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alignment. When two substrings contain letters that are similar according to a substitution matrix, a code length function based on
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of the new method on pairwise alignments of sequences from the BAliBASE alignment benchmark.
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1. INTRODUCTION

Sequence alignment is a fundamental operation in bioin-
formatics, used in a wide variety of applications ranging
from genome assembly, which requires exact or nearly exact
matches between ends of small fragments of DNA sequences
[1], to homology search in sequence databases, which in-
volves pairwise local alignment of DNA or protein sequences
[2], to phylogenetic inference and studies of protein structure
and function, which depend on multiple global alignments
of protein sequences [3–5].

These diverse applications all use the same basic defini-
tion of alignment: a character in one sequence corresponds
either to a character from the other sequence or to a “gap”
character that represents a space in the middle of the other
sequence. Alignment is often described informally as a pro-
cess of writing a set of sequences in such a way that matching
characters are displayed within the same column, and gaps
are inserted in strings in order to maximize the similarity
across all columns. More formally, alignments can be defined
by a matrix M, where Mij is 1 if character i of one sequence
is aligned with character j of the other sequence, or in some
cases, Mij is a probability, for example, the posterior proba-
bility of aligning letters i and j [6].

This paper introduces a new framework for describing
the similarities and differences in a set of sequences. The idea
is to construct a special-purpose grammar for the strings that

represent the sequences. If there are segments in each input
sequence that are similar to corresponding segments in the
other sequences, the grammar will have a single rule that di-
rectly generates the characters for these segments.

An alignment algorithm based on this new framework
will consider different sets of rules to include in the grammar
it produces. The focus of this paper is on the use of minimum
description length (MDL) [7] as the basis of the alignment
algorithm. The MDL principle argues that the best alignment
will be the one described by the shortest grammar, where the
length of a grammar is measured in terms of the number of
bits needed to encode it.

The key idea is to use conditional probabilities to encode
letters in aligned regions. If a grammar has a rule that aligns
letter x in one sequence with letter y in another sequence,
the encoding of the rule will be based on p(y | x), and if the
alignment is accurate, the resulting encoding is shorter than
the one that encodes x and y separately in an unaligned re-
gion. But there is a tradeoff: adding a new rule to a grammar
requires adding new symbols for the rule structure, and the
number of bits required to encode these symbols adds to the
total size of the encoded grammar. The alignment algorithm
must determine the net benefit of each potential aligned re-
gion and choose the set of aligned regions that provides the
overall shortest encoding.

MDL has been used to infer grammars for large col-
lections of natural language sentences [8] and to search
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for recurring patterns in protein and DNA sequences [9].
These applications of MDL are examples of machine learn-
ing, where the system uses the data as a training set and the
goal is to infer a general description that can be applied to
other data. The goal of the sequence alignment algorithm
presented here is simply to find the best description for the
data at hand; there is no attempt to create a general grammar
that may apply to other sequences.

Grammars have been used previously to describe the
structure of biological sequences [10–12], and regular ex-
pressions are a well-known technique for describing patterns
that define families of proteins [13]. But as with previous
work on MDL and grammars, these other applications use
grammars and regular expressions to describe general pat-
terns that may be found in sequences beyond those used to
define the pattern, whereas for alignment the goal is to find a
grammar that describes only the input data.

Grammars have the potential to describe a wide variety
of relationships among sequences. For example, a top level
rule might specify several different ways to partition the se-
quences into smaller groups, and then specify separate align-
ments for each group. In this case, the top level rules are ef-
fectively a representation of a phylogenetic tree that shows
the evolutionary history of the sequences. This paper fo-
cuses on one very restricted type of grammar that is capable
of describing only the simplest correspondence between se-
quences. The algorithm presented here assumes that only two
sequences are being aligned, and that the goal is to describe
similarity over the entire length of both input sequences, that
is, the algorithm is for pairwise global alignment. For this ap-
plication, the simplest type of formal grammar—a right lin-
ear grammar—is sufficient to describe the alignment. Since
every right linear grammar has an equivalent regular expres-
sion, and because regular expressions are simpler to explain
(and are more commonly used in bioinformatics), the re-
mainder of this paper will use regular expression syntax when
discussing grammars for a pair of sequences.

