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The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the ab-
stract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however,
in practice, detailed models require more accurate measurements for inference and more computational power to analyze than
coarse-scale models. It is crucial to address the issue ofmodel complexity in the framework of a basic scientific paradigm: themodel
should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to
compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic
signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to
networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows
the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued
reference network against simplified versions obtained via quantization.

Copyright © 2007 Marcel Brun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The modeling of genetic regulatory networks (GRNs) is be-
coming increasingly widespread for gaining insight into the
underlying processes of living systems. The computational
biology literature abounds in various network modeling ap-
proaches, all of which have particular goals, along with their
strengths and weaknesses [1, 2]. They may be deterministic
or stochastic. Network models have been studied to gain in-
sight into various cellular properties, such as cellular state
dynamics and transcriptional regulation [3–8], and to derive
intervention strategies based on state-space dynamics [9, 10].

Complexity is a critical issue in the synthesis, analysis,
and application of GRNs. In principle, one would prefer
the construction and analysis of a quantitatively comprehen-
sive model such as a differential equation-based model to a
coarsely quantized discrete model; however, in practice, the
situation does not always suffice to support such a model.
Quantitatively detailed (fine-scale) models require signifi-

cantly more complex mathematics and computational power
for analysis and more accurate measurements for inference
than coarse-scale models. The network complexity issue has
similarities with the issue of classifier complexity [11]. One
must decide whether to use a fine-scale or coarse-scale model
[12]. The issue should be addressed in the framework of the
standard engineering paradigm: themodel should be of min-
imal complexity to solve the problem at hand.

To quantify network approximation and reduction, one
would like a metric to compare networks. For instance, it
may be beneficial for computational or inferential purposes
to approximate a system by a discrete model instead of a con-
tinuous model. The goodness of the approximation is mea-
sured by a metric and the precise formulation of the proper-
ties will depend on the chosen metric.

Comparison of GRNmodels needs to be based on salient
aspects of the models. One study used the L1 norm between
the steady-state distributions of different networks in the
context of the reduction of probabilistic Boolean networks
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[13]. Another study compared networks based on their
topologies, that is, connectivity graphs [14]. This method
suffers from the fact that networks with the same topology
may possess very different dynamic behaviors. A third study
involved a comprehensive comparison of continuous mod-
els based on their inferential power, prediction power, ro-
bustness, and consistency in the framework of simulations,
where a network is used to generate gene expression data,
which is then used to reconstruct the network [15]. A key
drawback of most approaches is that the comparison is ap-
plicable only to networks with similar representations; it is
difficult to compare networks of different natures, for in-
stance, a differential-equation model to a Boolean model. A
salient property of the metric proposed in this study is that it
can compare networks of different natures in both value and
time.

We propose a metric to compare deterministic GRNs via
their steady-state behaviors. This is a reasonable approach
because in the absence of external intervention, a cell oper-
ates mainly in its steady state, which characterizes its phe-
notype, that is, cell cycle, disease, cell differentiation, and
so forth. [16–19]. A cell’s phenotypic status is maintained
through a variety of regulatory mechanisms. Disruption of
this tight steady-state regulation may lead to an abnormal
cellular status, for example, cancer. Studying steady-state be-
havior of a cellular system and its disruption can provide sig-
nificant insight into cellular regulatory mechanisms underly-
ing disease development.

We first introduce a metric to compare GRNs based on
their steady-state behaviors, discuss its characteristics, and
treat the empirical estimation of the metric. Then we provide
a detailed application to quantization utilizing the mathe-
matical framework of reference and projected networks. We
close with some remarks on the efficacy of the proposed
metric.

2. METRIC BETWEEN NETWORKS

In this section, we construct the distance metric between net-
works using a bottom-up approach. Following a description
of how trajectories are decomposed into their transient and
steady-state parts, we define a metric between two periodic
or constant functions and then extend this definition to a
more general family of functions that can be decomposed be-
tween transient and steady-state parts.

