how well the imputed
dataset can preserve the discriminant power residing in the
original dataset. An empirical analysis using real data from
cancer microarray studies is also carried out. In addition,
the NRMSE-based comparison is included in the study, with
a modification in the case of the synthetic data to give an
accurate measure. Recommendations for the application of
various imputations under different situations are given in
Section 3.

2. Methods

2.1. Model for Synthetic Data. Many studies have shown the
log-normal property of microarray data, that is, the distribu-
tion of log-transformed gene expression data approximates a
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normal distribution [16, 17]. In addition, biological effects
which are generally assumed to be multiplicative in the
linear scale become additive in the log scale, which simplifies
data analysis. Thus, the ANOVA model [18, 19] is widely
used, in which the log-transformed gene expression data are
represented by a true signal plus multiple sources of additive
noise.

There are other models proposed for gene expression
data, including a multiplicative model for gene intensities
[20], a hierarchical model for normalized log ratios [21], and
a binary model [22]. The first two of these models do not take
gene-gene correlation into account. In addition, the second
model does not model the error sources. The binary model
is too simplistic and not sufficient for the MV study in this
paper.

Based on the log-normal property and inspired by
ANOVA, we propose a model for the normalized log-ratio
gene expression data which is centered at zero, assuming
that any systematic dependencies of the log-ratio values on
intensities have been removed by methods such as Lowess
[23, 24]. Here, we consider two experimental conditions
for the microarray samples (e.g., mutant versus wild-type,
diseased versus normal). The model can be easily extended
to deal with multiple conditions as well.

Let X be the gene expression matrix with m genes (rows)
and n array samples (columns). xi j denotes the log-ratio of
expression intensity of gene i in sample j to the intensity of
the same gene in the baseline sample. xi j consists of the true
signal si j plus additive noise ei j :

xi j = si j + ei j . (1)

The true signal is given by

si j = ri j + ui j , (2)

where ri j represents the log-transformed fold change and ui j
is a term introduced to create correlation among the genes.

The log-transformed fold-change ri j is given by

ri j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ai, if gene i is up-regulated in sample j,

0, if gene i is equal to the baseline in sample j,

−bi, if gene i is down-regulated in sample j,
(3)

under the constraint that ri j is constant across all the samples
in the same class. The parameters ai and bi are picked from
a univariate Gaussian distribution, ai, bi : Normal(μr , σ2

r ),
where the mean log-transformed fold change μr is set to
0.58, corresponding to a 1.5-fold change in the original linear
scale, as this is a level of fold change that can be reliably
detected [20]. The standard deviation of log-transformed
fold change σr is set to 0.1.

The distribution of ui j is multivariate Gaussian with
mean 0 and covariance matrix Σ. A block-based structure
[25] is used for the covariance matrix to reflect the inter-
actions among gene clusters. Genes within the same block

(e.g., genes belong to the same pathway) are correlated with
correlation coefficient ρ and genes within different blocks are
uncorrelated as given by the following equation:

Σ = σ2
u

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σρ 0 · · · 0

0 Σρ · · · 0

...
...

. . .
...

0 0 · · · Σρ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

where

Σρ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ρ · · · ρ

ρ 1 · · · ρ

...
...

. . .
...

ρ ρ · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D×D

. (5)

In the above equations, the gene block standard deviation σu,
correlation ρ, and size D are tunable parameters, the values
of which are specified in Section 3.

The additive noise ei j in (1) is assumed to be zero-mean
Gaussian, ei j ∼ Normal(0, σ2

i ). The standard deviation σi
varies from gene to gene and is drawn from an exponential
distribution with mean μe to account for the nonhomoge-
neous missing value distribution generally observed in real
data [26]. The noise level μe is a tunable parameter, the value
of which is specified in Section 3.

