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The inference of gene regulatory network from expression data is an important area of research that provides insight to the
inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution
to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery
of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions
such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for
gene regulatory network inference which employs both mutual information and conditional mutual information to determine
the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive
partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that
demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network
contains coregulated and interactively regulated genes.
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1. Introduction

The prediction of the functions of genes and the elucidation
of the gene regulatory mechanisms have been an important
topic of genomic research. The advances in microarray
technology over the past decade have provided a wealth of
information by allowing us to observe the expression levels of
thousands of genes at once. With the increasing availability of
gene expression data, the development of tools that can more
accurately predict gene-to-gene interactions and uncover
more complex interactions between genes has become an
intense area of research.

1.1. Background

Gene clustering algorithms

Some of the first attempts at determining gene regulations
are based on the gene expression clustering algorithms. These
algorithms determine genes that are likely to be coregulated
by grouping genes that exhibit similar gene expressions

under the same conditions. Different clustering algorithms
differ in the metric used to measure similarity between gene
expressions, and how the metric is used to cluster into
groups similarly expressed genes [1]. In [2], a hierarchical
clustering algorithm using a correlation coefficient metric is
proposed. The K-means algorithm has also been applied to
partition genes into different clusters [3]. Other clustering
algorithms such as self-organizing map (SOM) [4], mutual-
information-based algorithms [5, 6], and graph-theory-
based algorithms [7] have also been proposed.

Graphical algorithms

While gene clustering algorithms allow us to discover genes
that are coregulated, they do not reveal much of the
underlying biological mechanism such as the regulatory
pathways. In recent years, many models have been proposed
attempting to understand how individual genes interact
with each other to govern the diverse biological processes
in the cell. In [8–10], gene regulatory network inference
based on graphical models is proposed. A graphical model
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depicts the relationships among nodes in a graph which
are considered as random variables. Links between nodes
represent dependence of the two variables. For network
inference based on the graphical Gaussian model [11, 12],
the nodes with corresponding random variables X1, . . . ,XM

are assumed to be jointly distributed according to the
multivariate Gaussian distribution N (µ,Σ), with mean
vector µ and covariance matrix Σ. In [13], the gene-to-
gene interaction is predicted from expression data using
Bayesian networks, another type of graphical model. The
dependence relationship between the variables is denoted
by a directed acyclic graph where the nodes are associated
with the variables Xi, i = 1, . . . ,M, and the nodes are
linked if a dependent relationship exists between the two
corresponding variables. Given a set of expression values
D, the algorithm selects the graph G that best describes D
by choosing the graph that maximizes a scoring function
based on the Bayes’ rule P(G | D) = P(D | G)P(G)/P(D).
In [14], gene regulatory network reconstruction based on the
dynamic Bayesian network is proposed to support cycles in
the network, and time-series data in D.

Relevance network algorithms

Another method that is related to graphical model is called
relevance network. Relevance networks are based on the
idea of “covariance graph” where a link exists between
genes gi and gj , i /= j, if and only if the corresponding
gene expressions of gi and gj are marginally dependent
[15]. Different measures of dependence have been used in
relevance-network-based algorithms. In [16], the correlation
coefficient is used to represent the dependence between two
genes, and in both [16, 17], mutual information is used to
measure the nonlinear relationship between the expressions
of two genes. Since these metrics are computed from a finite
number of samples, a threshold is often imposed so that
two nodes are connected if the computed metric between
the two nodes is above the threshold. In [17], entropy and
joint entropy are first computed based on the histogram,
then the mutual information of Xi and Xj is computed by
I(Xi;Xj) = H(Xi)+H(Xj)−H(Xi,Xj). In [18], the proposed
ARACNE algorithm uses the Gaussian kernel estimator to
estimate the mutual information between the expressions
Xi and Xj of genes gi and gj . Before estimating I(Xi;Xj)
from the observed expressions Xi and Xj using the Gaussian
kernel estimator, Xi and Xj are copula-transformed to take
values between 0 and 1. This step is performed so that the
expression data are transformed to uniform distribution, and
arbitrary artifacts from microarray processing are removed.
In gene regulatory networks, if gene gi regulates gj , which
in turn regulates gk, then Xi and Xk will also be highly
correlated. Using methods based on relevance network, a link
will often be incorrectly inferred between gi and gk due to the
high correlation measures. In [18], ARACNE tries to resolve
this problem by using the data processing inequality (DPI).
From DPI, if X , Y , and Z form a Markov chain (denoted as
X→Y→Z), then I(X ;Z) ≤ min[I(X ;Y), I(Y ;Z)] [19]. For a
triplet of genes where the estimated mutual information of
all three pairs of genes exceed the threshold, the link with the

lowest mutual information is removed by ARACNE in the
DPI step.

While relevance-network-based methods such as AR-
ACNE perform well when the interactions in the gene
regulatory network are between pairs of genes, they are
unable to completely discover interactions that are results
of the joint regulation of the target gene by two or more
genes. The XOR interactive regulation is one such interaction
that can be recognized only by exploiting the conditional
dependence between variables of interest. Using conditional
mutual information (CMI), it is possible to detect the XOR
and other nonlinear interactive regulation by two genes.

Several recent works have attempted to incorporate
information theoretic measures for more than two variables
in regulatory network discovery. In [20], a CMI measure
where the conditioning variable takes discrete values in
two states (high and low) is proposed to discovery the
transcriptional interactions in the human B lymphocytes.
In [21, 22], methods based on both MI and CMI have
also been proposed to decrease the false positive rate for
the detection of the interactions. In [23], the conditional
coexpression model is introduced, and the CMI is used as a
measure of conditional coexpression. In [24], an extension of
the context likelihood of relatedness (CLR) algorithm [25],
called “synergy augmented CLR” is proposed. The technique
uses the recently developed information theoretic concept of
synergy [26] to define a numerical score for a transcriptional
interaction by identifying the most synergistic partner gene
for the interaction. In this work, we propose a relevance-
network-based gene regulatory network inference algorithm
similar to [24], using information theoretic measure to
determine the relationship between triplets of genes.