Current alignment algorithms are highly sensitive to the
choice of gap parameters [14–17]; for example, Reese and
Pearson showed that the choice of gap penalties can influ-
ence the score for alignments made during a database search
by an order of magnitude [18]. One of the advantages of the
grammar-based framework is that gaps are not needed to
align sequences of varying length. Instead, the parts of reg-
ular expressions that correspond to regions of unaligned po-
sitions will have a different number of characters from each
input sequence.

Previous work using information theory in sequence
alignment has been within the general framework of a
Needleman-Wunsch global alignment or Smith-Waterman
local alignment. Allison et al. [19] used minimum message
length to consider the cost of different sequences of edit op-
erations in global alignment of DNA; Schmidt [20] stud-
ied the information content of gapped and ungapped align-
ments, and Aynechi and Kuntz [21] used information the-
ory to study the distribution of gap sizes. The work described
here takes a different approach altogether, since gap charac-
ters are not used to make the alignments.

Regular expression alignments are similar to the align-
ments produced by DIALIGN [22, 23], a program that cre-
ates consistent sets of ungapped local alignments. The main
differences are that fragments in DIALIGN are defined by a
Smith-Waterman alignment based on finding a locally opti-
mal score and including neighboring letters until the score
drops below a threshold, and DIALIGN uses a minimum
length parameter to exclude short random matches. The
method presented in this paper uses the MDL criterion to
find the ends of aligned regions—if adding a pair of letters is
less costly than leaving the letters in a variable region, then
the letters are included in the aligned region.

Other methods that consider only ungapped local align-
ments are also similar to regular expression alignments.
Schneider [24] used information theory as the basis of a
multiple alignment algorithm for small ungapped DNA se-
quences and successfully applied it to binding sites. More re-
cently, Krasnogor and Pelta [25] described a method for eval-
uating the similarity of pairs of proteins, but their analysis
describes a global similarity metric without actually aligning
the substrings responsible for the similarity.

The next section of this paper provides some background
information on sequence alignment and explains in more
detail how a regular expression can be used to capture the
essential information about the similarity in a set of se-
quences. The details of the MDL encoding for sequence let-
ters and other symbols found in expressions are given in
Section 3. Results of two sets of experiments designed to test
the method are presented in Section 4.

The regular expression alignment method described in
this paper has been implemented in a program named
realign. The source code, which is written in C++ and has
been tested on OS/X and Linux systems, is freely available
under an open source license and can be downloaded from
the project web site [26].

2. ALIGNMENTS AND REGULAR EXPRESSIONS

One of the main applications of sequence alignment is com-
parison of protein sequences. The inputs to the algorithm are
sets of strings, where each letter corresponds to one of the 20
amino acids found in proteins. The goal of the alignment is
to identify regions in each of the input sequences that are
parts of the same structural or functional elements or are de-
scended from a common ancestor.

Figure 1(b) shows the evolution of fragments of three
hypothetical proteins starting from a 9-nucleotide DNA se-
quence. The labels below the leaves of the tree are the amino
acids corresponding to the DNA sequences at the leaves. The
only change along the left branch is a single substitution
which changes the first amino acid from P to T, and an align-
ment algorithm should have no problem finding the corre-
spondences between the two short sequences (Figure 1(c)).

The sequence on the right branch of the tree is the re-
sult of a mutation that inserted six nucleotides in the middle
of the original sequence. In order to align the resulting se-
quence with one of its shorter cousins, a standard alignment
algorithm inserts a gap, represented by a sequence of one or
more dashes, to mark where it thinks the insertion occurred.
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Figure 1: (a) The genetic code specifies how triplets of DNA letters (known as “codons”) are translated into single amino acids when a cell
manufactures a protein sequence from a gene. (b) A tree showing the evolution of a short DNA sequence. Labels below the leaves are the
corresponding amino acid sequences. (c) Alignment of the two shorter sequences. (d) and (e) Two ways to align the longer sequence with
one of the shorter ones.