Following the model above, we generate synthetic gene
expression datasets for the true signal, S, and the observed
expression values, X. In addition, the dataset with MVs XMV

is generated by identifying and discarding the low-quality
entries of X, according to

xMV
i j =

⎧
⎪⎨

⎪⎩

xi j , if
∣
∣
∣ei j

∣
∣
∣ < τ,

MV, o.w.
(6)

The threshold τ is adjusted to give varying rates of missing
values in the simulated dataset, as discussed in Section 3.

2.2. Imputation Methods. Following the notation of [27],
a gene with MVs to be estimated is called a target gene,
with expression values across array samples denoted by the
vector yi. The observable part and the missing part of yi are
denoted by yobs

i and ymis
i , respectively. The set of genes used

to estimate ymis
i forms the candidate gene set Ci for yi. Ci is

partitioned into Cmis
i and Cobs

i according to the observable
and the missing indexes of yi. In row average imputation
(RAVG), the MVs of the target gene yi are simply replaced
by the average of observed values, that is, Mean(yobs

i ).
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We will discuss three more complex methods, namely,
KNNimpute, LLS, and LS imputation, which follow the same
two basic steps.

(1) For each target gene yi, K genes with expression
profiles most similar to the target gene are selected to
form the candidate gene set Ci = [xp1 , xp2 , . . . , xpK ]T .

(2) The missing part of the target gene ymis
i is estimated

by a weighted combination of the corresponding K
candidate genes xp1 , xp2 , . . . , xpK . The weights are cal-
culated in different manners for different imputation
methods.

We will additionally describe briefly the BPCA imputa-
tion method.

2.2.1. K-Nearest Neighbor Imputation (KNNimpute). In the
first step, the L2 norm is employed as the similarity measure
for selecting the K neighbor genes (candidate genes). In the
second step, the missing part of the target gene (ymis

i ) is
estimated as a weighted average (convex combination) of
the corresponding parts of the candidate genes (xmis

pl , l =
1, 2, . . . ,K) which are not allowed to contain MVs at the same
positions as the target gene:

ŷmis
i =

K∑

l=1

wlxmis
pl . (7)

The weight for each candidate gene is proportional to the
reciprocal of the L2 distance between the observable part of
the target (yobs

i ) and the corresponding part of the candidate
(xobs

pl ):

wl =
f
(

yobs
i , xobs

pl

)

∑K
l=1 f

(

yobs
i , xobs

pl

) , (8)

where

f
(

yobs
i , xobs

pl

)

= 1
∥
∥
∥yobs

i − xobs
pl

∥
∥
∥

2

, l = 1, 2, . . . ,K. (9)

The performance of KNNimpute is closely associated with
the number of neighbors K used. A value of K within the
range of 10–20 was empirically recommended, while the
performance (in terms of NRMSE) degraded when K was
either too small or too large [2]. We use the default value of
K = 10 in Section 3.

2.2.2. Local Least Squares Imputation (LLS). In the first step,
either the L2 norm or the absolute value of the Pearson cor-
relation coefficient is employed as the similarity measure for
selecting the K candidate genes [5], resulting in two different
imputation methods LLS.L2 and LLS.PC, respectively, with
the former reported to perform slightly better than the latter.
Owing to the similarity of performance, for clarity of pre-
sentation we only show LLS.L2 in the results section (the full
results including LLS.PC are given on the companion website
http://gsp.tamu.edu/Publications/supplementary/sun09a).

In the second step, the missing part of the target gene
is estimated as a linear combination (which need not be
a convex combination) of the corresponding parts of its
candidate genes (whose MVs are initialized by RAVG):

ŷmis
i =

K∑

l=1

wl xmis
pl =

(

Cmis
i

)T
w , (10)

where the vector of weights w = [w1,w2, . . . ,wK ]T solves the
least squares problem:

min
w

∥
∥
∥
∥

(

Cobs
i

)T
w − yobs

i

∥
∥
∥
∥

2
. (11)

As is well known, the solution is given by

w =
((

Cobs
i

)T
)†

yobs
i , (12)

where A† denotes the pseudo inverse of matrix A.