1.2. Objective

Here, we make use of both mutual information and con-
ditional mutual information as measures of dependence
between gene expressions. The main focus of this work is to
discover the potential interactions between genes by adapting
the relevance network model, which is also used in [17, 18].
The inference of the connectivity, or the “wiring” of the
network, is also an important aspect of biological network
inference. The proposed network inference algorithm uses
an adaptive partitioning scheme to estimate the mutual
information between Xi and Xj conditioned on Xk, where
Xk can be either discrete or continuous. We show that
using both mutual information and conditional mutual
information allows us to more accurately detect correlations
due to interactive regulation and other complex gene-to-
gene relationships. In this work, our primary focus is on
the detection of Boolean interactive regulation and other
interactions which cause incorrect inferences, such as coreg-
ulation and indirect regulation. The experimental results
show that the proposed network inference algorithm can
successfully detect these types of regulation, and outperform
two commonly used algorithms, BANJO and ARACNE.

The remainder of the paper is organized as follows.
In Section 2, we present the system model for regulatory
network inference. In Section 3, we present the adaptive
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partitioning algorithms for estimating mutual information
and conditional mutual information as well as our proposed
network inference algorithm based on MI-CMI. In Section 4,
we present experimental results. Section 5 concludes the
paper.

2. SystemModel

Suppose that the given set of genes g1, . . . , gM form a
regulatory network, where each node of the network is
represented by a gene. Associated with each node, gm is a
random variable Xm with unknown steady-state distribution
from which the expressions of gm are generated. We assume
that for gene gm, we have the vector of N steady-state gene
expressions xm � [xm,1, . . . , xm,N ]T , where xm,n is the gene
expression of gene gm under condition n.

In a network inference problem, our primary goal is
to correctly identify the links representing direct regulation
and reduce the false negative and false positive links. A false
negative can be due to the incorrect estimation of the metric
that measures the interaction between the expressions of two
genes. When interactive regulation is introduced into the
network, false negatives may occur for certain interactive
regulations due to that no significant interaction is detected
between the regulated gene and any one of the regulating
genes, but rather the regulation is only detectable when the
regulated gene and all of the regulating genes are considered
together. For example, in Figure 1(a), gene g3 is being
regulated by an XOR interaction of genes g1 and g2. Using
mutual information as metric, the individual interactions
between g1 and g3 and between g2 and g3 are not discovered
since I(X1;X3) = I(X2;X3) = 0.

In the relevance network approach, two nodes are
connected when they exhibit high degrees of interaction
according to the chosen metric. Using metrics such as
correlation coefficient and mutual information, high degrees
of interaction between two genes typically indicate that
one of the genes is directly or indirectly regulating the
other gene, or the two genes are being coregulated by
another gene. In relevance networks, indirect regulation and
coregulated genes often are the cause of false positive links.
ARACNE, as discussed in the previous section, removes
indirect regulation by the application of DPI. However,
ARACNE and other network inference algorithms based only
on correlation coefficient or mutual information are unable
to identify genes that are being coregulated, particularly if
they are coregulated by the same mechanism. For example,
in Figure 1(b), both g3 and g4 are regulated by an AND
interaction of g1 and g2. Using correlation coefficient or
mutual information as metric will always result in a high
interaction between g3 and g4, and in most cases, greater than
the interaction between the regulated gene and either one of
the regulating genes, whereas using DPI will result in a false
positive link.

The insufficiencies of using only mutual information or
correlation coefficient as discussed above naturally lead us
to the use of conditional mutual information as the metric
of choice in our proposed regulatory network inference

g1 g2

g3

XOR

(a)

g1 g2

g3 g4

AND AND

(b)

Figure 1: (a) XOR interactive regulation of g3 by g1 and g2. (b)
Coregulation of g3 and g4.

algorithm. For Figure 1(a), it is clear that the interaction
between g1 and g3 and that between g2 and g3 can be detected
by I(X1;X3 | X2) and I(X2;X3 | X1). To resolve false positives
due to coregulated genes recall that the conditional mutual
information I(X ;Y | Z) measures the reduction of informa-
tion provided aboutX by observing Y conditioned on having
observed Z. An example of Figure 1(a) can be seen in [27]. In
Figure 1(b), coregulation of g3 and g4 can be recognized by
the fact that if g3 and g4 are regulated by the same biological
mechanism, I(X1;X3 | X4) ≈ 0 and I(X1;X4 | X3) ≈ 0,
since having observed X3 or X4, no more information is
provided about X1 by observing X4, or information provided
about X1 by observing X3, respectively. On the other hand,
having observed X1, which regulates both X3 and X4, the
information provided about X3 by observing X4 is reduced,
and we have I(X3;X4 | X1) < I(X3;X4). Thus, by considering
both the mutual information and conditional mutual infor-
mation, we are able to reduce the amount of false positive
links due to coregulation. Example of Figure 1(b) can be seen
in [28].

From the above discussion, in the next section, we devel-
op a relevance-network-based regulatory network inference
algorithm that utilizes both mutual information and condi-
tional mutual information to predict interactions between
genes from the observed gene expression data. It is clear
that we need efficient estimators that can accurately compute
mutual information and conditional mutual information
from data. Moreover, the conditional mutual information
estimator should be able to support both discrete and
continuous conditioning variables to allow for wider ranging
uses.

3. MI-CMI Regulatory Network
Inference Algorithm

There are several mutual information estimators such as the
Gaussian kernel estimator and the equipartition estimator
[29] but each has its weakness. The Gaussian kernel estimator
requires a smoothing window that needs to be optimized
for different underlying distributions, thus increasing the
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estimator complexity. While the equipartition estimator is
simple in nature, the different grids in a partition often
have variable efficiency in terms of contribution to the
mutual information estimate due to the underlying sample
distribution. In this section, we make use of an adaptive
partitioning mutual information estimator proposed in [30]
and extend it to estimating conditional mutual information.
These estimators are then employed in building our MI-
CMI-based relevance network for regulatory network infer-
ence.

3.1. Adaptive PartitioningMutual
Information Estimator

Let us consider a pair of random variables X and Y taking
values in X and Y, both of which are assumed to be the real
line R for simplicity. For each random variable, we have N
samples x = [x1, . . . , xN ] and y = [y1, . . . , yN ]. From the
samples we wish to obtain an estimate ̂IN (X ;Y) of the mutual
information I(X ;Y).

For mutual information estimators that partition the
samples according to equal length or equiprobable partition,
many of the grids may turn out to be inefficient due to the
distribution of the samples. For example, let X = cos(U)
and Y = sin(U), where U is uniformly distributed on
(0, 2π). Hence, the samples fall on a unit circle; and grids
inside the circle do not contribute to the estimation of
the mutual information between X and Y . Therefore, a
partitioning scheme that can adaptively change the number,
size, and placement of the grids is more efficient in estimating
mutual information. In the following, we describe a mutual
information estimator proposed in [30] that adaptively
partitions the observation space based on the unknown
underlying distributions of the samples.

