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Structured information provided by manual annotation of proteins with Gene Ontology concepts represents a high-quality
reliable data source for the research community. However, a limited scope of proteins is annotated due to the amount of human
resources required to fully annotate each individual gene product from the literature. We introduce a novel method for automatic
identification of GO terms in natural language text. The method takes into consideration several features: (1) the evidence for
a GO term given by the words occurring in text, (2) the proximity between the words, and (3) the specificity of the GO terms
based on their information content. The method has been evaluated on the BioCreAtIvE corpus and has been compared to current
state of the art methods. The precision reached 0.34 at a recall of 0.34 for the identified terms at rank 1. In our analysis, we
observe that the identification of GO terms in the “cellular component” subbranch of GO is more accurate than for terms from the
other two subbranches. This observation is explained by the average number of words forming the terminology over the different
subbranches.
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1. Introduction

Gene Ontology (GO) is a structured database of biological
knowledge that provides a controlled vocabulary to describe
concepts in the domains of molecular and cellular biology
[1]. Currently, the GO vocabulary consists of more than
23 000 terms and is distributed via the GO web pages at
http://www.geneontology.org/. GO contains three ontolog-
ies: (1) molecular function that describes molecular activi-
ties, (2) biological process that describes ordered assemblies
of events or a recognized series of molecular functions, and
(3) cellular component that describes subcellular locations
and macromolecular complexes. Gene products across all
species are annotated with GO terms (called GO anno-
tations) to support the description of protein molecular
characteristics. These annotations support exchange and
reuse of gene characteristics in a standardized way.

The GO annotation (GOA) data is generated by the GO
Consortium members through a combination of electronic
and manual techniques based on the literature. The manual
annotations ensure high-quality reliable data set and have
been frequently used by the biological and bioinformatics

communities [2]. Apart from manual annotation of proteins,
the GO knowledge resource is used to annotate microarray
data [3] and to automatically annotate proteins with GO
terms amongst other semantic types [4].

However, generation of manual GO annotations based
on the literature requires a team of trained biologists and
is time consuming, which leads to a limited and thus
insufficient coverage of proteins with manual annotations. As
a consequence, more efficient means are required to increase
the throughput of annotations. Text mining technology is
a means to support the annotation process by efficiently
identifying and extracting information from the literature
and transforming it into GOA input. This approach can pro-
duce a significant increase in the number of GO annotations
from the scientific publications and improve the benefit from
reusing the data.

Automatic GO annotation methods using text mining
have been evaluated in the BioCreAtIvE competition as part
of task 2 [5]. In the first subtask of task 2, the competition
participants had to identify a passage in a full text document
that supports the annotation of a given protein with a given
GO term.
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Different techniques have been applied to this task
referenced in Blaschke et al. [5] that can be split into three
groups. (1) The first group of techniques processed the GO
lexicon to feed the content into pattern matching techniques.
(2) The second group used the input information to train
machine learning techniques for the identification of relevant
passages. (3) Finally, the last group applied techniques that
combine pattern matching and machine learning approaches
(hybrid methods).

The pattern matching methods (group 1) delivered the
highest number of correct annotations but produced many
false positives. The hybrid methods returned a lower number
of false positives but had the disadvantage of a lower number
of true positives. Finally, the machine learning techniques
showed intermediate performance. The outcome of the Bio-
CreAtIvE contest is that automatic GO annotation remains
a challenging task and that further research is required to
obtain better results.

The work presented in this paper is best categorized into
the pattern matching group and our results will be compared
to two state-of-the-art methods from the same group: Ruch
[6] and Couto et al. [7].

Both methods base their scoring functions on the word
frequencies extracted from the GO lexicon. The more fre-
quent a word is, the smaller the contribution of the word to
the final score of the GO term. Furthermore, Ruch’s method
increments the score of a GO term for which the candidate
matches one of the predefined syntactical patterns of the
system while Couto’s method limits the look-up of words to
the sentences and filters out GO terms that are frequent in
the Gene Ontology annotations.

Apart from the contributions to the BioCreAtIvE work-
shop, other solutions for the extraction of Gene Ontology
terms from text have been proposed. GoPubMed [8] is a
web-based tool that offers access to subgraphs from Gene
Ontology that matches PubMed abstracts. The methods
behind GoPubMed identifies GO terms in abstracts by
matching first the suffix of the terms and then gathering one
by one the more specific words of the left part of the terms.
In addition, a selection of general terms’ suffixes and some
words from a stop list is ignored during the word matching
process. The authors do not provide explicit measures of the
recall.