2.1. Steady-state trajectory

Given the understanding that biological networks exhibit
steady-state behavior, we confine ourselves to networks ex-
hibiting steady-state behavior. Moreover, since a cell uses nu-
trients such as amino acids and nucleotides in cytoplasm to
synthesize various molecular components, that is, RNAs and
proteins [18], and since there are only limited supplies of nu-
trients available, the amount of molecules present in a cell
is bounded. Thus, the existence of steady-state behavior im-
plies that each individual gene trajectory can be modeled as a

bounded function f (t) that can be decomposed into a tran-
sient trajectory plus a steady-state trajectory:

f (t) = ftran(t) + fss(t), (1)

where limt→∞ ftran(t) = 0 and fss(t) is either a periodic func-
tion or a constant function.

The limit condition on the transient part of the trajectory
indicates that for large values of t, the trajectory is very close
to its steady-state part. This can be expressed in the following
manner: for any ε > 0, there exists a time tss such that | f (t)−
fss(t)| < ε for t > tss. This property is useful to identify fss(t)
from simulated data by finding an instant tss such that f (t) is
almost periodical or constant for t > tss.

A deterministic gene regulatory network, whether it is
represented by a set of differential equations or state tran-
sition equations, produces different dynamic behaviors, de-
pending on the starting point. If ψ is a network with N genes
and x0 is an initial state, then its trajectory,

f(ψ,x0)(t) =
{
f (1)(ψ,x0)(t), . . . , f

(N)
(ψ,x0)(t)

}
, (2)

where f (i)(ψ,x0)(t) is a trajectory for an individual gene (denoted

by f (i)(t) or f (t) where there is no ambiguity) generated by
the dynamic behavior of the network ψ when starting at x0.
For a differential-equation model, the trajectory f(ψ,x0)(t) can
be obtained as a solution of a system of differential equations;
for a discrete model, it can be obtained by iterating the sys-
tem’s transition equations. Trajectories may be continuous-
time functions or discrete-time functions, depending on the
model.

The decomposition of (1) applies to f(ψ,x0)(t) via its ap-

plication to the individual trajectories f (i)(ψ,x0)(t). In the case
of discrete-valued networks (with bounded values), the sys-
temmust enter an attractor cycle or an attractor state at some
time point tss. In the first case f(ψ,x0),ss(t) is periodical, and in
the second case it is constant. In both cases, f(ψ,x0),tran(t) = 0
for t ≥ tss.

2.2. Distance based on the amplitude
cumulative distribution

Different metrics have been proposed to compare two real-
valued trajectories f (t) and g(t), including the correlation
〈 f , g〉, the cross-correlation Γ f ,g(τ), the cross-spectral den-
sity p f ,g(ω), the difference between their amplitude cumula-
tive distributions F(x) = p f (x) and G(x) = pg(x), and the
difference between their statistical moments [20]. Each has
its benefits and drawbacks depending on one’s purpose. In
this paper, we propose using the difference between the am-
plitude cumulative distributions of the steady-state trajecto-
ries.

Let fss(t) and gss(t) be two measurable functions that are
either periodical or constant, representing the steady-state
parts of two functions, f (t) and g(t), respectively. Our goal
is to define a metric (distance) between them by using the
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Figure 1: Example of (a) periodical and constant functions f (t) and (b) their amplitude cumulative distributions F(x).

amplitude cumulative distribution (ACD), which measures
the probability density of a function [20].

If fss(t) is periodic with period tp > 0, its cumulative den-
sityfunction F(x) over R is defined by

F(x) = λ
(
M(x)
tp

)
, (3)

where λ(A) isthe Lebesgue measure of the set A and

M(x) = {ts ≤ t < te | fss(t) ≤ x
}
, (4)

where te = ts + tp, for any point ts.
If fss is constant, given by fss(t) = a for any t, then we

define F(x) as a unit step function located at x = a. Figure 1
shows an example of some periodical functions and their am-
plitude cumulative distributions.