2.2.3. Least Squares Imputation (LS). In the first step, similar
to LLS.PC, the K most correlated genes are selected based on
their absolute correlation to the target gene [4].

In the second step, the least squares estimate of the target
given each of the K candidate gene is obtained:

ŷi,l = yi + βl
(

xpl − xpl
)

, l = 1, . . . ,K , (13)

where the regression coefficient βl is given by

βl =
cov
(

yi, xpl
)

var
(

xpl
) , (14)

where cov(yi, xpl ) denotes the sample covariance between the
target yi and the candidate xpl and var(xpl ) is the sample
variance of the candidate xpl .

The missing part of the target gene is then approximated
by a convex combination of the K single regression estimates:

ŷmis
i =

K∑

l=1

wl ŷmis
i,l . (15)

The weight of each estimate is a function of the correlation
between the target and the candidate gene:

cl =
(

corr(yi, xpl )
2

1− corr(yi, xpl )
2 + 10−6

)2

. (16)

The normalized weights are then given by wl = cl /
∑K

j=1 cj .

2.2.4. Bayesian Principal Component Analysis (BPCA). BPCA
is built upon a probabilistic PCA model and employs
a variational Bayes algorithm to iteratively estimate the
posterior distribution for both the model parameters and
the MVs until convergence. The algorithm consists of
three primary processes, which are (1) principle component
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regression, (2) Bayesian estimation, and (3) an expectation-
maximization-like repetitive algorithm [3]. The principal
components of the gene expression covariance matrix are
included in the model parameters, and redundant principal
components can be automatically suppressed by using an
automatic relevance determination (ARD) prior in the Bayes
estimation. Therefore, there is no need to choose the number
of principal components one wants to use, and the algorithm
is parameter free. We refer the reader to [3] for more
details.

2.3. Experimental Design

2.3.1. Synthetic Data. Based on the previously described data
model, we generate various synthetic microarray datasets by
changing the values of the model parameters, corresponding
to various noise levels, gene correlations, MV rates, and
so on (more details are given in Section 3). The MVs are
determined by (6), with the threshold τ adjusted to give a
desired MV rate. For each of the models, the simulation is
repeated 150 times. In each repetition, according to (1) and
(2), the true signal dataset, S, and the measured-expression
dataset, X, are first generated. The dataset XMV with missing
values is then generated based on the data quality of X and
a given MV rate. Next, six imputation algorithms, namely,
RAVG, KNNimpute, LLS.L2, LLS.PC, LS, and BPCA are
applied separately to calculate the MVs, yielding six imputed
datasets, Xk, for k = 1, . . . , 6. Each of these training datasets
contains m genes and nr array samples and is used to train
a number of classifiers separately. For each k, a measured-
expression test dataset U and a missing value dataset UMV

are generated independently of, but in an identical fashion to,
the datasets X and XMV , respectively. Each of these test sets
contains m genes and nt array samples, nt being large in order
to achieve a very precise estimate of the actual classification
error.

A critical issue concerns the manner in which the test
data are employed. As noted in the introduction, imputation
cannot be applied to the training and test data as a whole.
Not only does this make the designed classifier dependent
on the test data, it also does not reflect the manner in which
the classifier will be employed. Testing involves a single new
example, independent of the training data, being labeled by
the designed classifier. Thus, error estimation proceeds in
the following manner after imputation has been applied to
the training data and a classifier designed from the original
and imputed values: (1) an example U ∈ U is selected
and adjoined to the measured-expression training set X; (2)
missing values are generated to form the set (X∪U)MV [note
that (X ∪ U)MV = XMV ∪ UMV]; (3) imputation is applied
to (X∪U)MV, the purpose being to utilize the training
data in the imputation for UMV to obtain the complete
vector U IMP (the superscript IMP means one imputation
method); (4) the designed classifier is applied to U IMP and
the error (0 or 1) recorded; (5) the procedure is repeated
for all test points; and (6) the estimated error is the total
number of errors divided by nt . Notice that the training
data are used in the imputation for the newly observed

example, which is part of the classifier. The classifier consists
of imputation for the newly observed example following by
application of the classifier decision procedure, which has
been designed on the training data, independently of the
testing example. Overall, the classifier operates on the test
example in a manner determined independently of the test
example. If the imputation for the test data were independent
of the training data, then one would not have to consider
imputation as part of the classification rule; however, when
the imputation for the test data is dependent on the
training data, it must be considered part of the classification
rule.