In the adaptive partitioning scheme, the sample space
X × Y is divided into rectangular grids of varying sizes
depending on the underlying distributions. A grid denoted
as A × B has the x-axis range A ⊂ X and y-axis range
B ⊂ Y. Furthermore, the set containing all the grids of the
partitioning is denoted as H .

Let us denote fX , fY , and fX ,Y as the densities of the
distributions PX , PY , and PX ,Y , respectively. We then define
the following conditional distributions:

PX ,Y |A×B � PX ,Y |X∈A,Y∈B ,

PX|A � PX|X∈A, PY |B � PY |Y∈B ,
(1)

and their densities

fX ,Y |A×B � δA×B fX ,Y
∫

δA×B fX ,Y
= δA×B fX ,Y

PX ,Y (A× B)
,

fX|A � δA fX
PX(A)

, fY |B � δB fY
PY (B)

,

(2)

respectively, where δE denotes the indicator function of the
set E. I(X ;Y) can now be written as

I(X ;Y) =
∑

A×B∈H

∫

A×B
fX ,Y log

fX ,Y

fX fY

=
∑

A×B∈H

∫

δA×B fX ,Y log
δA×B fX ,Y

δA fXδB fY

=
∑

A×B∈H
PX ,Y (A× B)

∫

fX ,Y |A×B

× log
fX ,Y |A×BPX ,Y (A× B)
fX|A fY |BPX(A)PY (B)

=
∑

A×B∈H
PX ,Y (A× B) log

PX ,Y (A× B)
PX(A)PY (B)

︸ ︷︷ ︸

DH (X ;Y)

+
∑

A×B∈H
PX ,Y (A× B)

∫

fX ,Y |A×B log
fX ,Y |A×B
fX|A fY |B

︸ ︷︷ ︸

DH (X ;Y)

,

(3)

where DH (X ;Y) is called the restricted divergence and
DH (X ;Y) is the residual divergence.

We define a sequence of the partitioning of the sample
space {H (t), t = 1, 2, . . .} as nested if each grid A× B ∈H (t)

is a disjoint union of grids A� × B� ∈ H (t+1), � = 1, . . . ,L,
where L can be different for each A× B. Thus, H (t+1) can be
seen as a refinement of H (t). A nested sequence {H (t)} is said
to be asymptotically sufficient for X and Y if for every ε there
exists a tε such that for each A× B ⊂X×Y, one can find an
A0 × B0 ∈ S(H (tε)) satisfying

PX ,Y
(

A× BΔA0 × B0
)

< ε, (4)

where S(H (t)) denotes the σ-algebra of H (t), and Δ denotes
the symmetric difference. In [30], it is shown that if the
nested sequence {H (t)} is asymptotically sufficient for X and
Y , then

lim
t→∞D

H (t)
(X ;Y) = I(X ;Y). (5)

Given the pairs of samples (xn, yn), n = 1, . . . ,N , we
define

PN (A× B) � 1
N

N
∑

n=1

δA×B
(

xn, yn
)

, A× B ⊂X×Y, (6)

that is, the frequency of the samples falling into the gridA×B.
Then, the restricted divergence DH (X ;Y) can be estimated
from the samples with the following estimator:

̂DN ,t(X ;Y) =
∑

A×B∈H (t)

PN (A× B) log
PN (A× B)

PN (A×R)PN (R× B)
.

(7)
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Furthermore, in [30] it is shown that the residual diversity
approaches zero as N→∞ and that

lim
N→∞

P
(∣

∣
̂DN ,tε(X ;Y)− I(X ;Y)

∣

∣ < ε
) = 1, ε > 0. (8)

Thus, mutual information can be estimated by computing
the relative sample frequency on appropriately placed rect-
angular grids.

We now give the adaptive partitioning algorithm that
constructs an asymptotic sufficient sequence of partitions for
mutual information estimation.

Algorithm 1 (Adaptive partitioning algorithm for mutual
information estimation). (i) Initialization: Partition X and
Y at a and b, respectively, such that

PN
(

(−∞, a)×R
) = PN

(

R× (−∞, b)
) = 1

2
, (9)

that is, a and b are the equiprobable partition points for X
and Y with respect to the empirical distribution of marginal
distributions, and X × Y is divided into 4 grids. This
partition is denoted as H (1).

(ii) Partitioning H (t): for a grid A × B = (a1, a2) × (b1,
b2), A×B ∈H (t), select the partition points a∗ and b∗, such
that

PN
((

a1, a∗
)×R

) = PN
((

a∗, a2
)×R

)

,

PN
(

R× (b1, b∗
)) = PN

(

R× (b∗, b2
))

.
(10)

Denote N∗ as the total number of samples in the grid A ×
B and N1, . . . ,N4 as the total number of samples in each of
the quadrants created by the above partition. Compute the
Pearson’s chi-squared test for uniform distribution,

χ2
95%(3) ≥

4
∑

i=1

(

N∗/4−Ni
)

N∗/4
. (11)

If the sample distribution of the quadrants passes the
uniform test, that is, (11) holds, A × B is added to H (t+1).
If the sample distribution does not pass the uniform test, the
grids (a1, a∗)×(b1, b∗), (a1, a∗)×(b∗, b2), (a∗, a2)×(b1, b∗),
and (a∗, a2)× (b∗, b2) are added to H (t+1).

(iii) Repeat step (ii) for all grids in H (t).
(iv) Repeat steps (ii) and (iii) until H (t+1) = H (t). When

the partitioning process is terminated, define H � H (t).
(v) Using the partition H , compute the mutual informa-

tion estimate ̂IN (X ;Y) � ̂DN (X ;Y) according to (7).

Here, we give an example of how to adaptively partition
a given set of sampled data. In this example, we sampled
100 times X and Y that are jointly Gaussian with correlation
coefficient of 0.9 and both with mean zero. The 100 sample
pairs are plotted in Figure 2(a). In Figure 2(b), we plot the
same samples in their ordinal plot, meaning that each sample
of X and Y is ranked in decreasing order with respect
to other samples from the same random variable, and the
sample pairs are plotted by their integer-valued ranks. In
the ordinal plots, equiprobable partition is equivalent to

partition at the midpoint. In Figure 2(b), we can also see
the dashed lines dividing the samples into 4 grids. This is
the initialization partition that is always kept no matter how
the samples are distributed. In Figure 2(c), we can see that
the 4 grids are each partitioned into 4 quadrants by the
dashed lines. Table 1 shows the distribution of the samples in
quadrants created by the partitioning of the 4 grids during
the second-level partition, and their chi-squared statistics.
To pass the uniform chi-squared test for 95%, the chi-
squared test statistic should be less than 7.815. As we can see
from Table 1, all 4 grids failed the test, thus require further
partitioning.