Given two steady-state trajectories, fss(t) and gss(t), and
their respective amplitude cumulative distributions, F(x)
and G(x), we define the distance between fss and gss as the
distance between the distributions

dss
(
fss, gss

) = ‖F −G‖ (5)

for some suitable norm ‖·‖. Examples of norms include L∞,
defined by the supremum of their differences,

dL∞( f , g) = sup
0≤x≤∞

∣∣F(x)−G(x)
∣∣, (6)

and L1 defined by the area of the absolute value of their dif-
ference,

dL1 ( f , g) =
∫

0≤x<∞

∣∣F(x)−G(x)
∣∣dx. (7)

In both cases, we apply the biological constraint that the am-
plitudes are nonnegative.

The L1 norm is well suited to the steady-state behav-
ior because in the case of constant functions f (t) = a and
g(t) = b, their distributions are unit steps functions at x = a
and x = b, respectively, so that dL1 ( f , g) = |a − b|, the dis-
tance, in amplitude, between the two functions. Hence, we
can interpret the distance dL1 ( f , g) as an extension of the dis-
tance, in amplitude, between two constant signals, to the gen-
eral case of periodic functions, taking into consideration the
differences in their shapes.

2.3. Networkmetric

Once a distance between their steady-state trajectories is de-
fined, we can extend this distance to two trajectories f (t) and
g(t) by

dtr( f , g) = dss
(
fss, gss

)
, (8)

where dss is defined by (5).
The next step is to define the distance between two mul-

tivariate trajectories f(t) and g(t) by

dtr(f , g) = 1
N

N∑

i=1
dtr
(
f (i), g(i)

)
, (9)

where f (i)(t) and g(i)(t) are the component trajectories of
f(t) and g(t), respectively. Owing to the manner in which a
norm is used to define dss, in conjunction with the manner
in which dtr is constructed from dss, the triangle inequality

dtr(f ,h) ≤ dtr(f , g) + dtr(g,h) (10)
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holds, and dtr is a metric.
The last step is to define the metric between two networks

as the expected distance between the trajectories over all pos-
sible initial states. For networks ψ1 and ψ2, we define

d
(
ψ1,ψ2

) = ES
[
dtr
(
f(ψ1,x0), f(ψ2,x0)

)]
, (11)

where the expectation is taken with respect to the space S of
initial states.

The use of a metric, in particular, the triangle inequality,
is essential for the problem of estimating complex networks
by using simpler models. This is akin to the pattern recog-
nition problem of estimating a complex classifier via a con-
strained classifier to mitigate the data requirement. In this
situation, there is a complex model that represents a broad
family of networks and a simpler model that represents a
smaller class of networks. Given a reference network from the
complex model and a sampled trajectory from it, we want to
estimate the optimal constrained network. We can identify
the optimal constrained network, that is, projected network,
as the one that best approximates the complex one, and the
goal of the inference process should be to obtain a network
close to the optimal constrained network. Letψ be a reference
network (e.g., a continuous-valued ODE-based network), let
P(ψ) be the optimal constrained network (e.g., a discrete-
valued network), and let ω be an estimator of P(ψ) estimated
from data sampled from ψ. Then

d(ω,ψ) ≤ d
(
ω,P(ψ)

)
+ d
(
P(ψ),ψ

)
, (12)

where the following distances have natural interpretations:

(i) d(ω,ψ) is the overall distance and quantifies the ap-
proximation of the reference network by the estimated
optimal constrained network;

(ii) d(ω,P(ψ)) is the estimation distance for the con-
strained network and quantifies the inference of the
optimal constrained network;

(iii) d(P(ψ),ψ) is the projection distance and quantifies how
well the optimal constrained network approximates
the reference network.

This structure is analogous to the classical constrained re-
gression problem, where constraints are used to facilitate bet-
ter inference via reduction of the estimation error (so long as
this reduction exceeds the projection error) [11]. In the case
of networks, the constraint problem becomes one of finding
a projectionmapping formodels representing biological pro-
cesses for which the loss defined by d(P(ψ),ψ) may be main-
tained within manageable bounds so that with good infer-
ence techniques, the estimation error defined by d(ω,P(ψ))
will be minimized.