The classifier training process includes feature selection,
and classifier design based on a given classification rule.
Three popular classification rules are used in this paper:
Linear Discriminant Analysis (LDA), 3-Nearest Neighbor
(3NN) and Linear Support Vector Machine (LSVM)[28].
Two feature selection methods, t-test and sequential forward
floating search (SFFS)[29], are considered in our simulation
study. The former is a typical filter method (i.e., it is classifier-
independent) while the latter is a standard procedure used
in the wrapper method (i.e., it is associated with classifier
design and is thus classifier-specific). SFFS is a development
of the sequential forward selection(SFS) method. Starting
with an empty set A, SFS iteratively adds new features to
A, so that the new set A ∪ { fa} is the best (gives the lowest
classification error) among all A ∪ { f }, f /∈A. The problem
with SFS is that a feature added to A early may not work
well in combination with others but it cannot be removed
from A. SFFS can mitigate the problem by “looking-back”
for the features already in set A. A feature is removed from
A if A − { fr} is the best among all A − { f }, f ∈ A, unless
fr , called the “least significant feature”, is the most recently
added feature. This exclusion continues, one feature at a
time, as long as the feature set resulting from removal of
the least significant feature is better than the feature set of
the same size found earlier in the SFFS procedure [30]. For
the wrapper method SFFS, we use bolstered error estimation
[31]. In addition, considering the intense computation load
requested by SFFS in the high-dimension problems such
as microarray classification, a two-stage feature selection
algorithm is adopted, in which the t-test is applied in the
first stage to remove most of the noninformative features
and then SFFS is used in the second stage [25]. This two-
stage scheme takes advantage of both the filter method and
the wrapper method and may even find a better feature
subset than directly applying the wrapper method to the full
feature set [32]. In summary, for each of the data models, 8
pairs of training and testing datasets are generated and are
evaluated by a combination of 2 feature selection algorithms
and 3 classification rules, resulting in a very large number of
experiments.

Each experiment is repeated 150 times, and the average
classification error is recorded. The averaged classification
error plots for different datasets, feature selection methods
and classification rules are shown in Section 3. Besides the
classification errors, the NRMSE between the signal dataset
and each of the 6 imputed datasets is also recorded. The
simulation flow chart is shown in Figure 1.
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As previously mentioned, there can be drawbacks asso-
ciated with the NRMSE calculation; however, in our simula-
tion study, the MVs are marked according to the data quality
and the NRMSE is calculated based on the true signal dataset
which can serve as the ground truth:

NRMSE =

√

Mean
[(
ximputed − xtrue

)2
]

Std(xtrue)
.

(17)

In this way, the aforementioned drawbacks about using
NRMSE are addressed.

2.3.2. Patient Data. In addition to the synthetic data
described in the previous section, we used the two following
publicly available datasets from published studies.

(i) Breast Cancer Dataset (BREAST). Tumor samples from
295 patients with primary breast carcinomas were studied by
using inkjet-synthesized oligonucleotide microarrays which
contained 24,479 oligonucleotides probes along with 1281
control probes [33]. The samples are labeled into two groups
[34]: 180 samples for poor-prognosis signature group, and
115 samples for good-prognosis signature. In addition to
the log-ratio gene expression data, the log error data is also
available which can be used to assess the data quality.

