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Two-level gene regulatory networks consist of the transcription factors (TFs) in the top level and their regulated genes in the
second level. The expression profiles of the regulated genes are the observed high-throughput data given by experiments such as
microarrays. The activity profiles of the TFs are treated as hidden variables as well as the connectivity matrix that indicates the
regulatory relationships of TFs with their regulated genes. Factor analysis (FA) as well as other methods, such as the network
component algorithm, has been suggested for reconstructing gene regulatory networks and also for predicting TF activities. They
have been applied to E. coli and yeast data with the assumption that these datasets consist of identical and independently distributed
samples. Thus, the main drawback of these algorithms is that they ignore any time correlation existing within the TF profiles. In this
paper, we extend previously studied FA algorithms to include time correlation within the transcription factors. At the same time, we
consider connectivity matrices that are sparse in order to capture the existing sparsity present in gene regulatory networks. The TFs
activity profiles obtained by this approach are significantly smoother than profiles from previous FA algorithms. The periodicities
in profiles from yeast expression data become prominent in our reconstruction. Moreover, the strength of the correlation between
time points is estimated and can be used to assess the suitability of the experimental time interval.
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1. Introduction

Genes are transcribed into mRNAs which in turn are
translated into proteins. Some of these proteins activate or
inhibit, as transcription factors (TFs), the transcription of a
number of other genes creating a complex gene regulatory
network. The number of transcription factors is believed
to be much smaller than the number of regulated genes.
Moreover, most genes are known to be regulated only
by a very restricted number of transcription factors. This
induces a sparse connectivity matrix for the representation
of the connections between the TFs and the regulated genes.
Microarray experiments measure the expression level of
thousands of genes simultaneously. Unfortunately, a similar
method that would allow us to measure simultaneously the
abundance or activities of a larger number of proteins that
act as TFs is not yet available. Some progress has been made
with measurements of protein abundance by flow cytometry
[1] following a dozen or so proteins of interest which
need to be identified in advance. Still, such experiments

are less available than gene expression experiments and
cannot compete in terms of the number of tracked genes.
ChIP-on-chip experiments, on the other hand, provide only
static binding information about transcription factors. Thus,
current approaches that use microarray experiments make
a strong assumption: the protein levels are proportional to
the mRNA levels. This assumption is not necessarily true
due to the complexity of transcription, translation, and
posttranslation modification. In more recent studies, two-
level networks have been studied with hidden profiles of
the transcription factors at the top level and the observed
expression levels of the regulated genes at the lower level.
Some of these studies [2—4] are concerned with factor
analysis algorithms.

Factor analysis (FA) is often used as a dimensionality
reduction approach assuming that the large number of
observed variables becomes uncorrelated given a much
smaller number of hidden variables called factors. Some
of the advantages of FA over principle component analysis
are the incorporation of independent additive measurement



errors on the observed variables, the identification of an
underlying structure, and the assignment of the factors as
defined entities (in our case transcription factors). Finally, in
contrast to independent component analysis, the factors are
not assumed to be statistically independent.

In a recent paper, [4], we examined the suitability of five
FA algorithms for reconstructing both gene regulatory net-
works and TF activity profiles. We showed that FA faithfully
reconstructs TF activity profiles as other more widely known
reconstruction approaches do such as network component
analysis (NCA) [5] (see also [6, 7]) and a piecewise least-
square (plsgenomics) algorithm [8]. The advantage of FA
analysis over these algorithms is the ability to also reconstruct
the connectivity matrix. NCA and plsgenomics rely heavily
on the availability of connectivity information. Nonzero
positions in the connectivity matrix, which describes the
connections between the factors and the genes, need to
be specified in advance. The algorithms then estimate the
values at these positions which actually might turn out to
be zero as well. This is a strong limitation since often only
little information about genes regulated by specific TFs is
available. A further advantage of the Bayesian FA models
is that any information from literature surveys, ChIP-on-
chip experiments, or sequence analyses about the underlying
structure can be easily incorporated through priors.