Our approach is also based on the identification of
weighted words that compose terms denoting GO concepts.
The novelty of our method resides in the integration of two
new aspects in the scoring method: the proximity between
words in text and the amount of information carried by each
individual words.

The paper is organized as follows. First, we describe the
method used to score mentions of GO terms in text. Then
we explain the design of the evaluation method and present
the obtained results. Finally, we focus on the characteristics
of the method’s performance. The evaluation focuses on
the identification of GO terms in text and not on the
identification of a text passage containing the evidence for
a given protein being related to a given GO term.

2. Methods

The identification of a term in text requires the localization
of the evidence for its mention in the text. The occurrence
of words constituting the terms is a reliable evidence.
However, this evidence might introduce related terms that
are hypernyms or hyponyms of each other. The selection
of the most specific term avoids loss of detail. Evidences
extracted from text are unlikely to have a relationship with
each other if they are far from each other in text. As a result,
such evidence is unlikely to be the result of the mention of the
term they constitute. Finally, the described methods make
abstraction of the order of the words occurring in the terms,
thus allowing to identify syntactical variants of the terms in
the text.

We describe in the following a method that integrates
the concepts of evidence, specificity, and proximity to identify
mentions of terms in text.

Before describing all three aspects of the method, the
concept of a zone needs to be introduced. A zone is a
continuous stretch of text that is composed of words. The
decomposition of a document into zones can follow various
definitions. The zones of a document can be its paragraphs,
its sentences, or, for instance, the noun phrases contained in
the document. The zone can also be the document itself.

2.1. Evidence and Specificity

The following calculations are inspired from the similarity
definition introduced in Lin [9]. The similarity between
two entities is defined as the ratio between the amount of
information shared by the two entities and the amount of
information needed to describe the two entities:

similarity (e1, e2) = log P
(
common

(
e1, e2

))

log P
(
description

(
e1, e2

)) . (1)

Lin [9] illustrates the benefit from the similarity measure
with a number of scenarios such as the assessment of string
similarity based on n-grams or measurement of the similarity
between concepts derived from an ontology by considering
the ontology’s structure. But more generally, the proposed
approach can be applied to any model for describing the
entities to be compared. In our study, the units describing
the entities are words.

We introduce the technique used to measure the evidence
that a term t is mentioned in a zone z, and we provide at the
same time the description of the specificity measurement of
a term.

A term consists of words where each word contributes
to the syntactic and semantic representations of the term.
Intuitively, the word “of” is of lower importance than
the word “activity” to convey the meaning of the term
“activation of JNK activity.” Similarly, “activity”
contributes less than “JNK.”

Deciding whether a term t is mentioned in a zone z
consists of recognizing the individual words of t in z that are
necessary to preserve reasonably well its original meaning.

Independently of the text, measuring the contribution
of each word in the meaning of a term can be estimated
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by measuring the amount of information carried by each
individual word and comparing it to the global amount of
information carried by the term. The amount of information
carried by a word w is

I(w) = −log
(
p(w)

)
, (2)

where p(w) is the probability that w occurs in a corpus.
Several types of corpus will be presented in Section 3. The
formula illustrates that a frequent word carries a low amount
of information whereas a rare word is rich in information.
Considering the amount of information carried by words has
proved to be of great benefit with the broadly used TFIDF in
the information retrieval field:

TFIDF = t f · idf = t f · log
( |D|
f (w)

)
= t f · I(w). (3)

Under the assumption that the occurrences of the words in a
term are independent, the amount of information carried by
a term is

I(t) =
∑

w∈tok(t)

− log
(
p(w)

)
, (4)

where tok(t) is the set of unique words, also called tokens, in
the term t. The amount of information carried by a term is a
suitable measurement of the specificity of the term. However,
the specificity of a term can also be estimated by considering
the probability that the term itself occurs:

I(t) = −log
(
p(t)

)
. (5)

Terms frequencies can nevertheless be nil, thus carrying
the same undetermined amount of information. These nil
frequencies can be observed for half of the Gene Ontology
terms. Therefore, we will privilege the first estimation of the
specificity.