(ii) Prostate Cancer Dataset (PROST). Samples of 71 prostate
tumors and 41 normal prostate tissues were studied, using
cDNA microarray containing 26,260 different genes [35]. In
addition to the log-ratio gene expression data, additional
information such as background (foreground) intensities
and SD of foreground and background pixel intensities are
also available and thus can be used to calculate the log error
according to the Rosetta error model [36]—the log error
e(i, j) for the ith probe in the jth microarray sample is given
by the following equation:

e
(
i, j
)∝

√
√
√
√σ2

1

(
i, j
)

I2
1

(
i, j
) +

σ2
2

(
i, j
)

I2
2

(
i, j
) , (18)

where

σ2
k

(
i, j
) = σk, f g

(
i, j
)2

Nk, f g
(
i, j
) +

σk,bg
(
i, j
)2

Nk,bg
(
i, j
) ,

Ik
(
i, j
) = Ik, f g

(
i, j
)− Ik,bg

(
i, j
)
, k = 1, 2.

(19)

In the above equations, k specifies the red or green channel
in the two-dye experiment, σk, f g(i, j) and σk,bg(i, j) denote
the SD of foreground and background pixels, respectively,
of the ith probe in the jth microarray sample, Nk, f g and
Nk,bg are the numbers of pixels used in the mean foreground
and background calculation, respectively, and Ik, f g and
Ik,bg are the mean foreground and background intensities,
respectively.

For the patient data study, the schemes used for imputa-
tion, feature selection and classification are similar to those
applied in the synthetic data simulation, except that we use

hold-out-based error estimation, that is, in each repetition,
nr samples are randomly chosen from all the samples as the
training data and the remaining nt = n−nr samples are used
to test the trained classifiers, with nt being much larger than
nr in order to make error estimation precise. We preprocess
the data by removing genes which have an unknown or
invalid data value in at least one sample (flagged manually
and by the processing software). After this preprocessing step,
the dataset is complete, with all data values being known.
We further preprocess the data by filtering out genes whose
expressions do not vary much across all the array samples
[13, 35]; indeed, the genes with small expression variance
do not have much discrimination power for classification
and thus are unlikely to be selected by any feature selection
algorithm [15]. The resulting feature sizes are 400 and 500
genes for the prostate and the breast dataset, respectively. It
is at this point where we begin our experimental process by
generating the MVs.

Unlike the synthetic study, the true signal dataset is
unknown in the patient data study since the data values
are always contaminated by measurement errors. Therefore,
in the absence of the true signal dataset, the NRMSE is
calculated between the measured dataset and each of the
imputed datasets (which is the usual procedure adopted in
the literature). Thus the NRMSE result is less reliable in
the patient data study, which highlights further the need for
evaluating imputation on the basis of other factors, such as
classification performance.

3. Results

3.1. Results for the Synthetic Data. We have considered
the model described in the previous section, for different
combinations of parameters, which are displayed in Table 1.
In addition, since the signal dataset is noise-free, the
classification performance given by the signal dataset can
serve as a benchmark. In the other direction, the benefit of an
imputation algorithm is determined by how well imputation
improves the classification accuracy of the measured dataset.
The classification errors of the true signal dataset, measured
dataset, and imputed datasets under different data distri-
butions are shown in Figures 2–7. It should be recognized
that the figures are meant to illustrate certain effects and
that other model parameters are fixed while the effects of
changing a particular parameter are studied.

3.1.1. Effect of Noise Level. Figure 2 shows the impact of
noise level (parameter μe in the data model) on imputation
and classification. When noise level goes up (from left to
right along the y-axis), the classification errors (along with
the Bayes errors) of the measured dataset and the imputed
datasets all increase as expected; the classification errors of
the signal dataset stay nearly the same and are consistently
the smallest among all the datasets, since the signal dataset is
noise-free. Relative to the signal dataset benchmark, the clas-
sification performances of imputed datasets deteriorate less
than that of the measured dataset as the noise level increases,
although their performances degrade with increasing noise.
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Figure 2: Effect of noise level. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed
datasets. The underlying distribution parameters are SD σu = 0.4, gene correlation ρ = 0.7, MV rate r = 10%. Each panel in the figure
corresponds to one combination of the feature selection methods and the classification rules, which is given by the title. The x-axis labels the
number of selected genes, the y-axis is the noise level, and the z-axis is the classification error.
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Figure 3: Effect of variance. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed datasets.
The underlying distribution parameters are noise level μe = 0.2, gene correlation ρ = 0.7, MV rate r = 15%. Each panel in the figure
corresponds to one combination of the feature selection methods and the classification rules, which is given by the title. The x-axis labels the
number of selected genes, the y-axis is the signal SD, and the z-axis is the classification error.