In Figure 2(d), we can see that 13 nonzero grids from
the previous steps are each divided into 4 quadrants by
the dashed lines. Table 2 shows similarly for the third-level
partitions the quadrant sample counts in each of the grids,
and their chi-squared test results. From Table 2, we can
see that all grids pass the chi-squared test, thus the third-
level partition is not needed, and the adaptive partitioning
scheme has partitioned the samples into the 13 grids shown
in Figure 2(d).

3.2. Conditional Mutual Information Estimator

Works in various fields have utilized conditional mutual
information to test for conditional independence. However,
in most cases, they are often limited to conditioning on
a discrete, often binary, random variable [31, 32]. When
conditioning on a discrete random variable, the conditional
mutual information can be computed as

I(X ;Y | Z) =
K
∑

k=1

P(Z = k)I(X ;Y | Z = k)

=
K
∑

k=1

P(Z = k)
∑

X ,Y

P(X ,Y | Z = k)

× log
P(X ,Y | Z = k)

P(X | Z = k)P(Y | Z = k)
.

(12)

This is done by simply dividing the samples into K bins
according to the value Z takes, and taking the weighted
summation of the mutual information in each bin. In the
case of conditioning on a continuous random variable,
however, the partitioning of Z is often not so clear. Next,
we propose a modification to the adaptive partitioning
estimator that also adaptively partitions the z-axis to allow
the estimation of conditional mutual information when the
conditioned random variable is continuous.

Let us consider a triplet of random variables X , Y , and
Z taking real values in X, Y, and Z, respectively. Given
the samples x = [x1, . . . , xN ], y = [y1, . . . , yN ], and z =
[z1, . . . , zN ], we wish to compute an estimate ̂IN (X ;Y | Z)
of the conditional mutual information I(X ;Y | Z).

Suppose that the space X×Y×Z is divided into cuboids
of various sizes depending on the underlying distributions.
The cuboid denoted as A × B × C has range A ⊂ X on the
x-axis, B ⊂ Y on the y-axis, and C ⊂ Z on the z-axis, and
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Table 1: Quadrant sample counts in each grid after second-level partition, and result of chi-squared test.

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 χ2 statistic Pass?

Grid 1 18 7 6 11 8.4762 no

Grid 2 0 0 7 1 17.0000 no

Grid 3 1 6 1 0 11.0000 no

Grid 4 12 6 18 6 9.4286 no
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Figure 2: Example of adaptive partitioning steps for pairwise mutual information.
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Table 2: Quadrant sample counts in each grid after third-level partition, and result of chi-squared test.

Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 χ2 statistic Pass?

Grid 1 7 3 5 3 2.4444 yes

Grid 2 2 1 1 3 1.5714 yes

Grid 3 2 3 0 1 3.3333 yes

Grid 4 3 3 4 1 1.7273 yes

Grid 5 2 0 2 3 2.7143 yes

Grid 6 0 0 1 0 3.0000 yes

Grid 7 0 1 0 0 3.0000 yes

Grid 8 2 2 1 1 0.6667 yes

Grid 9 4 2 5 1 3.3333 yes

Grid 10 2 0 1 3 3.3333 yes

Grid 11 1 0 0 0 3.0000 yes

Grid 12 3 2 1 0 3.3333 yes

Grid 13 2 5 5 6 2.0000 yes

the set containing all the cuboids of the partition is denoted
as H . We then define the following conditional distribution:

PX ,Y ,Z|A×B×C � PX ,Y ,Z|X∈A,Y∈B,Z∈C , (13)

and its density

fX ,Y ,Z|A×B×C � δA×B×C fX ,Y ,Z

PX ,Y ,Z(A× B × C)
. (14)

Similar to (3), we can write I(X ;Y | Z) as

I(X ;Y | Z)

=
∑

A×B×C∈H

∫

A×B×C
fX ,Y ,Z log

fX ,Y ,Z fZ
fX ,Z fY ,Z

=
∑

A×B×C∈H

∫

δA×B×C fX ,Y ,Z log
δA×B×C fX ,Y ,ZδC fZ
δA×C fX ,ZδB×C fY ,Z

=
∑

A×B×C∈H
PX ,Y ,Z(A× B × C)

∫

fX ,Y ,Z|A×B×C

× log
fX ,Y ,Z|A×B×CPX ,Y ,Z(A× B × C) fZ|CPZ(C)
fX ,Z|A×C fY ,Z|B×CPX ,Z(A× C)PY ,Z(B × C)

=
∑

A×B×C∈H
PX ,Y ,Z(A× B × C)Q

︸ ︷︷ ︸

DH (X ;Y |Z)

,

+
∑

A×B×C∈H
PX ,Y ,Z(A× B × C)

∫

fX ,Y ,Z|A×B×CR

︸ ︷︷ ︸

DH (X ;Y |Z)

,

(15)

where Q denotes log(PX ,Y ,Z(A× B × C)PZ(C)/PX ,Z(A×
C)PY ,Z(B × C)), and R denotes log( fX ,Y ,Z|A×B×C fZ|C/
fX ,Z|A×C fY ,Z|B×C).

We can rewrite DH (X ;Y | Z) as

DH (X ;Y | Z) =
∑

A×B×C∈H
PX ,Y ,Z(A× B × C)

× log
PX ,Y ,Z(A× B × C)PZ(C)
PX ,Z(A× C)PY ,Z(B × C)

=
∑

A×B×C∈H
PZ(C)PX ,Y |Z(A× B | C)

× log
PX ,Y |Z(A× B | C)

PX|Z(A | C)PY |Z(B | C)
.

(16)

Notice that this is simply a weighted sum for the restricted
diversity as computed in (3) for samples grouped according
to the z-axis partition C, and for a partition H (t),

lim
t→∞D

H (t)
(X ;Y | Z) = I(X ;Y | Z), (17)

and it can be estimated as

̂DN ,t(X ;Y | Z) =
∑

A×B×C∈H (t)

PN (A× B × C)

× log
PN (A× B × C)PN (R×R× C)
PN (A×R× C)PN (R× B × C)

.