A serious concern regarding the currently applied FA
algorithms as well as NCA and plsgenomics algorithms is
the lack of incorporation of any time information provided
by the experiments. Actually, most available microarray data
such as the E. coli, yeast, and Arabidopsis data are obtained
from time series experiments. Unfortunately, the present
time correlation within the TFs is ignored in the above algo-
rithms. Time information can act as a smoothing approach
on the TF profiles and thus can improve the reconstruction
process. As in our previous paper, here we are still concerned
with sparse connectivity matrices, but we also aim to include
time correlation within the factors. For this purpose, we
extend the algorithm by Fokoué and Titterington. [9], which
performed well and was computationally efficient in our
comparison [4], to handle time correlation information.
However, the extensions we suggest can be easily applied to
alternative FA algorithms analysed in [4]. If we allowed a
general form for the correlation matrix between the factors,
we would run into the problem of estimating a large number
of unknown parameters given only a small number of data
points. We investigated a number of possible correlation
structures and present one that performs well on gene
regulatory networks in this paper.

Other algorithms such as the linear dynamic systems or
Kalman filter models have also been suggested for estimation
of the parameters of a time series model with hidden
states. Ghahramani and Hinton [10] presented an EM
algorithm for the estimation of the parameters of linear
dynamical systems. This is an extension of the factor analysis
algorithm [11] that was evaluated in our previous paper and
performed less well than some alternative FA algorithms,
in particular a Bayesian version. A Bayesian version of
an FA algorithm allows one to use sparsity priors on the
connectivity matrix and also to integrate prior information
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regarding the system under study. More recently, Beal et al.
[12] presented a state space model for the reconstruction of
transcriptional networks from gene expression time series
data. The focus of their algorithm is to reconstruct a
complete regulatory interaction network and not only the
connectivity between TFs and genes. Thus, the hidden states
do not represent TFs but any hidden variables that can
not be directly measured by gene expression experiments
such as missing genes, protein activity profiles, and protein
degradation.

Barenco et al. [13] reconstruct the transcription factor
activity of p53 from time series expression profiles of
known target genes and a differential equation model of
gene induction. Based on the same data set and a similar
induction model, Sanguinetti et al. [14] suggest the usage
of Gaussian processes to estimate the activity profile of the
p53 transcription factor. In both cases, only one profile is
reconstructed, albeit in great detail, and with an assumed
knowledge of the dependent genes.

In this paper, we show how to incorporate time infor-
mation in the factor analysis approach. Factor analysis is
attractive, since it is on of the most straightforward ways to
link hidden transcription factor activities to observed out-
puts without knowledge of the connectivity. However, time
series information is ignored in all the methods discussed
in our previous paper. Here, we explore an extension to
factor analysis that integrates time series correlation. Since
some data might show very little correlation or none at
all, we estimate the posterior distribution of the strength
of correlation of TF activities from one time point to the
next. This information is useful in several respects as we
show for gene expression data for E. coli from [6] and for
yeast from Spellman et al. [15]. Based on these datasets,
we highlight some important points: (a) the correlation
parameter within the factors reveals whether the time
step during experimental sampling is large or small in
relation to gene regulatory processes, and what the effect
of this choice has on the reconstruction process; (b) our
analysis also indicates that data obtained under different
experimental conditions can show quite different dynamics
as reflected in the correlation, and caution is required when
combining such data sets for joint inference of regulatory
relationships.

2. Approach

In this section, we describe the general factor analysis model
and how time correlation information enters the model.
We discuss how the model incorporates the sparsity of
the connectivity matrix and discuss identifiability problems
associated with factor analysis.

We denote an instance of a random vector variable with
P dimensions by x = (x,... ,xp)’, with dimensions indexed
by subscripts. Instances are indexed by superscripts, x", n =
1,...,N. Similarly, f = (fl,...,fK)' is a vector of K hidden
variables, also called factors. We assume that the number K of
factors is smaller than or equal to the number P of observed
variables. In a factor analysis model, the observed variables
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are a linear combination of the factors plus a mean and an
error term:

X = M + A F + E

(P xXN) (P XN) (PxK) (KXN) (P X N),
(1)

where X = (x!,...,xN), F = (f',..., fN),E = (¢!,...,€N),
and M = pey with ey an N dimensional row vector of ones.
A is called the loadings matrix or connectivity matrix with
each of its entries indicating the relationship between a TF
and a gene, for example, )ka = 0 means that there is no
interaction between gene p and TF k. For the rest of the
paper, we assume M = 0, that is, data are centralised prior
to the analysis.