Finally, the amount of information from a term t present
in a zone z is

I(z ∩ t) =
∑

w∈tok(z)∩tok(t)

− log
(
p(w)

)
. (6)

The proportion of I(z ∩ t) in I(t) is the proportion of
information carried by the words wi present in a zone z and
constituting the term t. This ratio is used to measure the
amount of evidence that a term t occurs in a zone z:

e(z, t) = I(z ∩ t)
I(t)

=
∑

w∈tok(z)∩tok(t)log(p(w))
∑

w∈tok(t)log(p(w))
. (7)

2.2. Proximity

The fact that the words of a term t occur in a text zone
z does not necessarily mean that the term is mentioned in
the zone, especially if the zone is relatively large (e.g., the
whole document). The proximity between the words of t in z
provides a clue on the likelihood that those words belong to
a common term.

The proximity of the words forming a term and found
in the text is a function of the positional index of the

words in the text. The benefit of using proximity between
keywords has been greatly shown in the field of information
retrieval [10]. Various approaches for measuring the notion
of proximity or density have been proposed in order to score
and rank more efficiently query results. In the following, we
propose to use the proximity in the sense of density.

The relative distances between the individual tokens from
the term and the minimum distance between the words in the
optimal case where the words are consecutive are taken into
consideration when measuring the proximity.

Let W be the set of words of term t found in the zone z:

W = tok(z)∩ tok(t) = {w0, . . . ,wn−1
}

, (8)

where n is the number of words in W : n = ‖W‖. The scatter
of the words W in the zone z is the sum of the distances
between the individual words of W :

Σ(W , z) =
∑

wi∈W ,wj∈W
dist

(
wi,wj , z

)
, (9)

where dist(wi,wj , z) is the distance measured in words,
between the word wi and the word wj in the zone z.

The minimum dispersion for W in z takes place when
the words of W are consecutive. Following the previous defi-
nition, the minimum dispersion can be directly computed as
follows:

Σmin(W) =
n−1∑

i=0

n−1∑

j=0

|i− j|. (10)

We define the proximity of the words W in the zone z
as the ratio between the minimum dispersion of W and the
dispersion of W in z:

pr(W , z) = Σmin(W)
Σ(W , z)

≤ 1. (11)

The proximity indicates whether the words constituting
the terms and found in a zone z are close to each other or
dispersed over the zone. The proximity is 1 when the words
of W are consecutive in z and decreases towards 0, while the
words move away from each other in z.

In case a word occurs several times in a zone, the smallest
distance from all combinations is considered. This solution
gives the opportunity to keep a relatively high proximity
for a term such as “a b c” that occurs in a zone like
“· · · a b · · · b c · · ·.”

For such a case, the determining parameter is the distance
between “a” and “c.”

2.3. Score

Evidence, specificity, and proximity are the three parameters
that are combined to score the mention of a term t in a text
zone z. The three criteria may be of various importance and
must be weighted accordingly. Their importance varies in
function of the nature of the terminology and of the text.

The three criteria are combined by the product of
the functions, thus providing a veto to the functions. For



4 EURASIP Journal on Bioinformatics and Systems Biology

instance, if no word carries evidence that a GO term is
mentioned in the zone, then the score will consequently tend
to zero. Similarly, if the words supporting the mention of the
term are greatly scattered over the text, then the score will
tend to zero, whatever evidence found in the zone. Finally,
the three aspects are weighted by using the power of the
individual function:

s(z, t) = e(z, t)α · I(t)β · pr(W , z)γ. (12)

Increasing the power of a function (α, β or γ) increases
the role played by the corresponding criterion.

2.4. PreviousWork

We provide the details of Couto and Ruch’s methods. Our
approach is compared to these two systems in Section 3.

Couto et al. [7] score the mention of GO terms in text by
considering the “evidence content” of the individual words
constituting the GO terms:

WordEC(w) = −log
Freq(w)
MaxFreq

, (13)

where Freq(w) is the number of ontology terms containing
the word w and where MaxFreq is the sum of Freq(wx) for all
the words wx occurring in the ontology.

The evidence content of a term is defined as the highest
evidence content of its names:

EC(t) = max
{

NameEC(n) : n ∈ Names(t)
}

, (14)

where

NameEC(n) =
∑

w∈Words(n)

WordEC(w). (15)

Then, they computed the “local evidence content” that a
name t is mentioned in a zone z:

NameLEC(n, z) =
∑

w ∈ (z ∩Words(n)
)
WordEC(w).