(18)

Following the proof in [30, 33],

lim
N→∞

P
(∣

∣
̂DN ,tε(X ;Y | Z)− I(X ;Y | Z)

∣

∣ < ε
) = 1, ε > 0.

(19)

We can see from (15) and (17) that

lim
t→∞DH (t) (X ;Y | Z) = 0, (20)

and the integral

∫

fX ,Y ,Z|A×B×C log
fX ,Y ,Z|A×B×C fZ|C
fX ,Z|A×C fY ,Z|B×C

(21)
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in the definition of DH (t) (X ;Y | Z) vanishes if and only
if fX ,Y ,Z|A×B×C fZ|C = fX ,Z|A×C fY ,Z|B×C, that is, X and Y are
independent in the cuboid A × B × C. In the following, we
propose an adaptive partitioning scheme that partitions the
given samples into cuboids, where in each cuboid the con-
ditional distributions of X and Y given Z are independent.
Similar to Algorithm 1, we use the Pearson’s chi-square test
to determine the independence of the samples.

We now present the algorithm for estimating the con-
ditional mutual information with continuous conditioning
variable.

Algorithm 2 (Adaptive partitioning algorithm for conditional
mutual information estimation). (i) Initialization: partition
X, Y, and Z at a, b, and c, respectively, such that

PN
(

(−∞, a)×R×R
) = PN

(

R× (−∞, b)×R
)

= PN
(

R×R× (−∞, c)
) = 1

2
,

(22)

that is, a, b, and c are the equiprobable partition points for
X , Y , and Z with respect to the empirical distribution of
marginal distributions, and X × Y × Z is divided into 8
cuboids. This partition is denoted as H (1).

(ii) Partitioning H (t): for a cuboid A×B×C = (a1, a2)×
(b1, b2)×(c1, c2), A×B×C ∈H (t), select the partition points
a∗, b∗, and b∗, such that

PN
((

a1, a∗
)×R×R

) = PN
((

a∗, a2
)×R×R

)

,

PN
(

R× (b1, b∗
)×R

) = PN
(

R× (b∗, b2
)×R

)

,

PN
(

R×R× (c1, c∗
)) = PN

(

R×R× (c∗, c2
))

.

(23)

Denote N∗ as the total number of samples in the cuboid A×
B × C and N1, . . . ,N8 as the total number of samples in each
of the octants created by the above partition. Compute the
Pearson’s chi-squared test for uniform distribution,

χ2
95%(7) ≥

8
∑

i=1

(

N∗/8−Ni
)

N∗/8
. (24)

If the sample distribution passes the uniform test, that is,
if (24) holds, the cuboid A × B × C is added to H (t+1). If
the sample distribution does not pass the uniform test, the
cuboids

(

a1, a∗
)× (b1, b∗

)× (c1, c∗
)

,
(

a1, a∗
)× (b1, b∗

)× (c∗, c2
)

,
(

a1, a∗
)× (b∗, b2

)× (c1, c∗
)

,
(

a1, a∗
)× (b∗, b2

)× (c∗, c2
)

,
(

a∗, a2
)× (b1, b∗

)× (c1, c∗
)

,
(

a∗, a2
)× (b1, b∗

)× (c∗, c2
)

,
(

a∗, a2
)× (b∗, b2

)× (c1, c∗
)

,
(

a∗, a2
)× (b∗, b2

)× (c∗, c2
)

(25)

are added to H (t+1).

−0.4

−0.2

0

0.2

0.4
0.5
0.6

0.8

1

1.2

1.4

Y
|Z

>
0.

5

−0.4 −0.2 0 0.2 0.4 0.5 0.6 0.8 1 1.2 1.4

X|Z > 0.5

Figure 3: Adaptive partition of X and Y given Z > 0.5.

(iii) Repeat step (ii) for all cuboids in H (t).
(iv) Repeat steps (ii) and (iii) until H (t+1) = H (t). When

the partitioning process is terminated, define H � H (t).
(v) Using the partition H , compute the conditional

mutual information estimate ̂IN (X ;Y | Z) � ̂DN (X ;Y | Z)
according to (18).

Figures 3 and 4 give an adaptive partition of a trivariate
sample data. Note that Z is the output of an XOR gate with X
and Y as inputs, with random noise added to both the inputs
and the output. We can see that the z-axis is partitioned into
two regions, Z > 0.5 and Z < 0.5. In the initial step, the
sample data is divided into 8 cuboids. The 4 cuboids without
any data points are discarded, and the other 4 are added to
H (1). In the second step, each of the 4 cuboids is divided into
8 cuboids and tested for uniform distribution with the chi-
squared test. All 4 pass the test and are added to H (2). In
the next step, we see that H (3) = H (2), and the partitioning
process is terminated with H =H (2).

Compared to the estimation of conditional mutual
information for discrete conditioning variable, we can see
that instead of grouping samples into subsets where samples
belonging in the same subset have the same values for the
discrete-valued conditioning variable, here we group samples
based on the adaptively determined partitioning of C on the
z-axis. The problem of estimating the conditional mutual
information is thus broken down into estimating the mutual
information for each group of samples, where the samples
are grouped by which C they belong to.

Note that the complexity of the Gaussian kernel esti-
mator is known to be O(N2). However, the complexity of
the adaptive partitioning estimator is dependent upon the
joint distribution of the variables. For example, suppose X
and Y are independent and identically distributed uniform
distributions. To compute I(X ;Y) from N , pairs of (xi, yi)
will take on average only the four initializing grids, since the
sample pairs are typically uniformly distributed in each of the



EURASIP Journal on Bioinformatics and Systems Biology 9

grids, and no further subpartitions are necessary according
to the chi-squared test. On the other hand, suppose that X =
cos(U) and Y = sin(U), where U is uniformly distributed
between (0, 2π), it will take many more subpartitions to
obtain uniform distribution of the samples on each of
the resulting grids. From our experience, for N = 100
samples of X and Y jointly Gaussian pairs, the Gaussian
kernel estimator takes about 2 minutes to compute the MI,
whereas for the adaptive partitioning algorithm, the time is
between 2.5 to 3 minutes, on MATLAB code running on
a Pentium 4 2.54 GHz machine. However, this is without
taking into consideration the overhead required by the
Gaussian estimator to compute the smoothing window.