FA models assume that the error terms €” are indepen-
dently and normally distributed with mean zero and covari-
ance matrix ¥, €" ~ N (0,¥), where ¥ = diag(y7{,...,y}).
Thus, the probability distribution of X has density:

p(X | F,AY) = N(X | AR, YY) = (27) V2|~

X exp ( - %tr(X —AF)'V (X - AF)),
(2)

where tr is the trace, the sum of the diagonal elements.
In Section 5, we discuss in detail the prior and posterior
probabilities of the parameters F, A, and ¥, as well as
algorithms for their estimation.

2.1. Time Correlation Within the Factors F

The key difference between this and previously published
work [2-4] is in the treatment of the prior and posterior
distributions of the factors. Here, we aim to include time
correlation information within the factors which is essential
for time series experiments. The factors are assumed to be
normally distributed with mean zero and covariance matrix
2 ¢. However, the covariance matrix X is now decomposed
into two separable matrices T and S as their Kronecker
product:

1S S - -+ NS
e 0S8 oo BNS

2p=Te®S= , (3)
INNS

where the S matrix (K X K dimensions) is known as the
between factors or spatial covariance matrix, which captures
the correlation between the factors. We assign to S the
identity matrix to avoid scaling problems (see Section 2.3
below). The T matrix (N X N dimensions) is known as
the within factors or temporal covariance matrix. We assign
1 to the diagonal entries of this matrix so that it can
be treated as a correlation matrix. The T matrix captures
the time correlation of each factor across the time points.
We assign a first-order Markov structure to T, thus an
extra parameter p that indicates the correlation between

neighbouring time points must be estimated. The prior and
posterior distributions of matrix T as well as of the other
parameters are discussed in Section 5.

2.2, Sparsity on the Connectivity Matrix A

Most genes are regulated by a small number of transcription
factors. This implies that the connectivity matrix A is sparse.
To incorporate this sparsity in the factor analysis model, we
assign independent Gaussian priors to each element A, of A
with mean zero and variance d,, . A Gamma prior is assigned
to each 0, leading to a Student ¢-distribution for each row
of A. Such distribution assigns most probability mass to the
origin and along the spines, where one of the coefficients
Apk is zero, that is, this prior favors connectivity structures
in which genes are regulated by a small number of TFs.

2.3. Identifiability Problems

There is an identifiability problem associated with (1). For a
K dimensional orthogonal matrix Q (i.e., QQ" = Q'Q = Ix),
we have AF = AQQ'F = A*F* with cov(F*) = cov(F).
Hence, it is not possible to distinguish between A and all its
possible orthogonal transformations A* based on knowledge
of the product AF alone. However, with the objective of
constructing a sparse connectivity matrix the number of
possible orthogonal transformations is highly restricted.

Orthogonal transformations also include permutations
of the factors which, in the case of regulatory networks,
limit our ability to assign factors to known TFs. Sabatti and
James. [3] constrain the factors to known TFs by assigning
a priori loadings matrix with a large number of zeros based
on the Vocabulon algorithm [16]. Here, we aim to see if the
FA algorithm is also able to reconstruct the activity profiles
without any prior information. To assess how well profiles are
reconstructed, we match inferred factors to TFs using profiles
from the NCA algorithm, which requires prior knowledge of
the regulatory relationships. For the matching of profiles, we
use the Hungarian algorithm [17] described in Section 5.

In the FA algorithm, we utilise a Gibbs sampling
algorithm in order to estimate the unknown parameters. In
each iteration of the algorithm, it is possible that factors
change sign or change position in the factors matrix. This
is a widely known problem in FA. Here, we suggest the use
of the Hungarian matching algorithm to identify factors that
have changed sign or position in the factors matrix.

3. Results and Discussion

We analysed two-gene expression datasets, one from E. coli
and one from yeast, both from time series experiments.

3.1. E. coli Dataset

We have previously analysed the E. coli dataset using FA
algorithms [4]. The reconstructed profiles were rugged since
the temporal information was ignored. Here, we reanalyse
the data (consisting of 16 TFs, and 100 gene expression
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FiGure 1: Reconstructed TF profiles for the E. coli dataset with zero entries fixed in the factor loadings matrix. GNCA profiles are indicated
by the dashed lines, and FA profiles without time series correlation are shown with solid lines. Each subfigure corresponds to one of the 16
TFs. The name of the TF that is reconstructed is indicated on top of each subfigure. The x-axis indicates the experiments (time points), and

the y-axis indicates the activity levels of a TE.

levels over 24 time points) using the new algorithm, and
we compare the results with the previous ones in [4]. We
first approach the problem by supplying the connectivity
matrix used in [6]. This connectivity matrix was constructed
based on RegulonDB and the available literature, and we
will refer to it as the Kao connectivity matrix. Note that
the NCA algorithm (or GNCA, a variation of it) requires
such information in order to reconstruct the factor profiles
and to estimate the nonzero values of the factor loadings
matrix. Each algorithm was run 10 times. For the GNCA
algorithm, we consider the run with the least mean-squared
error, while for the FA algorithms we consider the average of
these runs.