2.4. Estimation of the amplitude
cumulative distribution

The amplitude cumulative distribution of a trajectory can be
estimated by simulating the trajectory and then estimating
the ACD from the trajectory. Assuming that the steady-state

x
t0 t1 t2 ti ti+1 ti+2

mi = f
(
ti + ti+1

2

)

Figure 2: Example of determination of valuesmi.

trajectory fss(t) is periodic with period tp, we can analyze
fss(t) between two points, ts and te = ts + tp. For a contin-
uous function fss(t), we assume that any amplitude value x
is visited only a finite number of times by fss(t) in a period
ts ≤ t < te. In accordance with (3), we define the cumulative
distribution

F(x) = λ
({
ts ≤ t ≤ te | fss(t) ≤ x

})

tp
. (13)

To calculate F(x) from a sampled trajectory, for each value x,
let Sx be the set of points where fss(t) = x:

Sx =
{
ts ≤ t ≤ te | fss(t) = x

}∪ {ts, te
}
. (14)

The set Sx is finite. Let n = |Sx| denote the number of el-
ements t0, . . . , tn−1. These can be sorted so that ts = t0 <
t1 < t2 < · · · < tn−1 = te. Now we define the set mi,
i = 0, . . . ,n − 2, of intermediate values between two con-
secutive points where fss(t) crosses x (see Figure 2) by

mi = fss

(
ti + ti+1

2

)
. (15)

Let Ix be a set of the indices of points ti such that the
function f (t) is below x in the interval [ti, ti+1],

Ix =
{
0 ≤ i ≤ n− 2 | mi ≤ x

}
. (16)

Finally, the cumulative distribution F(x), defined by themea-
sure of the set {ts ≤ t ≤ te | f (t) ≤ x}, can be computed as
the sum of the lengths of the intervals where f (t) ≤ x:

F(x) =
∑

i∈Ix
(
ti+1 − ti

)

tp
. (17)

The estimation of F(x) from a finite set {a1, . . . , am} repre-
senting the function f (t) at points t1, . . . , tm reduces to esti-
mating the values in (17):

F̃(x) =
∣∣{1 ≤ i ≤ m | ai ≤ x

}∣∣
m

(18)

at the points ai, i = 1, . . . ,m.
In the case of computing the distance between two func-

tions f (t) and g(t), where the only information available
consists of two samples, {a1, . . . , am} and {b1, . . . , br}, for f

and g, respectively, both cumulative distributions F̃(x) and
G̃(x) need only be defined at the points in the set

S = {a1, . . . , am
}∪ {b1, . . . , br

}
. (19)
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Figure 3: Block diagram of a model for transcriptional regulation.

In this case, if we sort the set S so that 0 = s0 < s2 < · · · <
sk = T (with T being the upper limit for the amplitude val-
ues, and k ≤ r +m), then (6) can be approximated by

d̃L∞( f , g) = max
0≤i≤k

∣∣F̃(si
)− G̃

(
si
)∣∣ (20)

and (7) can be approximated by

d̃L1 ( f , g) =
∑

0≤i≤k−1

(
si+1 − si

)∣∣F̃(si
)− G̃

(
si
)∣∣. (21)

3. APPLICATION TOQUANTIZATION

To illustrate application of the network metric, we will an-
alyze how different degrees of quantization affect model ac-
curacy. Quantization is an important issue in network mod-
eling because it is imperative to balance the desire for fine
description against the need for reduced complexity for both
inference and computation. Since it is difficult, if not impos-
sible, to directly evaluate the goodness of a model against a
real biological system, we will study the problem using a stan-
dard engineering approach. First, an in numero reference net-
work model or system is formulated. Then, a second network
model with a different level of abstraction is introduced to
approximate the reference system. The objective is to investi-
gate how different levels of abstraction, quantization levels in
this study, impact the accuracy of the model prediction. The
first model is called the reference model. From it, reference
networks will be instantiated with appropriate sets of model
parameters. The model will be continuous-valued to approx-
imate the reference system at its fullest closeness. The second
model is called a projected model, and projected networks will
be instantiated from it. This model will be a discrete-valued
model at a given different level of quantization.