3.3. Gene Regulatory Network
Inference Algorithm

To infer a gene regulatory network that has various inter-
active regulations and coregulations, we propose a strategy
of using both mutual information and conditional mutual
information to reconstruct the regulatory network. In our
proposed algorithm, we first use mutual information as
metric to build regulatory network similarly to [17] to
capture most of the direct regulations. To decrease the com-
plexity of the algorithm by avoiding computing conditional
mutual information for all triplets, while still allowing us
to detect most of the causes for false positives and false
negatives, we only compute the CMI for triplets of genes
where either all three genes are connected, or all three
genes are not connected. The decrease in complexity would
depend on several factors. Once the pairwise MI threshold
is chosen, the triplets that have one or two connections
between the three genes indicate that the pairwise MI is
sufficient for the determination of the interaction between
the three genes, and the use of CMI is not necessary. Thus,
instead of computing the CMI for all triplets of genes,
CMI needs to be computed only for those triplets that
are completely connected or completely unconnected. The
amount of decrease in complexity would then depend on
the ratio of triplets that have only one or two connections,
which would depend on the actual connectivities between
the genes, and the threshold selected for the pairwise mutual
information phase of the algorithm.

The MI-CMI gene regulatory network inference algo-
rithm is as follows.

Algorithm 3 (MI-CMI gene regulatory network inference
algorithm). (i) For a gene expression dataset containing M

genes, compute the mutual information estimate ̂IN (Xi;Xj)
for all gene pairs (gi, gj), i /= j, 1 ≤ i, j ≤ M, using
Algorithm 1.

(ii) Initialize the graph G = [Gi, j]M×M as a zero matrix.

Set Gi, j = 1 if ̂IN (Xi;Xj) ≥ Ith, where Ith is a predetermined
threshold.

(iii) Detecting indirect regulation and coregulation: for
any triplet of genes (gi, gj , gk) where Gi, j = Gj,k = Gi,k =
1, compute the conditional mutual information estimate
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Figure 4: Adaptive partition of X and Y given Z < 0.5.

̂IN (Xi;Xj | Xk), ̂IN (Xj ;Xk | Xi), and ̂IN (Xi;Xk | Xj) using
Algorithm 2.

(a) If

̂IN
(

Xi;Xj | Xk
) ≈ 0,

̂IN
(

Xi;Xk | Xj
) ≈ 0,

̂IN
(

Xj ;Xk | Xi
)
 ̂IN

(

Xj ;Xk
)

,

(26)

this means that Xj and Xk contain nearly the same
information regarding Xi, that having observed Xk,
Xj contains no new information about Xi, and vice
versa. Also, having observed Xi, the information
contained about Xk in Xj is reduced. This indicates
that gj and gk are regulated by gi through the same
mechanism, meaning that the gene pair (gj , gk) is
coregulated, thus Gj,k is set to 0.

(b) If

̂IN
(

Xi;Xj | Xk
)
 ̂IN

(

Xi;Xj
)

,

̂IN
(

Xi;Xk | Xj
)
 ̂IN

(

Xi;Xk
)

,

̂IN
(

Xj ;Xk | Xi
)
 ̂IN (Xj ;Xk

)

,

(27)

and ̂IN (Xi;Xk | Xj) < ̂IN (Xi;Xj | Xk) < ̂IN (Xj ;Xk |
Xi), this indicates that gi regulates gj , and gj regulates
gk, and that the gk is indirectly regulated by gi,
indicated by the smallest CMI. Using DPI similarly
to [18], Gi,k is set to 0.

(iv) Detecting interactive regulation: for any triplet of
genes (gi, gj , gk) where Gi, j = Gj,k = Gi,k = 0, compute

the conditional mutual information estimate ̂IN (Xi;Xj |
Xk), ̂IN (Xj ;Xk | Xi), and ̂IN (Xi;Xk | Xj) using Algorithm 2.

(a) If one or two of the CMI estimates is greater than
Ith, this indicates that the genes contain interactions
that was not captured using MI, and we set the
corresponding link or links to 1.
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(b) If all three of the CMI estimates are greater than Ith,
this may indicate that the two regulating genes may
have had some prior interactions, or there is an XOR
interaction between the 3 genes. Thus, we apply the
DPI to remove the link with the weakest estimated
CMI, and the links corresponding to the two largest
estimated CMI are set to 1.

4. Experimental Results

In this section, we present simulation results to demonstrate
the performance of the algorithms discussed in Section 3. We
first illustrate the performance of Algorithm 2 for estimating
the conditional mutual information of jointly Gaussian
random variables. Next, we consider the performance of
Algorithm 1 for estimating mutual information, by imple-
menting the regulatory network inference algorithm in
[18], but replacing the Gaussian kernel mutual information
estimator employed there with Algorithm 1. Finally, we
compare the network inference performance of Algorithm 3
with that of ARACNE [18] and BANJO [11] on synthetic
networks.

4.1. Conditional Mutual Information of Jointly
Gaussian RandomVariables

To assess the accuracy of Algorithms 1 and 2 for the estima-
tion of gene regulatory networks, we consider estimating the
pairwise and conditional mutual information of multivariate
Gaussian distributions. In our simulation, we compare the
MI and CMI estimates of Algorithms 1 and 2 with those of
the b-spline estimators. A b-spline MI estimator is proposed
in [34] which divides the sample range into a number of
bins. Contrary to the approach in the classical histogram
estimators, where each sample contributes only to the bin it is
in, for the b-spline estimator, the weight of a sample is spread
to the bins. In the case of a third-order b-spline estimator, for
a sample located in bin i, the sample is assigned to the bins
i − 1, i, and i + 1, and the weight of the sample in each bin
is computed using the b-spline coefficients. Here, we modify
the b-spline estimator as proposed in [34] to estimate the 3-
way MI I(X ;Y ;Z) so that the CMI can be obtained with the
relationship I(X ;Y | Z) = I(X ;Y)− I(X ;Y ;Z).

For MI estimation, we generated bivariate Gaussian
samples with correlation coefficients 0, 0.3, and 0.6. For
each coefficient, we generated N = 100, 200, 300, 400, 500
samples, and computed the estimated MI, ̂IN (X ;Y), for each
sample size using Algorithm 1 and the third-order b-spline
estimator with 10 bins proposed in [34]. Each sample size is
averaged over 500 sets of samples. For a bivariate Gaussian
distribution, the exact MI of X and Y is given by

I(X ;Y) = −1
2

log
(

1− σ2
X ,Y

)

, (28)

where σX ,Y is the correlation coefficient between X and Y .