Figure 1 shows the TF profiles reconstructed by GNCA
and FA algorithms discussed in [4]. This figure is slightly
different from the one presented in [4] due to the different
prior parameters that are used for the noise covariance
matrix (see Section 5.6). The reconstructed profiles are
rugged for both algorithms. Note that the GNCA profiles in
[5] are smooth only due to some further processing steps.

Figure 2 shows the profiles obtained by the suggested
time series FA algorithm. Overall, the profiles follow the
same trends shown in Figure 1. However, the reconstructed
profiles are now smooth due to the incorporation of
temporal correlation. The posterior mean of the correlation
parameter p is 0.85 (see Section 5). This value was obtained
with a broad prior.

We also analysed the influence of the prior on the
reconstruction process by providing prior loadings matrices
that are denser than the Kao connectivity matrix, that is,
we run the FA algorithm with decreasing numbers of given
zero position in the prior loadings matrix. We tested priors
where 75, 50, 25, or 5 entries per TF were fixed to zero. These
positions were chosen randomly out of the approximately
75 zero positions that are present for each TF in the Kao
connectivity matrix. We found that even with 50 zero entries
out of the 75 entries that are present in Kao connectivity
matrix the FA algorithms can reconstruct the same TF
activity profiles equally well without having an identifiability
problem regarding the labelling of the factors. However, as
the number of constraints to zero in the prior loadings
matrix is reduced further, assigning factors to TFs becomes
more difficult, although the reconstruction of the TF profiles
is still acceptable. This result is interesting from a biological
perspective since it shows the importance of integrating prior
information regarding the system under consideration even
if the available information is limited. Negative experimental
results showing that there is no connection between a TF and
a gene are even more informative than positive experiments
for this kind of analysis since they restrict the structure of the
connectivity matrix very effectively.

Finally, we analysed the E. coli expression data without
any prior information. The reconstructed profiles strongly
resemble the profiles when prior information is provided,
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FIGURE 2: Reconstructed TF profiles for the E. coli dataset with zero entries fixed in the factor loadings matrix. GNCA profiles are indicated
by the dashed lines, and time series FA profiles are shown with solid lines. Each subfigure corresponds to one of the 16 TFs as described in

Figure 1.

as shown in Figure 3. The profiles are still smooth and the
estimated P value is .86. Since it is unknown which factor cor-
responds to which TF, we matched the profiles reconstructed
by the time series FA algorithm with the profiles obtained by
the GNCA algorithm using the Hungarian algorithm [17].

Given the E. coli dataset, we performed another test
to assess the reconstruction process based on a sample
with larger time intervals: we removed every other time
point starting from the second. The new dataset consists
of 12 time points instead of 24. Figure 4 shows the profiles
as reconstructed by the time series FA algorithm with
solid lines. The dotted lines are the benchmark profiles
reconstructed by the GNCA algorithm (Figure 1), where
we have now removed the missing time points. As can be
seen the algorithm still reconstructs the TF profiles quite
faithfully. The profiles are slightly less smooth than those in
Figure 2, the effect of sampling with a larger time interval.
The larger interval also causes a reduction in the estimated
correlation coefficient which is now estimated as 0.71 which
is consistent with the correlation from the full time series,
since 0.85* = 0.7225. The faithful reconstruction of the TF
profiles is an encouraging result considering that it is often
difficult to decide on a time interval with which to sample
experimental data.

The above correlation and reconstruction result for
the subsample suggests that the experimental sampling
frequency could have been reduced to about half the time
points without too much loss of accuracy. Of course, if

the correlation coefficient dropped much further that would
indicate that a shorter time interval is required for an
accurate reconstruction of the factor profiles.

Finally, a reconstruction with half the time points was
also performed without any prior information regarding
the underlying gene regulatory network. Figure 5 shows the
reconstructed TF profiles after they have been matched to
GNCA profiles using the Hungarian algorithm. Again, the
profiles are very close to the ones reconstructed with prior
information (Figure 4) indicating that prior information is
not necessary in order to reconstruct the profiles. Of course,
it is required if one wants to match factors to TFs. The value
of the correlation coefficient was again estimated at around
0.71.