For the smallest noise level, imputation does little to improve
upon the measured dataset.

3.1.2. Effect of Variance. The effect of variance (parameter σu
in the data model) on imputation and classification is shown
in Figure 3. As the variance increases, the classification errors
of all datasets increase as expected. When the variance is
small (e.g., σu = 0.3), all imputed datasets outperform the
measured dataset consistently across all the combinations of
feature selection methods and classification rules; however,
when the variance is relatively large (e.g., σu = 0.5), the

measured dataset catches up with and may outperform the
datasets imputed by less advanced imputation methods,
such as RAVG and KNNimpute. As variance increases, the
discriminant power residing in the data is weakened, and
the underlying data structure becomes more complex (as
confirmed by computing the entropy of the eigenvalues of
the covariance matrix of the gene expression matrix [10],
data not shown). Thus it becomes harder for the imputation
algorithms to estimate the MVs.

In addition, it is observed that the classification perfor-
mance of one imputed dataset may outperform that of the
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Figure 4: Effect of correlation. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed
datasets. The underlying distribution parameters are SD σu = 0.5, noise level μe = 0.2, MV rate r = 10%. Each panel in the figure corresponds
to one combination of the feature selection methods and the classification rules, which is given by the title. The x-axis labels the number of
selected genes, the y-axis is the gene correlation strength, and the z-axis is the classification error.

other imputed dataset for a certain combination of feature-
selection method and classification rule, while the perfor-
mances of the two may reverse for another combination
of feature selection and classification rule. For instance,
when the classification rule is LDA and the feature selection
method is t-test, the BPCA imputed dataset outperforms
the LLS.L2 imputed dataset; however, the latter outperforms
the former when the feature selection method is SFFS and
the same classification rule is used (plots on companion
website). This suggests that a certain combination of feature-

selection method and classification rule may favor one
imputation method over another.

3.1.3. Effect of Correlation. Figure 4 illustrates the effect
of gene correlation (parameter ρ in the data model) on
imputation and classification. As the gene correlation goes
up, the classification errors of all datasets increase as
expected. Although it is not straightforward to compare
the classification performances of different datasets under
different correlations, we notice that the correlation-based



10 EURASIP Journal on Bioinformatics and Systems Biology

Ttest + KNN

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(a)

Ttest + SVM

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(b)

Ttest + KNN

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(c)

Ttest + SVM

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

(d)

Ttest + KNN

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

Signal
Orgn
RAVG
KNN

LLS.L2
Ls
BPCA

(e)

Ttest + SVM

0
10

20
30

Feature size
252015105

MV rate

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
la

ss
ifi

ca
ti

on
er

ro
r

Signal
Orgn
RAVG
KNN

LLS.L2
Ls
BPCA

(f)