For CMI estimation, we generated samples trivariate
Gaussian distributions with the following covariance matri-
ces:

⎡

⎢

⎣

1 0 0

0 1 0
0 0 1

⎤

⎥

⎦ ,

⎡

⎢

⎣

5 1 1
1 4 1
1 1 3

⎤

⎥

⎦ ,

⎡

⎢

⎣

1 0.3035 0
0.3035 1 0

0 0 1

⎤

⎥

⎦ ,

⎡

⎢

⎣

10 6 3
6 7 5
3 5 5

⎤

⎥

⎦ .

(29)

For each Gaussian distribution, we generated N =
100, 200, 300, 400, 500 samples, and computed the estimated
CMI, ̂IN (X ;Y | Z), for each sample size, using Algorithm 2
and the modified third-order b-spline estimator with 10 bins.
For each sample size N , the estimated CMI is averaged over
500 sets of samples. For a trivariate Gaussian distribution, the
exact CMI of X and Y given Z is given by

I(X ;Y | Z) = −1
2

log
(

1− σ2
X ,Y |Z

σX ,X|ZσY ,Y |Z

)

, (30)

where σ2
X ,X|Z , σ2

Y ,Y |Z , and σ2
X ,Y |Z are the conditional covari-

ances of X , Y , and conditional covariance between X and Y ,
given Z, respectively. For a trivariate Gaussian distribution,
the conditional covariance matrix between X and Y given Z
is given by

QX ,Y |Z =
[

σ2
X ,X σ2

X ,Y

σ2
Y ,X σ2

Y ,Y

]

− 1
σ2
Z,Z

[

σ4
X ,Z σ2

X ,Zσ
2
Y ,Z

σ2
X ,Zσ

2
Y ,Z σ4

Y ,Z

]

,

(31)

where σ2
X ,Y denotes the covariance of X and Y . The results of

the MI estimation are given in Table 3, and the results of the
CMI estimation are given in Table 4. We can see that in both
the MI and CMI estimation, the adaptive algorithms have
closer estimates to the analytical values for all correlation
coefficients and covariance matrices, except for the MI
estimation for σX ,Y = 0.3. From both tables, we can see that
as the sample size grows, the adaptive algorithms converge
toward the analytical values for both MI and CMI estimation.
However, this is not true for the b-spline algorithms, where
in the cases of MI estimation for σX ,Y = 0.6, and CMI
estimation for covariance matrix 4, the b-spline estimators
converge to incorrect values.

As a comparison, we performed CMI estimation of
covariance matrices 1 and 4 using b-spline estimator with
20 bins. In [34], it is shown that the b-spline method
has similar performance to that of the kernel density
estimator (KDE), and the MI computed has the same level
of significance. However, the KDE is shown to be O(104)
more computationally intensive than the b-spline method.
Thus in our comparisons, we only included the results from
the b-spline method. For matrix 4, the b-spline estimator
now converges to the correct analytical value. However, for
matrix 1, the b-spline estimator does not converge to zero as
the estimator with 10 bins does. This illustrates the drawback
of using the b-spline estimators for MI and CMI estimation.



EURASIP Journal on Bioinformatics and Systems Biology 11

Table 3: Comparison of the estimated MI of bivariate Gaussian distribution with different correlation coefficient using Algorithm 1 and
b-spline algorithm.

Correlation coefficient Algorithm 100 200 300 400 500 Analytical

0
Adaptive 0.0080 0.0036 0.0022 0.0022 0.0015

0
b-spline 10 0.0912 0.0443 0.0288 0.0210 0.0166

0.3
Adaptive 0.0280 0.0287 0.0305 0.0319 0.0330

0.0472
b-spline 10 0.1248 0.0789 0.0640 0.0562 0.0515

0.6
Adaptive 0.1371 0.1730 0.1916 0.1999 0.2052

0.2231
b-spline 10 0.2471 0.2029 0.1879 0.1781 0.1719

Table 4: Comparison of the estimated CMI of trivariate Gaussian distribution with different covariance matrices using Algorithm 2 and the
modified b-spline algorithm.

Cond. Corr. Algorithm 100 200 300 400 500 Analytical

0
Adaptive 0.0263 0.0215 0.0171 0.0175 0.0113

0b-spline 10 0.1899 0.1039 0.0711 0.0536 0.0429

b-spline 20 0.7888 0.5592 0.4330 0.3497 0.2943

0.1612
Adaptive 0.0310 0.0278 0.0253 0.0249 0.0187

0.0132
b-spline 10 0.1899 0.1065 0.0759 0.0603 0.0495

0.3035
Adaptive 0.0497 0.0510 0.0534 0.0565 0.0582

0.0483
b-spline 10 0.2251 0.1377 0.1032 0.0855 0.0761

0.7408
Adaptive 0.2294 0.3050 0.3234 0.3444 0.3784

0.3979b-spline 10 0.2773 0.2390 0.2190 0.2092 0.2029

b-spline 20 0.6387 0.5323 0.4719 0.4378 0.4121

The accuracy of the b-spline estimators depend on the choice
for its parameters. On the other hand, Algorithms 1 and 2 are
nonparametric, and do not need any prior knowledge of the
underlying distributions to produce good estimates.

Looking more closely at CMI estimation, for small
sample size and large CMI value, Algorithm 2 has a negative
bias. As the sample size increases, the bias quickly reduces.
On the other hand, when the true CMI value is small,
Algorithm 2 tends to overestimate. It should be noted that
estimating the CMI from a finite number of samples for
a distribution with zero conditional correlation coefficient
will typically result in a nonzero value. Nevertheless, the
estimation results are still reasonably accurate, even for only
100 samples, so that conditional independence can be easily
detected.

4.2. Regulatory Networks with Only
Direct Regulation

Next, we implemented the algorithm described in [18]
by replacing the Gaussian kernel MI estimator there with
Algorithm 1. The modified algorithm is then compared with
the original ARACNE algorithm in [18]. The purpose of this
comparison is to show that the adaptive partitioning MI esti-
mator is a valid alternative for the Gaussian kernel estimator.
Specifically, we constructed 25 synthetic regulatory networks,
each with 20 one-to-one gene regulations, using NetBuilder
[35]. To compare the network inference performance, we
adopt the same metrics as used in [18]—recall and precision.
Recall, defined as NTP/(NTP +NFN), where NTP is the number

of true positive links and NFN is the number of false negative
links, measures the ratio of correctly identified links out of
total number of links. Precision, defined as NTP/(NTP +NFP),
where NFP is the number of false positive links, measures the
ratio of correctly predicted links out of total predicted links.
The values and relationship between the two metrics change
with the selected threshold value, Ith. At low Ith, more links
will be admitted as gene interactions, potentially capturing
more true links, resulting in high recall values. However,
as more links are included, the number of false positives
also increases, which decreases the precision. On the other
hand, when Ith is high, only links with high interactions are
admitted, and they in most cases represent true interactions
between genes, thus improving the precision. However, true
interactions that exhibit lower interaction are not admitted,
resulting in a decrease in recall.