The ability of a projected network, an instance of the
projected model, to approximate a reference network, an in-
stance of the reference model, can be evaluated by comparing
the trajectories generated from each network with different
initial states and computing the distances between the net-
works as given by (11).

3.1. Referencemodel

The origin of our reference model is a differential-equation
model that quantitatively represents transcription, transla-
tion, cis-regulation and chemical reactions [7, 15, 21]. Specif-
ically, we consider a differential-equation model that ap-
proximates the process of transcription and translation for
a set of genes and their associated proteins (as illustrated in
Figure 3) [7].The model comprises the following differential
equations:

dpi(t)
dt

= λiri
(
t − τp,i

)− γi pi(t), i ∈ G,

dri(t)
dt

= κici
(
t − τr,i

)− βiri(t), i ∈ G,

ci(t) = φi
[
pj
(
t − τc, j

)
, j ∈Ri

]
, i ∈ G,

(22)

where ri and pi are the concentrations of mRNA and pro-
teins induced by gene i, respectively, ci(t) is the fraction of
DNA fragments committed to transcription of gene i, κi is the
transcription rate of gene i, and τp,i, τr,i, and τc,i are the time
delays for each process to start when the conditions are given.
The most general form for the function φi is a real-valued
(usually nonlinear) function with domain in R|Ri| and range
in R, φi : R|Ri| → R. The functions are defined by the equa-
tions

φi
[
pj , j ∈Ri

] =
[
1−

∏

j∈R+
i

ρ
(
pj , Si j , θi j

)]

×
∏

j∈R−
i

ρ
(
pj , Si j , θi j

)
,

ρ(p, S, θ) = 1
(1 + θp)S

,

(23)

where the parameters θ are the affinity constants and the pa-
rameters Si j are the distinct sites for gene i where promoter
j can bind. The functions depend on the discrete parameter
Si j , the number of binding sites for protein j on gene i, and
θi j , the affinity constant between gene i and protein j.

A discrete-time model results from the preceding
continuous-time model by discretizing the time t on in-
tervals nδt, and the assumption that the fraction of DNA



6 EURASIP Journal on Bioinformatics and Systems Biology

Table 1: Parameter values used in simulations.

Parameter Value Parameter Value

Affinity constant θ = 108 M−1 Number of binding sites S = 1

mRNA and protein half-life
ρ = 1200 s

Transcription rates
κ1 = 0.001 pMs−1

π = 3600 s κ2 = κ3 = κ4 = 0.05 pMs−1

Translation rate λ = 0.20 s−1 Time delays
τr = 2000 s

τc = 200 s

τp = 2400 s

Cis-regulationTranslation

1

2

3

4

1

2

3

4

1

2

3

4

Transcription

Input substrate
concentration

mRNA
Protein
Gene

Figure 4: Example of a tRS of a hypothetical metabolic pathway
that consists of four genes. In this figure, � denotes an activator,
whereas, � denotes a repressor.

fragments committed to transcription and concentration of
mRNA remains constant in the time interval [t − δt, t) [7].
In place of the differential equations for ri, pi, and ci, at time
t = nδt, we have the equations

ri(n) = e−βiδtri(n− 1) + κis(βi, δt)ci
(
n− nr,i − 1

)
,

pi(n) = e−γiδt pi(n− 1) + λis
(
λi, δt

)
ri
(
n− np,i − 1

)
,

ci(n) = φi
[
pj
(
n− nc, j

)
, j ∈Ri

]
, i ∈ G,

(24)

where nr,i = τr,i/δt, np,i = τp,i/δt, nc, j = τc, j /δt, and

s(x, y) = 1− e−xy

x
. (25)

This model, which will serve as our reference model, is called
a (discrete) transcriptional regulatory system (tRS).