3.2. Yeast Dataset

We also apply the proposed algorithm to gene expression
data from yeast [15], a dataset which has been used to
evaluate the NCA algorithm by Kao et al. [6]. They reduced
the initial dataset of 2200 genes and 113 TFs to 441 and
33, respectively. This reduction in the size is required due
to some network structural restrictions implied by the
NCA algorithm. For comparison reasons, we also used this
reduced dataset. Spellman et al. [15] used different culture
synchronisation techniques: elutriation, a-factor arrest, and
cdcl5 temperature sensitive mutant arrest. Thus, there are
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three datasets consisting of 14, 17, and, 24 time points, with
time intervals of 30, 7, and 20 minutes, respectively.

We analyse each time series dataset separately given the
connectivity matrix also used in [6]. Figure 6 shows the
reconstructed profiles of five well-known TFs. Each row
corresponds to the three different synchronisation methods.
Little periodic behaviour is shown during the elutriation
experiment. However, a large number of profiles show
periodic profiles in the other two time series experiments.
For example, STB1 and MCM1 have been shown to play a
crucial role in cell cycle regulation, and their profiles show a
strong periodicity.

The estimated yeast TF profiles are not as smooth as
the E. coli profiles from the previous section. However, they
are still smoother than the profiles estimated by the GNCA
algorithm or the static FA algorithms. A possible explanation
could be the—in comparison to E. coli—smaller correlation
coefficients that are estimated for each time series: 0.68 for
the elutriation, 0.56 for the a—factor arrest, and 0.45 for the
cdcl5 mutant arrest time series.

Figure 6 shows that different synchronisation methods
result in different TF profiles and different estimations for
the correlation coefficients particularly after accounting for
differences in the time intervals. The comparatively large
differences in the correlation coefficients hint at differences
in the underlying dynamics. It seems, therefore, not advisable
to combine datasets obtained under such different conditions
for time series analyses based on such dynamics.

For completeness, Figure7 shows the reconstructed
profiles of the time series FA algorithm without any prior
connectivity information. Again, the TF profiles are recon-
structed well. Compared to GNCA, these profiles seem
smoother but they are slightly rougher than the ones in
Figure 6. This is due to the greater number of parameters that
need to be estimated.

Finally, we measured the correlation of the constructed
TF profiles with their corresponding expression profiles
without finding any significant match. This result is consis-
tent with that of Boulesteix and Strimmer. [8].

4, Conclusion

We presented a factor analysis algorithm that incorporates
temporal correlation within each factor vector and also
learns sparse factor loadings matrices. It is quite plausible
that the underlying regulatory networks are quite sparse,
and reconstruction algorithms based on this principle have
received increasing interest recently. There is also increasing
interest in time series experiments, since they are able to
capture the dynamics of biological processes. The algorithm
presented here utilises both sparsity and time correlation
within a Bayesian framework. We estimated the distribution
of time correlation coefficients for gene expression data from
E. coli and yeast. It seems that a fair amount of correlation
is present in the data, as might have been expected. Conse-
quently, the ragged profiles resulting from a simple factor
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analysis without time constraints seem to be artifacts; it is
simply unlikely that activity levels fluctuate so wildly as seen
for some genes. The profiles reconstructed incorporating the
estimated correlation certainly look smoother, and it is likely
that they are closer to the true activity profiles than the
ragged reconstructions by simple factor analysis methods.
For the E. coli dataset, we demonstrated the effect of the
time interval on time correlation and reconstructed profiles.
Finally, we showed that the reconstruction process is reliable
even with little or no information regarding the connectivity
matrix. However, some form of prior knowledge is necessary
to obtain smoother profiles or to match unknown factors to
known TFs.

One drawback of the GNCA and FA algorithms is that
they only model linear relationships between the TFs and
the regulated gene. However, as shown in the PhD thesis by
Pournara [18] the assumption of linearity is not a severe one
given the small amount of data and the significant amounts
of noise present in microarray data. Moreover, the linearity
assumption is less of a problem after mRNA abundance levels
or ratios are transformed logarithmically. As theoretical
considerations (see [19]) show, gene regulation by several
factors might be considered additive on the logarithmic scale,
unless there is severe interaction between the factors. Some
discussion of this issue is also provided in [6]. Nevertheless,

we are currently exploring approaches to nonlinear mod-
elling using Gaussian processes and investigating ways to
include time delays in the FA algorithms that can cause shifts
to the profiles of the regulated genes. For the data used here,
preliminary results using a Gaussian processes algorithm
show that all factor to gene interactions can be effectively
described by linear relationships.