(16)

Again, the local evidence content of a term t is defined as
the maximum local evidence content of its names:

LEC(t, z) = max
{

NameLEC(n, z) : n ∈ Names(t)
}
. (17)

Finally, the confidence that a term t occurs in a zone z is
defined as the ratio between the local evidence content of the
term in the zone and the evidence content of the term:

Con f (t, z) = LEC(t, z)
EC(t)

. (18)

Upstream the computation of the confidence, some
words are discarded from the term weighting by applying a
stop list on words such as “of” or “in.”

The approach of Ruch [6] is based on pattern matching
and text categorization ranking. The pattern matching
module measures the similarity between a term and a sliding

window of five words from the passages. The text catego-
rization module introduces a vector space that provides a
similarity measure between a GO term, seen as a document,
and a passage, seen as a query. The modules ranking the
GO terms given a passage as a text categorizer would rank
documents given a query. A fusion of the two modules
is operated by using the result of the vector space as a
reference list while the pattern matching result is used as a
boosting factor. Finally, the candidates scores are reordered
by considering the overlap between the candidates and the
noun phrases extracted from the text. The noun phrases are
identified by applying a set of predefined patterns on the
text’s part-of-speech tags.

3. Evaluation

We illustrate here the identification of terms derived from the
Gene Ontology (GO). GO provides a controlled vocabulary
to describe genes and proteins in any organism. Each entry in
GO has, among other fields, a term name, a unique identifier,
and a set of synonyms.

The evaluation has the goal to provide a measure of the
accuracy of the system for identifying in text terms derived
from the Gene Onology.

3.1. Method

The system has been evaluated on the BioCreAtIvE corpus,
the most suitable standard evaluation set for the annotation
of text with Gene Ontology terms. The evaluation illustrates
the performance in terms of precision and recall.

The BioCreAtIvE corpus, named here B, contains 2444
entries, each of them containing, among other fields, a
passage, as well as the GO identifier of the term mentioned
in the passage’s text.

For each passage, the evaluated system provides a list
of candidates, sorted by the score s(z, t). The precision and
recall are computed over all the passages by considering the
first k suggestions with k ≤ 10. The precision and recall, at
rank k, are computed as follows:

precision(k) =
∑k

i=1

∥∥C+(i)
∥∥

∑k
i=1

∥
∥C(i)

∥
∥

,

recall(k) =
∑k

i=1

∥∥C+(i)
∥∥

‖B‖ ,

(19)

where C(k) is the set of candidates at rank k and C+(k)
denotes the correct ones. When k increases, the number of
candidates also increases whereas the number of entries ‖B‖
is independent of k.

Clearly, precision(k) and recall(k) are relevant indicators
of the performance of the system for a given rank k.
Nevertheless, comparing several systems requires a global
approach that takes into account the performance of the
systems at various ranks. We, therefore, introduce a novel
measure that assesses the performance of the systems over all
the ranks by computing the proportion of correct candidates
by the number of entries. Each correct candidate is inversely
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weighted by its rank. The contribution of a correct candidate
at rank 1 is 1 unit when a correct candidate at rank
5 contributes of one fifth. The global performance (g p)
measures the accuracy of the system, over all the ranks, and is
by consequence suitable for comparing systems against each
other,

g p =
∑k

i=1(1/k)
∥∥C+(k)

∥∥

‖B‖ . (20)

3.2. Statistical Significance

The precision and recall are well-established measurements
for estimating the accuracy of text mining methods. How-
ever, the comparison of individual methods by only consid-
ering the precision/recall can often underestimate their dif-
ferences [11]. Therefore, while presenting the performance
of the individual methods, we also provide a statistical
significance of the differences between the precisions of
the various methods at rank 1. To do so, we test the null
hypothesis:

Method 1 and method 2 are not different.
Then, we estimate the probability that the precision on

the test set is as good as the one return by the so-called best
method. To estimate this probability, we first generate 220

trials where the passage annotations are randomly selected
from one of the two methods. For each trial, the precision
at rank 1 is computed. Finally, we compute the maximum
probability that we observe a precision that is at least as good
as the one of the so-called best method (see [11] for further
details):

p = (nc + 1)
(nt + 1)

, (21)

where nc is the number of trial with a precision that is at least
as good as the one of the so-called best method and where
nt is the number of trials. It has been acknowledged that a
probability below 0.05 illustrates a statistical significance in
the result differences [11].