Figure 5: Effect of MV Rate. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed datasets.
The underlying distribution parameters are SD σu = 0.3, gene correlation ρ = 0.7, and noise level μe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures
(a), (b), (c), (d), (e), and (f), respectively. The x-axis labels the number of selected genes, the y-axis is the MV rate, and the z-axis is the
classification error.
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Figure 6: Effect of MV Rate. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed datasets.
The underlying distribution parameters are SD σu = 0.4, gene correlation ρ = 0.7, and noise level μe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures
(a), (b), (c), (d), (e), and (f), respectively. The x-axis labels the number of selected genes, the y-axis is the MV rate, and the z-axis is the
classification error.
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Figure 7: Effect of MV Rate. The classification error of the signal dataset (signal), the measured dataset (orgn), and the five imputed datasets.
The underlying distribution parameters are SD σu = 0.5, gene correlation ρ = 0.7, and noise level μe = 0.2, 0.2, 0.3, 0.3, 0.4, 0.4 for subfigures
(a), (b), (c), (d), (e), and (f), respectively. The x-axis labels the number of selected genes, the y-axis is the MV rate, and the z-axis is the
classification error.
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MV imputation methods such as LLS.PC and LS may slightly
outperform BPCA in larger correlation cases, suggesting that
the local correlation structure of a dataset may be better
captured by such methods.

3.1.4. Effect of MV Rate. Perhaps the most important obser-
vations concern the missing value rate, which is determined
by adjusting the parameter τ in (6) to obtain a specified
percentage r of missing values: r = 1, 5, 10, 15, 20, 25%.
Because we wish to show the effects of two model parameters,
we will limit ourselves in the paper to considering 3NN
and SVM with t-test feature selection. Corresponding results
for other cases are on the companion website. Figures 5, 6,
and 7 provide the results for the signal standard deviation
σu = 0.5, 0.4, and 0.5 respectively, with subfigures (a)
to (f) of each figure corresponding to noise levels μe =
0.2, 0.2, 0.3, 0.3, 0.4, and 0.4, respectively. In all cases, ρ =
0.7. In Figures 5(a) and 5(b) we observe the following
phenomenon: there is improvement on the performance of
the various imputation methods as the MV rate initially
increases, and then performance deteriorates (quickly, in
some cases), as the MV rate continues to increase after a
certain point. We shall refer to this phenomenon as the
missing-value rate peaking phenomenon. It is important to
stress that degradation of performance of imputation at
larger MV rates is quite noticeable: at 20% the weaker
imputation methods perform worse than the measured data
and at 25% imputation is detrimental for kNN and not
helpful for SVM. In Figures 5(c) and 5(d) we again observe
the MV rate peaking phenomenon; however, imputation
performs better relative to the measured data. Imputation
remains better throughout for SVM and only gets worse for
kNN at MV rate 25%. In Figures 5(e) and 5(f) the peaking
phenomenon is again noticeable, but for this noise level
imputation is much better relative to the measured data and
all imputation methods remain better at all MV rates. Similar
trends are observed in Figures 6 and 7, the difference being
that as σu increases from 0.3 to 0.4 and 0.5, the imputation
methods perform increasingly worse with respect to the
measured data. Note particularly the degraded performance
of the simpler imputation schemes.

Figure 8 displays the behavior of NRMSE as a function
of MV rate. Here, we also observe a peaking phenomenon
for the NRMSE, though a modest one. This is in contrast to
previous studies, which all generally report the NRMSE to
increase monotonically with increasing MV rate [4, 5, 9, 13];
this may be a consequence of the different way in which
the MVs are selected in those studies as compared with
the present one; in the former, MVs are picked randomly,
whereas in the latter, MVs are picked based on quality
considerations, revealing the peaking phenomenon.

3.2. Results for the Patient Data. For the patient data, since
the true signal is unknown, we only conduct the comparison
of imputations with respect to different MV rates. The effect
of MV rate is shown in Figures 9 and 10, for the BREAST
and the PROST dataset, respectively. The trends observed are
similar to those in the synthetic data study, in the sense that
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Figure 8: The NRMSE values (y-axis) of the five imputation
algorithms with respect to the MV rate (x-axis). The underlying
distribution parameters are: SD σu = 0.5, noise level μe = 0.2, gene
correlation ρ = 0.7.

Table 1: Simulation summary.