5. Methods

5.1. Factors F

Here, we extend the methods of [4] in order to include
time correlation within the factors (see [20] for a similar
approach). The factors are assumed to be normally dis-
tributed with mean zero and covariance matrix ¥y = T ®
S, where S is the spatial covariance matrix and T is the
temporal covariance matrix. The T matrix captures the time
correlation of each factor across the time points. The same
temporal matrix is assigned to each factor. Given the matrix
identities
|T ® S|—1/2 _ |T|7K/2|S|—N/2
(4)

trF’z;lF tr T'FS™'F’.
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The prior distribution of F is given by
p(F) oc |S|™N2|T| %2 exp ( - %tr T’IFS’IF’>. (5)

The posterior probability of the factors is now derived as
P X,A¥) o< p(F)p(X | F, A, ¥) ~ N (F | m,35),
(6)
where
= (TleS '+ e AN,

mj = ST &5 ) Byt (5 0 A¥YNFL ()

F =vec(F), F=Xs'AWNY A

5.1.1. Spatial Covariance Matrix S

The convenient conjugate prior, inverted Wishart distri-
bution, is chosen for the spatial covariance matrix of the
factors F such as the posterior distribution is also an inverted
Wishart distribution given by

p(S|X,F,A, ¥, T) oc [S|7HN)2

X exp ( - %trS’l[F'T’lF + V]),
(8)
where V is the prior hyperparameter of the Wishart distri-

bution. As mentioned above, in this paper, we fix S = Ik to
avoid some identifiability problems.

5.1.2. Temporal Covariance Matrix T

General case T

The treatment of the temporal correlation matrix T is
more complicated. If we assume that the temporal matrix
is completely unknown, a conjugate prior distribution is the
inverted Wishart distribution with prior hyperparameter E.

Thus, the posterior distribution is also an inverted
Wishart distribution given by

p(T | X,F,A,9,S) oc |T|~¢+K)2

X exp ( - %tr T'[FS'F + E])
)
This approach greatly increases the number of parameters
to be estimated to N(N — 1)/2. This large number of
extra parameters causes problems (singular matrix) to the

Gibbs sampler, and thus we have to considerably reduce this
number of unknown parameters.

First-order Markov structure T

If we assume that the correlation matrix T has a known struc-
ture, we can significantly reduce the number of estimated

parameters. We have examined a series of different structures
included the single-parameter structure and concluded that
the first-order Markov structure gives the best results, and
thus we will only discuss this latter case.

According to a first-order Markov structure, the matrix
T is given by

1 p P PN
p 1 p pN?
T — p2 p 1 e - ) (10)
prl pN—Z 1

where —1 < p < 1. We assign the beta distribution as the
prior distribution of p:

e ap—1 e Bo—1
p(p)~(”1_§_3> (1—P1_E_3) . an

where «,, 8, > 0. For a, = 1and f8, = 1, the beta distribution
equals the uniform distribution. For large values of «, p
approaches 1, while for large values of 8, p approaches —1.

Given the determinant |T| = (1 — pz)Nfl, and the inverse
of T

1 —p 0 0
e (L+p%) —p
T ! = s 0
-p (1+p%) —p| (12)
0 0 -p 1

1
= 1 —p2 (Yl +Y2p +Y3p2),

where Y = Iy:

0 -1 0
100 e e
Y2 = P T
| 0 -1 0
C 0 s eee e 0 (13)
1
Y5 =
1
0 0
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FiGUrg 7: Reconstructed TF profiles for the spellman yeast dataset without giving the positions of the zero entries in the factor loadings
matrix. GNCA profiles are indicated by the dashed lines, and time series FA profiles are shown with solid lines. The first row corresponds the
elutriation time series, the second row to the a-factor arrest time series and, the third row to the cdcl5 temperature sensitive mutant arrest
time series. Each column corresponds to the reconstructed profiles of a given TF under three different experimental conditions. The name
of the TF is shown on the top of each column. Plotted are 6 representative TFs out of 33. The x-axis indicates the experiments (time points),
and the y-axis indicates the activity levels of a TE.