3.3. Probabilistic Model

Three probabilistic models have been tested for computing
p(w). The first one is based on the word frequencies in
Medline. The second one is also based on word frequencies
in Medline, but only for abstracts that have been annotated
by curators in mammalian annotation projects [12]. The last
probabilistic model is based on the word frequencies in the
Gene Ontology itself, as in Ruch and Couto’s methods.

3.3.1. Medline

The first probabilistic model used to compute p(w) is derived
from the document frequencies in Medline:

p(w) = f (w)
‖M‖ , (22)

where f (w) is the number of documents in Medline where
w occurs and ‖M‖ is the total number of documents in
Medline.

3.3.2. Medline Abstracts fromGene Ontology
Annotations (GOA)

This model is based on the document frequency from the
GOA and contains around 22 000 references to Medline
entries,

p(w) = f (w)
‖G‖ , (23)

where f (w) is the number of GOA documents where w
occurs and ‖G‖ is the total number of GOA documents.

3.3.3. Gene Ontology

The last model is based on the word frequencies in the Gene
Ontology:

p(w) = f (w)
‖L‖ , (24)

where f (w) is the number of names in the Gene Ontology
where w occurs and ‖L‖ is the total number of names in
the Gene Ontology. The probability that a word occurs in
the ontology is independent of the hierarchical structure
of the ontology. Indeed, the structure does not contain
information on the probability that a word occurs in a
concept name. However, the opposite is not true; it can
be observed that many GO terms contain words that also
belong to their parents, thus the concept names provide
some information on the structure of the ontology. Lin [9]
uses the structural information contained in the ontology
to measure the semantic similarity between two concepts.
However, in the present context, this structural information
is not available for the zone and thus cannot be considered.
Furthermore, the aim of our approach is not to measure the
semantic similarity but the similarity in terms of evidence.

The three models have been evaluated with the optimal
parameters (α = 4, β = γ = 1) described in the next section.
The best performance is reached when the Gene Ontology is
used as the model, with a global performance of 0.42. Then,
g p = 0.4 when the Gene Ontology Annotation’s corpus is
used and decreases even more (g p = 0.38) with the entire
Medline as the model.

3.4. Evidence, Proximity, and Specificity

To illustrate the role played by each aspect of the method,
we explore the evolution of the precision/recall when the
evidence, the specificity, and the proximity are taken or
not into consideration. We also consider in the evaluation
different types of zones. The following setups have been
measured.

(1) Default setup: α = 4, β = γ = 1, each passage is a zone.
(2) Zone = sentence.
(3) Zone = noun phrase.
(4) Evidence: α = 1.
(5) Without proximity (γ = 0).
(6) Without specificity (β = 0).
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Figure 1: Precision/recall of the setups for rank k = 1 to 10. Code:
p = proximity, s = specificity, and z = zone.

Table 1: Global performance for the six setups.

Setup g p

(1) Optimal setup 0.42

(2) Zone = sentence 0.40

(3) Zone = noun phrase 0.39

(4) α = 1 0.11

(5) Without proximity 0.40

(6) Without specificity 0.28

Setups (1), (2), and (3) illustrate the role of the zone
while setups (4), (5), and (6) demonstrate the importance of
the evidence, the proximity, and the specificity, respectively.
For the sake of brevity, only the optimal parameter is
provided. The optimal parameters have been determined
by trying the different combinations of α, β, and γ within
[1 · · · 5] with a step of 0.5 on the second independent
annotated corpus from BioCreAtIvE.

Figure 1 shows the precision/recall of the system in the
setups (1) to (6). The optimal setup is found when α = 4 and
when the specificity and the proximity are integrated into the
final score’s equation with the passages as zones. The system
achieves a precision/recall of 0.34 at rank 1. Table 1 shows the
global performance (g p) for each setup.

3.5. Comparison with ExistingMethods

In order to provide a baseline in the comparison, the exact
match method, in other words the identification of terms by
the localization of the constituting words in their consecutive
order, is evaluated. The method is compared to the exact
match method as well as the ones described by Rush [6] and
Couto et al. [7].
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Figure 2: Comparison of the precision/recall for rank k = 1 to 10.

Table 2: Global performance of the 4 methods.

Method g p

Strict matching 0.29

Our method 0.42

Ruch’s method 0.38

Couto’s method (GO Figo) 0.36

Table 3: Probability that the two methods are not different in terms
of precision at rank 1. A probability under 0.05 indicates a statistical
significance difference between the two methods.