This alignment is complicated by the fact that the insertion
occurred in the middle of a codon; the single CCC that corre-
sponded to a P in the ancestral sequence is now part of two
codons, CCT and TTC. Figures 1(d) and 1(e) show two differ-
ent ways of doing the alignment; the difference between the
two is the placement of the gap, which can go either before
or after the middle P of the short sequence.

A key parameter in the alignment of protein sequences
is the choice of a substitution matrix, a 20 × 20 array S in
which Si, j is a score for aligning amino acid i with amino acid
j. The PAM matrices [27] were created by analyzing hand
alignments of a carefully chosen set of sequences that were
known to be descending from a common ancestor. PAM ma-
trices are identified by a number that indicates the degree to
which sequences have changed; a unit of “1 PAM” is roughly
the amount of sequence divergence that can be expected in
10 million years [28], so the PAM20 matrix could be used
to align a set of sequences where the common ancestor lived
around 200 million years ago. Other common substitution
matrices are the BLOSUM family [29] and the Gonnet ma-
trix [30].

Substitution matrices give higher scores to pairs of let-
ters that are expected to be found in alignments, and lower
(negative) scores to pairings that are rare. For example, the
PAM100 matrix has positive scores on the main diagonal, to
use when aligning letters with themselves; the highest score is
12, for the pair W/W, since tryptophan (W) is highly conserved.
Smaller positive scores are for letters that frequently substi-
tute for one another, for example, leucine (L) and isoleucine
(I) are both hydrophobic and the matrix entry for the pair
I/L is 1. Histidine (H) is hydrophilic, and the matrix entry
for I/H is −4. The pair P/L has a score of −4 and the pair P/S
has a score of 0, so an algorithm using PAM100 would prefer
the alignment shown in Figure 1(e).

Regular expressions are widely used for pattern match-
ing, where the expression describes the general form of a
string and an application can test whether a given string
matches the pattern. To see how a regular expression is an
alternative to a standard gap-based alignment consider the
following pattern, which describes the two sequences in Fig-
ures 1(d) and 1(e):

P(P | LFS)P. (1)

Here the vertical bar means “or” and the parentheses are used
to mark the ends of the alternatives. The pattern described
by this expression is the set of strings that start with a P, then
have either another P or the string LFS, and end in a P. In
this example, the letters enclosed in parentheses correspond
to a variable region: the pattern simply says “these letters are
not aligned” and no attempt is made to say why they are not
aligned or what the source of the difference is. The regular
expression is an abstract description, covering both the align-
ments of Figures 1(d) and 1(e) (and a third, biologically less
plausible, alignment in which the top string would be P–P–
P).

For a more realistic example, consider the two sequence
fragments in Figure 2(a), which are from the beginning of
two of the protein sequences used to test the alignment ap-
plication. Substrings of 15 characters near the front of each
sequence are similar to each other. A regular expression that
describes this similarity would have three groups, showing
letters before and after the region of similarity as well as the
region itself (Figure 2(b)).

Any pair of sequences can be described by a regular ex-
pression of this form. The expression consists of a series of
segments, written one after another, where each segment has
two substrings separated by the vertical bar. But this standard
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Figure 2: (a) Strings from the start of two of the amino acid sequences used to test the alignment algorithm. The substrings in blue are
similar to the corresponding substring in the other sequence. (b) A regular expression that makes explicit the boundaries of the region of
similarity. (c) The canonical form representation of the regular expression. The canonical form has the same groupings of letters, but displays
the letters in a different order and uses marker symbols instead of parentheses to specify group boundaries. A # means the sequence segments
are blocks, where the ith letter from one sequence has been aligned with the ith letter in the other sequence. A > designates the start of a
variable region of unaligned letters.

notation introduces a problem: how does one distinguish
segments describing aligned characters from segments for
unaligned characters? The following convention solves the
problem of distinguishing between the types of segments and
reduces the number of symbols to a minimum. In a canonical
form sequence expression,

(i) each open parenthesis is replaced with a symbol that
specifies the type of the segment that starts at that lo-
cation. An aligned segment starts with #, an unaligned
segment starts with >;

(ii) the vertical bar separating the two parts of a segment is
replaced by the symbol used at the start of the segment;
thus if the segment starts with #, the two parts of the
segment are separated by a second #;

(iii) the closing parenthesis marking the end of a segment
can just be deleted since it is redundant (every closing
parenthesis is either followed by an opening parenthe-
sis or comes at the end of the expression);

(iv) to make an expression easier to read, it is displayed by
starting a new line for each # or >, with the under-
standing that “white space” breaking the expression
into new lines is for formatting purposes only and is
not part of the expression itself.