Parameters/methods Values/descriptions

Gene block standard deviation σu = 0.3, 0.4, 0.5

Gene block correlation ρ = 0.5, 0.7

Gene block size D = 15

Noise level μe = 0.2, 0.3, 0.4

MV rate
r =

1, 5, 10, 15, 20, 25%

No. of marker genes 30

No. of total genes 500

Training sample size 60

Testing sample size 200

No. of repetitions for each model 150

Imputation algorithms
RAVG, KNN, LLS.L2,

LLS.PC, LS, BPCA

Classification rules LDA, 3NN, SVM

Feature selection methods t-test, SFFS

there is a degradation of performance of imputation methods
with increasing MV rates. On the other hand, the missing-
value rate peaking phenomenon is less evident here, but still
present, as can be seen from the fact that the classification
performance of LLS, LS, and BPCA imputed datasets in a
few cases becomes better under a larger MV rate than the
corresponding datasets with a smaller MV rate.
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Figure 9: The classification errors of the measured prostate cancer dataset (orgn), and the five imputed datasets. Each panel in the figure
corresponds to one combination of the feature selection methods and the classification rules, which is given by the title. The x-axis labels the
number of selected genes, the y-axis is the MV rate, and the z-axis is the classification error.

It is again observed that the classification performances
of imputed datasets depend on the underlying combination
of feature selection method and classification rule. For exam-
ple, RAVG and KNNimpute show satisfactory performances
for the combinations SFFS + LDA and Ttest + LDA (data
not shown) but perform relatively poorly for the other
combinations.

The NRMSE values of different imputation methods
generally decrease first and then increase as the MV rate
increases (see Figure 11) which is similar to the trend
observed in synthetic data study.

It is also found that there is no strong correlation between
the low-level performance measure NRMSE and the high-
level measure classification error. A small NRMSE may
not necessarily suggest a small classification error, that is,
an imputation method may perform better than another
imputation method in terms of estimation accuracy, but
the former may not be as good as the latter in terms of
classification performance. In other words, although a given
imputation method may be more accurate than another
when measured by NRMSE, it might decrease more the
discrimination power presents in the original data.
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Figure 10: The classification errors of the measured breast cancer dataset (orgn) and the five imputed datasets. The meanings of the axes
and titles are the same as in Figure 9.

4. Conclusions

We study the effects of MVs and their imputation on
classification by using a model-based approach. The model-
based approach is employed because it enables systematic
study of the complicated microarray data analysis pipeline,
including imputation, feature selection and classification.
Moreover, it gives us ground truth for the differentially
expressed genes, allowing the computation of imputation
accuracy and classification error. We also carry out a
simulation using real patient data from two cancer studies
to complement the findings of the synthetic data study.

Our results suggest that it is beneficial to apply MV
imputation on the microarray data when the noise level is
high, variance is small, or gene-cluster correlation is strong,
under small to moderate MV rates. In these cases, if data
quality metrics are available, then it may be helpful to
consider the data point with poor quality as missing and
apply one of the most robust imputation algorithms, such
as LLS, and BPCA, to estimate the true signal based on the
available high-quality data points, in which case the classifier
designed on the imputed dataset with reduced noise may
yield better error rates than the one designed on the original
dataset.
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Figure 11: The NRMSE values (y-axis) of the five imputation
algorithms with respect to the MV rate (x-axis) for the PROST
dataset and the BREAST dataset.

However, at large MV rates, we observed that imputation
methods are NOT recommended, and the original measured
data yields better classification performance. Regarding
MV rate, our results indicate the presence of a peaking
phenomenon: performance of imputation methods actually
improves initially as the MV rate increases, but after an
optimum point is reached, performance quickly deteriorates
with increasing MV rates. This was observed very clearly in
the synthetic data simulation, and less so with the patient
data, even though the phenomenon is still noticeable.

As for the NRMSE criterion, which is the figure of merit
employed by most studies, we also observe a peaking phe-
nomenon with increasing MV rate, in contrast to previous
studies that report the NRMSE to increase monotonically
with increasing MV rate; this may be a consequence of the
different ways in which the MVs are selected in those studies
as compared with the present one; in the former, MVs are
picked randomly, whereas we pick MVs based on quality
considerations.
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