Method p

Ruch’s method/Couto’s method 0.275

Couto’s method/presented method 0.027

Ruch’s method/presented method 0.001

The BioCreAtIvE corpus has been generously tagged
by the authors of both papers mentioned above and ho-
mogeneously evaluated in terms of global performance,
precision, and recall. The global performance of the systems
illustrated in Figure 2 shows the improvement of our method
(precision/recall of 0.34 at rank 1) over Ruch (0.30) and
Couto’s methods (0.30). However, their methods outperform
greatly the strict matching technique (0.25) by allowing
flexibility on the order of the words as well as their
consecutiveness. Table 2 gives the global performance of each
method. The differences of performance among the methods
that can be observed from the comparison are confirmed by
the statistical significance test for rank 1 (Table 3). We can
note the convergence of the precision/recall points for higher
ranks between our method and Ruch’s method (Figure 2).
Nevertheless, this phenomenon remains natural since all
methods are “word-evidence” based.



EURASIP Journal on Bioinformatics and Systems Biology 7

0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

ci
si

on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

Precision/recall for rank k = 1 to 10 for the branches of GO

Molecular function
Biological process
Cellular component

Figure 3: Precision/recall for the three branches of GO for rank
k = 1 to 10.

3.6. Branches of GO

The performance of the method is significantly different
for each individual branch of the Gene Ontology. Figure 3
and Table 4 illustrate the precision/recall and the global
performance for each branch. Terms from the cellular
component branch are by far the most often recognized
terms with g p = 0.6. The molecular function branch is a
more difficult terminology to identify in text with g p = 0.39.
The lowest performance is met on the biological process
branch with g p = 0.34

The same differences are observed on the performance of
Rush [6] and Couto et al. [7].

4. Discussion

Three probabilistic models have been evaluated and com-
pared. The model based on the Gene Ontology appears as
the most suitable. The benefit of using the Gene Ontology
as the probabilistic model is explained by the fact that the
model is close to the distribution of words from GO in text
and provides a good measurement of the information carried
by individual words. Medline refers to a heterogeneous set
of topics in the biomedical domain. As a consequence, the
distribution of words is less suitable. The subset of Medline
that is used to annotate proteins with GO terms provides
better results because the corpus is more related to the
biomolecular domain (Table 5).

The role played by each individual aspect of the method
is clearly illustrated in Figure 1. The evidence and the prox-
imity are factors to decide whether the term is mentioned or
not in the analyzed text whereas the specificity prioritizes the
terms in the list of candidates. As expected, the evidence, in
other words the proportion of information carried by words
from t found in z, plays a major role in the identification
of mentioned terms in text. But it also appears that the

Table 4: Global performance for the three branches of GO.

Branch g p

Molecular function 0.39

Biological process 0.34

Cellular component 0.6

Table 5: Global performance of the three models.

Probabilistic model g p

Gene Ontology 0.42

GOA corpus 0.4

Medline corpus 0.38

specificity of the terms is an important criterion when
annotating text with GO terms. The proximity is essential
when the zone’s size increases and is a convenient technique
to constrain words to occur in a common window.

The novelty of our method resides in the specificity
and the proximity aspects. The integration of these two
aspects justifies the better performance over Rush [6] and
Couto et al. [7]. In spite of the fact that Couto limits the look-
up to sentences and that Ruch increases the score of a pattern
match, the notion of a flexible proximity is absent from their
methods.

Better performance for the identification of GO anno-
tations has only been reported in two cases that clearly
differ from our approach. In Couto et al.’s approach [13],
prior knowledge from GOA for selected proteins was used to
annotate orthologs based on the identification of GO terms
from Medline abstracts with Couto’s method. Shatkay et al.
[14] transformed Medline abstracts into feature vectors of
distinguishing terms that are predictive for a subcellular
localization and these feature vectors were used to categorize
proteins into a subcellular location. The method appears to
be efficient in predicting cellular localizations of proteins
when combined with other genomic and proteomic data.
However, this method did not propose any evidence of a
GO term from the text and is restricted to the cellular
localization.