The canonical form of the expression describing the align-
ment of the initial parts of the two example genes is shown
in Figure 2(c).

In the literature on sequence alignment, an ungapped lo-
cal alignment is often referred to as a block. In the canonical
form sequence expression, a block corresponds to a pair of
lines starting with #; pairs of lines starting with > are called
variable regions. Note that the substrings in blocks always
have the same number of sequence letters, and always have

at least one letter. Substrings in variable regions can have any
number of sequence letters, and one of the strings can have
zero letters. Since # and > define the boundaries of blocks
they are referred to as marker symbols.

Sequence expressions can easily be extended to describe
a multiple alignment of n > 2 sequences. Each segment in
an expression would have n substrings separated by vertical
bars, and the corresponding canonical form would have n
lines in each block and in each variable region. The MDL
code length function and the alignment algorithm in the fol-
lowing section assume there are only two sequences; possible
extensions for multiple alignment will be discussed in the fi-
nal section.

3. ALIGNMENT USINGMINIMUM
DESCRIPTION LENGTH

It is easy to see there is at least one canonical form sequence
expression for every pair of sequences: simply create a sin-
gle variable region, writing the string for each complete se-
quence to the right of a > symbol. This default expression is
the null hypothesis that the sequences have nothing in com-
mon.

The goal of an alignment algorithm is to generate al-
ternative hypotheses, in the form of expressions that have
one or more blocks containing equal-length substrings from
the input sequences. The alignment process can be viewed
as a series of rewrite operations applied to variable regions.
A rewrite step that creates a block splits a variable region
into three parts: a variable region for characters before the
block, the block itself, and a variable region for characters
following the block (Figure 3). The transformation adds four
marker symbols to the expression: two # symbols identify



John S. Conery 5

2 markers
27 letters

6 markers
27 letters

Figure 3: Schematic representation of an expression rewriting op-
eration. A canonical form expression with a single variable region
is transformed into a new expression with two variable regions sur-
rounding a block. The number of sequence letters does not change,
but four new marker symbols are added to specify the boundaries
of the block.

the locations of the start of the block (one in each input se-
quence) and two > symbols mark the end of the block. As a
special case, the block might be at the beginning or end of
the expression; if so only two new # markers are added to the
expression.

Since the alignment algorithm uses the minimum de-
scription length principle to search for the simplest expres-
sion, this transformation appears to be a step in the wrong
direction because the complexity of the expression, in terms
of the number of symbols used, has increased. The key point
is that MDL operates at the level of the encoding of the ex-
pression, that is, it prefers the expression that can be encoded
in the fewest number of bits. As will be shown in this section,
blocks of similar sequence letters have shorter encodings. If
the number of bits saved by placing similar letters in a block
is greater than the cost of encoding the symbols that mark the
ends of the block, the transformed expression is more com-
pact.

The code length function that assigns a number of bits
to each symbol in a canonical form sequence expression has
three components:

(i) a protocol that defines the general structure of an ex-
pression and the representation of alignment parame-
ters;

(ii) a method for assigning a number of bits to each letter
from the set of input sequences;

(iii) a method for determining the number of bits to use
for the marker symbols that identify the boundaries
between blocks and variable regions.

3.1. Communication protocol

A common exercise in information theory is to imagine that
a compressed data set is going to be sent to a receiver in
binary form, and the receiver needs to recover the original
data. This exercise ensures that all the necessary information
is present in the compressed data—if the receiver cannot re-
construct the original data, it may be because essential infor-
mation was not encoded by the compression algorithm. In
the case of the MDL alignment algorithm, the idea is to com-
press a set of sequences by creating a representation of a reg-
ular expression that describes the structure of the sequences.