We generate networks using this model and a fixed set θ
of parameters. We call these networks reference networks. A
reference network is identified by its set θ of parameters,

θ=(α1,β1, λ1, γ1, κ1, τp,1, τr,1, τc,1,φ1,R1, . . . ,αN ,

βN , λN , γN , κN , τp,N , τr,N , τc,N ,φN ,RN
)
.

(26)

3.2. Projectedmodel

The next step is to reduce the reference network model to
a projected network model. This is accomplished by apply-
ing constraints in the reference model. The application of
constraints modifies the original model, thereby obtaining
a simpler one. We focus on quantization of the gene ex-
pression levels (which are continuous-valued in the refer-
ence model) via uniform quantization, which is defined by
a finite or denumerable set L of intervals, L1 = [0,Δx),
L2 = [Δx, 2Δx), . . . , Li = [(i − 1)Δx, iΔx), . . . , and a map-
ping ΠL : R → R such that Π(x) = ai for some collection of
points ai ∈ Li.

The equations for ri, pi, and ci (24) are replaced by

ri(n) = Π
(
e−βiδtri(n− 1) + κis

(
βi, δt

)
ci
(
n− nr,i − 1

))
,
(27)

pi(n) = Π
(
e−γiδt pi(n− 1) + λis

(
λi, δt

)
ri
(
n− np,i − 1

))
,
(28)

ci(n) = φi
[
p j

(
n− nc, j

)
, j ∈Ri

]
, i ∈ G. (29)

Issues to be investigated include (1) how different quan-
tization techniques (specification of the partition L) affect
the quality of the model; (2) which quantization technique
(mapping Π) is the best for the model; and (3) the similarity
of the attractors of the dynamical system defined by (27) and
(28) to the steady state of the original system, as a function
of Δx. We consider the first issue.

3.3. A hypothetical metabolic pathway

To illustrate the proposed metric in the framework of the
reference and projected models, we compare two networks
based on a hypothetical metabolic pathway. We first briefly
describe the hypothetical metabolic pathway with necessary
biochemical parameters to set up a reference system. Then,
the simulation study shows the impacts of various quantiza-
tion levels in both time and trajectory based on the proposed
metric.

We consider a gene regulatory network consisting of four
genes. A graphical representation of the system is depicted
in Figure 4, where � denotes an activator and � denotes a
repressor. We assume that the GRN regulates a hypothetical
pathway, which metabolizes an input substrate to an output
product. This is done by means of enzymes whose transcrip-
tional control is regulated by the protein produced from gene
3. Moreover, we assume that the effect of a higher input sub-
strate concentration is to increase the transcription rate κ1,
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Figure 5: Example of trajectories from the first simulation of 4-gene network. Each figure shows the trajectory for one of the four genes, for
several values of the level quantization Δx, represented by the lines Q = 0, Q = 0.001, Q = 0.01 and Q = 0.1 (Q = 0 represents the original
network without quantization). The values S displayed in the graphs shows the distance computed between the trajectory and the one with
Q=0. The vertical axis shows the concentration levels x in pM. The horizontal axis shows the time t in seconds.

whereas the effect of a lower substrate concentration is to re-
duce κ1. Unless otherwise specified, the parameters are as-
sumed to be gene-independent. These parameters are sum-
marized in Table 1.

We assume that each cis-regulator is controlled by one
module with four binding sites, and set S = 4, θ = 108 M−1,
κ2 = κ3 = κ4 = 0.05 pMs−1, and λ = 0.05 s−1. The value of
the affinity constant θ corresponds to a binding free energy



8 EURASIP Journal on Bioinformatics and Systems Biology

Iter. 1, gene 1

0 0.5 1 1.5 2

x

0

0.2

0.4

0.6

0.8

1

Quant = 0
Q = 0.0001, S = 0.06, Sn = 0
Q = 0.01, S = 0.5, Sn = 0
Q = 0.1, S = 1.7, Sn = 0

F
(x
)

(a)

Iter. 1, gene 2

0 10 20 30 40 50 60

x

0

0.2

0.4

0.6

0.8

1

F
(x
)