In Figure 5, we plot the precision versus recall per-
formance of the two algorithms. It is seen that both
algorithms perform exactly the same. This shows that the
adaptive partitioning MI estimator can be employed as an
alternative to the Gaussian kernel estimator in capturing
the gene-to-gene interactions. The comparison shown in
Figure 5 only uses synthetic networks constructed so that
there are only pairwise connectivities. This is to illustrate
that the adaptive partitioning algorithm can be used as an
alternative to the kernel-based estimator in the ARACNE
algorithm without degradation in performance. In the later
simulations, we showed that in the presence of coregulation
by two genes, the CMI is needed to improve the performance
of regulatory network inference. Note that since MI and CMI
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Figure 5: Comparison of ARACNE and relevance-network-based
algorithm with adaptive partitioning MI estimator and DPI.
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Figure 6: Precision versus recall for datasets with 30% coregulated
or interactively regulated links.

are estimated from finite number of samples, the estimated
MI and CMI are always greater than 0. From the relevance-
network approach, by setting an arbitrarily low threshold,
any number of links can be admitted as detected gene
interactions, and with sufficiently low threshold, all possible
links can be admitted. When large numbers of links are
admitted, the number of false negative will be small, which
leads to large values of recall. Thus, the comparisons at large
recall values tend to be meaningless and are not included in
the figures.
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Figure 7: Precision versus recall for datasets with 60% coregulated
or interactively regulated links.

Figure 8: True underlying network configuration inferred in
Figure 9.

4.3. Regulatory Networks with Coregulation
and Interactive Regulation

We now compare the performance of Algorithm 3, ARACNE,
and BANJO for regulatory network inference in the presence
of coregulated and interactively regulated genes. We again
use the synthetic network modeling software NetBuilder to
generate random networks. NetBuilder allows modeling of
gene-to-gene interactions such as activation by transcription
factor combination (AND and OR), repression (NOT), and
other combinatory interactions. We generated 50 synthetic
networks, each containing 15 to 25 nodes with 20 links. For
each node, we generated 100 steady-state expression data
samples. To compare the effects of interactive regulation and
coregulation on the performance of the three algorithms, two
sets of synthetic networks are constructed: one set contains
25 networks where 30% of the interactions involve interac-
tive regulation and coregulation, the other set contains 25
networks where 60% of the interactions involve interactive
regulation and coregulation. In Figures 6 and 7, we plotted
precision versus recall performance for the two sets of
synthetic networks. It is seen that Algorithm 3 is able to
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(a) (b) (c)

Figure 9: (a) Synthetic network inferred by MI-CMI algorithm. (b) Synthetic network inferred by ARACNE. (c) Synthetic network inferred
by BANJO.

outperform both ARACNE and BANJO in terms of precision
for all ranges of interest. Notice that the improvement over
ARACNE is greater for dataset with 60% of coregulation
and interactive regulation, which is expected since ARACNE
in most cases cannot detect the XOR interactions, and
the application of DPI for gene coregulation can introduce
both false positives and false negatives. Surprisingly, BANJO
is found to have better performance than ARACNE at
high recall values for the set of networks that contains
60% coregulation and interactive regulation. In [18], it
is shown that the Gaussian network algorithm performs
worse when the network contains only direct interaction
between two genes. It is possible that due to the use of
joint distributions to model the expression values of nodes
in Gaussian-network-based algorithms such as BANJO, they
are able to discover some of the coregulations and interactive
regulations that are not found by ARACNE.

In Figure 9, we give an example of a network discovered
by each algorithm. For the MI-CMI algorithm, we randomly
permute for each gene the expressions across the different
conditions, similar to what is done in [17]. We performed 30
such permutations, and for each permutation we computed
the pairwise mutual information using Algorithm 1 for all
possible pairs. The highest observed mutual information out
of the 30 permutations is used as the threshold for both
MI-CMI algorithm and ARACNE. Results for BANJO were
obtained using the default parameters.

Figure 9(a) represents the network inferred by the
MI-CMI algorithm, Figure 9(b) the network inferred by
ARACNE, and Figure 9(c) the network discovered by
BANJO. In each figure, red links represent XOR interac-
tions, green links represent OR interactions, and blue links
represent AND interactions. In Figure 9, false negative links
are indicated with a cross mark, and false positive links are
represented by dashed lines. The true underlying network
is shown in Figure 8. As we can see from the figures,
BANJO produced the most false positive links, both from
indirect regulation and coregulation, whereas both the MI-
CMI algorithm and ARACNE only have one each. However,
the MI-CMI algorithm and BANJO discovered similar
numbers of interactive regulation completely, discovering 5
and 4, respectively. An interactive regulation is completely
discovered when both regulating genes are linked correctly
to the interactively regulated gene. For ARACNE, only 2
interactive regulations are discovered completely, and for

most of the interactive regulations only one of the links is
discovered.

5. Conclusions

We have proposed a new gene regulatory network inference
algorithm that employs both mutual information and condi-
tional information to discover possible direct and interactive
regulations between genes, and to eliminate false links due to
indirect regulations and coregulation. The mutual informa-
tion and conditional mutual information are estimated from
the expression data using an adaptive partitioning estimator.
We have shown that the proposed network inference method
outperforms BANJO and ARACNE when the underlying
regulatory network contains coregulated or interactively
regulated genes. In this work, we have focused on the
discovery of the joint regulation of a gene by two other
genes. It is possible to extend this work to joint regulation
by multiple genes by modifying the proposed conditional
mutual information estimator to a higher order. However,
doing so would pose several computational problems. As
the dimension of the CMI increases, increasing number of
samples is needed to maintain the same level of accuracy.
Also, as the dimension of the CMI increases, the number
of sets of genes to be tested also increases, thus rendering
this method impractical for brute force computation of all
possible sets of genes. One possibility to reduce the amount
of computations needed is to take into consideration the
constraints placed on the possible connectivities from known
biochemical reactions between the genes involved. This can
be a future direction for research in this area.
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