G(as,Bs). The posterior probability of each row A, of A is
given by

The posterior distribution of p takes the following form:

X p(X | F,AY) ~ p(p)p(F | T,S)

P(AP |X,F,[J,‘I’,AP) ~ N(AP | mAP,ZAP), (15)

- gyt where Za, = (y;2FF +A;") "', ma, = 25, F(X, - M,) ;2
oc (pﬂ) (1 _ p+1> (1 7P2)—(N—1)K/2 A, diag((?;f,...,%é), and A, is a row vector that
2 2 corresponds to the pth row of A.
The posterior distribution of &, is also a Gamma
distribution given by

K +pK2 + p2K3
2-p2) )

X exp ( -

p(rSpk | Apk) Ngv<8pk | as + %,ﬂ(s + 2). (16)

(14)

where K7 = tr(E), K, = tr(Y,E), K3 = tr(Y3E), and
E = FS'F. Note that the prior distribution of p is
wrongly assigned in [20, page 285]. Moreover, the posterior

5.3. Noise Covariance Matrix ¥

distribution is slightly different due to the difference in
the treatment of the noise covariance matrix. Finally, the
loadings matrix is also treated differently here (see below).

5.2. Factor Loadings Matrix A

Independent Gaussian priors are assigned to each element
Apk of A, N (O, 8;,3). To each 6k, a Gamma prior is assigned,

A convenient Gamma prior with shape parameter ay and
scale parameter By is assigned to the inverse of the noise
covariance matrix ¥ so that its posterior distribution is
also a Gamma distribution given by (17), where S,, =

Zﬁ’:lzizl(x; - Zf:l/‘pkfkn)zt

p S
p(vp? | X, F,A) ~9<w;2 | aw+2,ﬂw+§">. (17)
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Step 1. Sample F from (6),
sample p from (14) using a rejection sampling algorithm.
Step 2. Sample A and V¥ from (15) and (17), respectively.

ALGORITHM 1: Gibbs sampler algorithm for factor analysis.

5.4. Gibbs Sampler

A Gibbs sampler algorithm (Algorithm 1) is used to estimate
the unknown parameters. We first initialise the loadings and
noise covariance matrices. Then, we iterate through steps 1
and 2 sampling from the posterior conditional distributions
of the parameters. In the analysed datasets, convergence was
reached within the first 100 samples. However, we discarded
the first 3000 samples in order to ensure convergence and
collect another 500 samples for the analysis.

5.5. Hungarian Algorithm

The sign of the factors can change during the Gibbs sampling
algorithm. Moreover, two factors can alternate position in
the factors matrix. These are two widely known problems
with factor analysis. In order to overcome these problems,
we suggest the use of the Hungarian algorithm which solves
assignment problems in polynomial time. A cost matrix of
dimensions K x K is constructed given the inferred factor
matrices at rounds t and t + 1 of the Gibbs sampler. The i, j
element of the cost matrix, is the mean-square error between
the ith and jth profiles of the factor matrix at time t and £ +1,
respectively. This cost matrix is used to solve the assignment
problem by minimising the sum of the costs. For the details
of the algorithm, the reader is referred to the seminal paper
by Kuhn [17]. We also used this algorithm to assign inferred
factor profiles to known TF profiles, that is, reconstructed by
the GNCA algorithm.

5.6. Prior Parameters

The choice of prior hyperparameters is very important in
a Bayesian framework. We choose uninformative priors for
most of the parameters. The estimation of the p parameter is
fairly insensitive to the choice of the hyperparameters. Thus,
we used a uniform prior distribution for the E. coli dataset
and a prior of a, = 60 and 8, = 1 for the yeast data. In the
time series FA algorithm, the choice of the hyperparameter
for the noise covariance matrix is important. While a very
flat prior is a good choice in the static FA, in the time series
FA analysis a prior distribution away from zero gives better
results. However, we note that as long as the distribution
is away from zero, the algorithm is robust with respect to
the exact width of this distribution. In our experiments,
the shape and scale hyperparameters were set to 10. These
parameter values give a distribution away from zero and
one that does not include unrealistically large values. For
the § parameter, we choose shape and scale parameters 10
and 0.1, respectively, in order to favour sparse connectivity
matrices. To indicate that our reconstructed profiles are not
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a result of the choice of the hyperparameters, Figure 1 shows
the reconstructed profiles for the static FA algorithm using
exactly the same hyperparameters that are used in the time
series FA algorithm.
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