Quant = 0
Q = 0.001, S = 0.65, Sn = 0.82
Q = 0.01, S = 6.65, Sn = 0
Q = 0.1, S = 49.5, Sn = 0

(b)

Iter. 1, gene 3

0 50 100 150

x

0

0.2

0.4

0.6

0.8

1

F
(x
)

Quant = 0
Q = 0.001, S = 0.63, Sn = 0.13
Q = 0.01, S = 4.34, Sn = 1.3
Q = 0.1, S = 111.66, Sn = 1.3

(c)
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Figure 6: Example of estimated cumulative density function (CDF) from the first simulation of 4-gene network, computed from the trajec-
tories in Figure 5. Each figure shows the CDF for one of the four genes, for several values of the level quantization Δx, represented by the lines
Q = 0, Q = 0.001, Q = 0.01, and Q = 0.1 (Q = 0 represents the original network without quantization). The value S displayed in the graphs
show the distance computed between the trajectory and the one with Q = 0. The vertical axis shows the cumulative distribution F(x). The
horizontal axis shows the concentration levels x in pM.

of ΔU = −11.35 kcal/mol at temperature T = 310.15◦K (or
37◦C). The values of the transcription rates κ2, κ3, and κ4 cor-
respond to transcriptional machinery that, on the average,
produces one mRNA molecule every 8 seconds. This value
turns out to be typical for yeast cells [22]. We also assume
that on the average, the volume of each cell in C equals 4 pL
[18]. The translation rate λ is taken to be 10-fold larger than
the rate of 0.3/minute for translation initiation observed in
vitro using a semipurified rabbit reticulocyte system [23].

The degradation parameters β and γ are specified by
means of the mRNA and protein half-life parameters ρ and
π, respectively, which satisfy

e−βρ = 1
2
, e−γπ = 1

2
. (30)

In this case,

β = ln 2
ρ

, γ = ln 2
π

. (31)
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Figure 7: Results for the first simulation: the vertical axis shows the
distance d̃L1 ( f(Δx ,δt), f(Δx=0,δt)) as function of quantization levels for
both the values (axis labeled “Δx”) and the time (axis labeled “δt”).

3.4. Results and discussion

It is expected that the finer the quantization is (smaller val-
ues of Δx), the more similar will be the projected networks
to the reference networks. This similarity should be reflected
by the trajectories as measured by the proposed metric. A
straightforward simulation consists of the design of a refer-
ence network, the design of a projected network (for some
value of Δx), the generation of several trajectories for both
networks from randomly selected starting points, and the
computation of the average distance between trajectories, us-
ing (9) and (21). Each process is repeated for different time
intervals δt to study how the time intervals used in the sim-
ulation affect the analysis.

The firstsimulation is based on the same 4-gene model
presented in [7]. We use 6 different quantization levels,
Δx = 0, 0.001, 0.01, 0.1, 1, and 10, where Δx = 0 means
no quantization, and designates the reference network. For
each quantization level Δx and starting point x0, we gener-
ate the simulated time series expression and compare it to
the time-series generated with Δx = 0 (the reference net-
work), estimating the proposed metric using (21). The pro-
cess is repeated using a total of 10 different time intervals,
δt = 1 second, 5 seconds, 10 seconds, 30 seconds, 1minute,
2minutes, 5minutes, 10minutes, 30minutes, and 1 hour.
The simulation is repeated and the distances are averaged for
30 different starting points x0.

Figures 5 and 6 show the trajectories and empirical cu-
mulative density functions estimated from the simulated sys-
tem as illustrated in the previous section. Several quanti-
zation levels are used in the simulation. The last graph in
Figure 5 shows the mRNA concentration for the forth gene,
over the 10 000 first seconds (transient) and over the last
10 000 seconds (steady-state). We can see that for quantiza-
tions 0 and 0.001, the steady-state solutions are periodic, and
for quantizations 0.001 and 0.1, the solutions are constant.
This is reflected by the associated plot of F(x) in Figure 6.
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Δx = 0.01

Δx = 0.1

Δx = 1

0

10

20

30

40

50

60

70

80

(a)

0

20

40

60

80

100

120

10−3 10−2 10−1 100 101

Δx

δt = 1
δt = 10
δt = 60

δt = 300
δt = 1800

(b)

Figure 8: Results for the first simulation: the vertical axis shows the
distance d̃L1 ( f(Δx ,δt), f(Δx=0,δt)) as function of quantization levels for
both the values (labeled “Δx”) and the time (labeled “δt”). Part (a)
shows the distance as a function of Δx for several values of δt . Part
(b) shows the distance as a function of δt for several values of Δx.