The distribution of the number of words per term in
the individual branches of Gene Ontology might play a role
in the performance of the systems. Indeed, Figure 4 shows
the distributions of the number of words in terms for the
individual branches of GO. The biological process branch,
which is the most difficult category to identify in text, has
on average a higher number of words than the cellular
component for which the identification of terms in text is
more satisfactory. The chances of identifying all the words
of a term can be lower for a long term than a short term.
Furthermore, the comprehensive list of synonyms for long
terms can be missing from the lexicon given the number
of combinations for all the synonyms of the constitutive
words of terms (Table 6). Also, terms referenced in the Gene
Ontology can represent complex biological concepts that
include relationships between various biological entities. The
mention of those complex concepts in text can be formulated
in an unlimited number of possiblemanners, thus making
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Figure 4: Distributions of the number of words for each branch:
y = p(‖tok(term)‖ = x).

Figure 5: Graph representing the Gene Ontology structure for the
molecular function branch. The level of gray of a node is function
of the frequency of its corresponding GO term in Medline abstracts.

the capture of all those mentions almost impossible in an
automatic manner. In addition, terms kept in GO have not
been collected or designed to fulfill information extraction
demands. In particular, GO terms can either refer to some
conceptual ideas that are not explicitly mentioned as such in
text or, on the contrary, can be often named in the literature
under some common forms that are not referenced in GO.

Figure 5 clearly shows an uneven distribution of the
GO terms occurrences in Medline abstracts by applying
our term identification method. It can also be seen that
selected entire subbranches consist of frequent terms while
terms from some other subbranches are rarely mentioned in
Medline abstracts. Interestingly, only 51% of the GO terms
of the molecular function branch are found at least once
in Medline, suggesting that the GO terms names are not
necessarily optimally defined to match the literature. But

Table 6: Examples of GO terms that have not been extracted from
the passages.

thiamin-triphosphatase activity:

. . . inhibit the activity of the purified bovine ThTP

. . .

cytoplasm:

. . . in perinuclear cytoplasmic regions . . .

negative regulation of JNK cascade:

. . . The inhibitory effects of TIZ on the

TRAF6-induced activation of NF-kappaB, JNK, and

AP-1 . . .

sulfate adenylyltransferase (ATP) activity:

. . . while exons 6-13 encode ATP sulfurylase. The

MSK2 construct without the exon 6-encoded peptide

showed no kinase or sulfurylase activity . . .

surprisingly, 84% of the GO terms that annotate human
proteins are also found in Medline abstracts. This large
overlap between the GO terms used in the literature and
in the GO annotation database drives the hope to bring
both resources close together and to automatically annotate
proteins with a sufficient coverage.

The overall precision of 0.34 for a recall at 0.34 at rank
1 seems at first limited. In the context of BioCreAtIvE, the
evaluation method judges as correct a GO term only if there
exists an annotation between the GO term and the protein
mentioned in the passage. However, many other GO terms
appear in the passages and are classified as incorrect because
they are not bound to a protein. Furthermore, GO terms
are refereed with unambiguous names due to the descriptive
nature of the names. As a result, if the evaluation focusses
only on the mentions of the GO terms, independently of
a potential relationship with a mentioned protein, then the
recall gets close to 0.6 at rank 10 while the precision can be
assumed to get close to 1 due to the unambiguous nature of
the terminology. Indeed, the occurrence of a GO name in
text has a high probability to refer to the GO concept instead
of another concept sharing the same name. In contrast, this
property is not observed with protein names due to their
ambiguous nature. For instance, the mention of “why” can
refer to the adverb or to a gene.

The presented evaluation provides nevertheless an order
on the performances of the various methods. It also provides
a lower boundary for the precision as well as an upper
boundary for the recall on the BioCreAtIvE test set. In other
words, the identification of GO terms, independently of a
relationship with a protein, can be achieved with a precision
close to one and with a recall of 0.6. Such performance
provides satisfying results for assisting biologists in the
task of curating manuscripts when the localization of Gene
Ontology terms in text is needed. The remaining challenging
task is then the association of the GO terms with the proteins
they potentially describe. This last step is still performed by
curators since automatic methods remain deceiving.
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5. Conclusion

The automatic identification of GO terms using the biomed-
ical literature can significantly increase the amount of infor-
mation about proteins available as a structured knowledge
resource. We composed a new method integrating the
notions of evidence, specificity, and proximity to identify
terms from text. The evidence is the proportion of sta-
tistically meaningful words from a term found in text.
This criterion has been previously exploited to achieve the
identification of GO terms in text. The specificity allows the
selection of the most informative terms while the proximity
provides a clue about the belonging of words found in text to
a term.