Figure 7 shows how strong quantization (high values of
Δx) yields high distance, with the distance decreasing again
when the time interval (δt) increases. The z-axis in the figure

represents the distance d̃L1 ( f(Δx ,δt), f(Δx=0,δt)).
In our second simulation, we use a different connec-

tivity (all other kinetic parameters are unchanged), and we
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Figure 9: Results for the second simulation: the vertical axis shows
the distance d̃L1 ( f(Δx ,δt), f(Δx=0,δt)) as function of quantization levels
for both the values (axis labeled “Dx”) and the time (axis labeled
“delta t”).

again use 10 different time intervals, δt = 1 second, 5 seconds,
10 seconds, 30 seconds, 1minute, 2minutes, 5minutes,
10minutes, 30minutes and 1 hour, and 6 different quanti-
zation levels, Δx = 0, 0.001, 0.01, 0.1, 1, and 10. (Δx = 0
meaning no quantization). The simulation is repeated and
the distances are averaged for 30 different starting points.
Analogous to the first simulation, Figure 9 shows how strong
quantization (high values of Δx) yields high distance, which
decreases when the time interval (δt) increases.

An important observation regarding Figures 8 and 10 is
that the error decreases as δt increases. This is due to the fact
that the coarser the amplitude quantization is, the more dif-
ficult it is for small time intervals to capture the dynamics of
slowly changing sequences.

4. CONCLUSION

This study has proposed a metric to quantitatively compare
two networks and has demonstrated the utility of the met-
ric via a simulation study involving different quantizations of
the reference network. A key property of the proposedmetric
is that it allows comparison of networks of different natures.
It also takes into consideration differences in the steady-state
behavior and is invariant under time shifting and scaling.
The metric can be used for various purposes besides quan-
tization issues. Possibilities include the generation of a pro-
jected network from a reference network by removing pro-
teins from the equations and connectivity reduction by re-
moving edges in the connectivity matrix.

The metric facilitates systematic study of the ability
of discrete dynamical models, such as Boolean networks,
to approximately represent more complex models, such as
differential-equationmodels. This can be particularly impor-
tant in the framework of network inference, where the pa-
rameters for projected models can be inferred from the ref-
erence model, either analytically or via synthetic data gener-
ated via simulation of the reference model. Then, given the
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Figure 10: Results for the second simulation: the vertical axis shows
the distance d̃L1 ( f(Δx ,δt), f(Δx=0,δt)) as function of quantization levels
for both the values (labeled “Δx”) and the time (labeled “δt”). Part
(a) shows the distance as a function of Δx for several values of δt .
Part (b) shows the distance as a function of δt for several values of
Δx.

reference and projected models, the metric can be used to
determine the level of abstraction that provides the best in-
ference; given the amount of observations available, this ap-
proach corresponds to classification-rule constraint for clas-
sifier inference in pattern recognition.
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NOMENCLATURE

Trajectory: A function f (t)

Distance Function: The proposed distance between

networks

NOTATIONS

t: Time

ψ: Network

x0: Starting Point

f (t), g(t), h(t): Trajectories

fss, gss: Steady-State trajectories

fψ,xo(t): Trajectory

ftran: Transient part of the trajectory

fss: Steady-state part of the trajectory

F(x), G(x), H(x): Cumulative distribution functions

dtr(·, ·): Distance between two trajectories

dss(·, ·): Distance between two periodic or constant
trajectories

λ(A): Lebesgue measure of set A

f(t): Multivariate trajectory
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