Adding proximity and specificity into the scoring func-
tion drives the system to reach better performance in
comparison to other state-of-the-art methods. All has been
evaluated against the annotated BioCreAtIvE I corpus and
has been benchmarked to a precision of 0.34 at a recall of 0.34
for the terms delivered at rank 1. The evidence parameter is
the major criterion for scoring mentions of GO terms in text.
However, the specificity and the proximity are important
to improve the identification of the terms. The size of the
zone selected to identify the words has an impact on the
performance of the method with an optimal setup based
on the passage for the evaluation. The optimal probabilistic
model was used to compute the probability that the word
occur is based on the Gene Ontology, model also chosen by
Couto et al. [7].

Some variations in the performance regarding the indi-
vidual branches of GO can be observed and might be
correlated with the nature and the distribution of the number
of words in their respective terms. The performance of
the compared systems indicates that further research is
needed to better identify terms from the biological process
and molecular function branches. Disambiguation, synonym
formation, and word variation could potentially improve the
performance of the identification of GO terms.

Acknowledgments

The first author is supported by an “E-STAR” fellowship
funded by the EC’s FP6 Marie Curie Host Fellowship for
Early Stage Research Training under Contract no. MEST-
CT-2004-504640. The authors would like to acknowledge
Julien Gagneur and Harald Kirsch for their wise advices.
Last but not least, the authors would like to thank Julien
Gobeill, Patrich Ruch, and Fransisco Couto for processing
the passages with their respective systems.

References

[1] M. A. Harris, J. Clark, A. Ireland, et al., “The Gene Ontol-
ogy (GO) database and informatics resource,” Nucleic Acids
Research, vol. 32, pp. D258–D261, 2004.

[2] V. Lee, E. Camon, E. Dimmer, D. Barrell, and R. Apweiler,
“Who tangos with GOA? Use of Gene Ontology Annotation
(GOA) for biological interpretation of ‘-omics’ data and for

validation of automatic annotation tools,” Silico Biology, vol. 5,
no. 1, pp. 5–8, 2005.

[3] S. W. Doniger, N. Salomonis, K. D. Dahlquist, K. Vranizan,
S. C. Lawlor, and B. R. Conklin, “MAPPFinder: using gene
ontology and GenMAPP to create a global gene-expression
profile from microarray data,” Genome Biology, vol. 4, p. R7,
2003.

[4] D. Rebholz-Schuhmann, H. Kirsch, M. Arregui, S. Gaudan, M.
Riethoven, and P. Stoehr, “EBIMed—text crunching to gather
facts for proteins from medline,” Bioinformatics, vol. 23, no. 2,
pp. e237–e244, 2007.

[5] C. Blaschke, E. A. Leon, M. Krallinger, and A. Valencia,
“Evaluation of BioCreAtIvE assessment of task 2,” BMC
Bioinformatics, vol. 6, supplement 1, p. S16, 2005.

[6] P. Ruch, “Automatic assignment of biomedical categories:
toward a generic approach,” Bioinformatics, vol. 22, no. 6, pp.
658–664, 2006.

[7] F. M. Couto, M. J. Silva, and P. M. Coutinho, “Finding
genomic ontology terms in text using evidence content,” BMC
Bioinformatics, vol. 6, supplement 1, p. S21, 2005.

[8] A. Doms and M. Schroeder, “GoPubMed: exploring PubMed
with the Gene Ontology,” Nucleic Acids Research, vol. 33,
supplement 2, pp. W783–W786, 2005.

[9] D. Lin, “An information-theoretic definition of similarity,” in
Proceedings of the 15th International Conference on Machine
Learning, pp. 296–304, Madison, Wis, USA, July 1998.

[10] E. M. Keen, “Some aspects of proximity searching in text
retrieval systems,” Journal of Information Science, vol. 18, no. 2,
pp. 89–98, 1992.

[11] A. Yeh, “More accurate tests for the statistical significance of
result differences,” in Proceedings of the 18th Conference on
Computational Linguistics, vol. 2, pp. 947–953, Association
for Computational Linguistics, Saarbrücken, Germany, July-
August 2000.

[12] E. Camon, M. Magrane, D. Barrell, et al., “The gene ontology
annotation (goa) project: implementation of go in swissprot,
trembl, and interpro,” Genome Research, vol. 13, no. 4, pp.
662–672, 2003.

[13] F. M. Couto, M. J. Silva, V. Lee, et al., “GOAnnotator:
linking protein GO annotations to evidence text,” Journal of
Biomedical Discovery and Collaboration, vol. 1, article 19, 2006.
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