The receiver recovers the original sequence data by expand-
ing the expression to generate every sequence that matches
the expression.

A “communication protocol” that specifies the type of in-
formation contained in a message and the order in which the
pieces of the message are transmitted is an essential part of
the encoding. The representation of a sequence expression
begins with a preamble that contains information about the
structure of the expression and the encoding of alignment
parameters.

A canonical form sequence expression is an alternating
series of blocks and variable regions, where the marker sym-
bols (# and >) inserted into the input sequences identify the
boundaries between segments. The communication proto-
col allows the transmitter to simplify the expression as it is
compressed by putting a single bit in the preamble to spec-
ify the type of the first segment. Then the only thing that is
required is a single type of symbol to specify the locations of
the remaining markers. For the example sequences shown in
Figure 2, the expression can be transformed into the follow-
ing string:

> MNNNNYIF.MNSYKP.ENENPILYNTNEGEE.

ENENPVLYNYKEDEE.NRSS.SSHI
(2)

Here the >, represented by a single bit, indicates the type
of the first region. The periods identify the locations of the
markers. Since the regions alternate between # and >, the re-
ceiver infers the first period that represents another >, the
next two periods are #, and so on.

The key parameter in every alignment is the substitution
matrix used to define joint probabilities for each letter pair
and single (marginal) probabilities for each individual letter.
If the transmitter and receiver agree beforehand to restrict
the set of substitution matrices to a set of n commonly used
matrices, each matrix can be assigned an integer ID and the
preamble simply contains a single integer encoded in �log2n�
bits to identify the matrix. If an arbitrary matrix is allowed,
the protocol would have to include a representation for the
substitution matrix.

The rest of the information contained in the pream-
ble depends on the method used to represent the marker
symbols. Three different methods are presented below in
Section 3.3, and each uses a different combination of param-
eters; for example, the indexed representation requires the
transmitter to send the length of the longest sequence, and
the tagged representation requires the transmitter to send the
number of bits used in the encoding of marker symbols. For
numeric parameters, the transmitter can simply encode the
parameter in the fewest number of bits and include the en-
coding as part of the preamble. A standard technique for rep-
resenting a number that can be encoded in k bits is to send k
0s, a 1, and then the k bits that encode the number itself.

In general a regular expression can be expanded into
more than just the original sequence strings. For example,
suppose the two input strings are AB and CD, and the regular
expression representing their alignment is of the form

(A | C) (B | D). (3)
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A receiver can expand this expression into the two original
input strings, but the expression also matches AD and CB.
Thus the protocol needs a method for telling the receiver
how to link together the substrings from different segments
so that it will reconstruct AB and CD but not AD or CB.

One solution would be to encode sequence IDs with the
substrings so the receiver correctly pieces together a sequence
using a consistent set of IDs. But if a simple convention is
followed, the receiver can infer the sequence IDs from the
order in which the sequences are transmitted. For canonical
form sequence expressions, the protocol requires that every
region has exactly two strings, and that within a region, the
strings need to be given in the same order each time.

3.2. Encoding sequence letters

The standard technique used in information theory of en-
coding symbols according to their probability distribution
can be used to encode sequence letters. If a letter x occurs
with probability p(x) the encoding of x requires −log2p(x)
bits.

The probability distribution for letters is based on the
substitution matrix being used for the alignment. Scores in
a substitution matrix are log odds ratios of the form

s(x, y) = 1
λ

log
p(x, y)
p(x)p(y)

(4)

where p(x, y) is the joint probability of observing x aligned
with y, p(x) and p(y) are the background probabilities of x
and y, and λ is a scaling factor [31]. The realign program
uses a program named lambda [32] as a preprocessor that
takes an arbitrary substitution matrix as input, solves for λ,
and saves a table of background probabilities for each single
letter and joint probabilities for each letter pair.

The number of bits used to encode a letter in a canoni-
cal sequence expression depends on whether the letter is in
a block or in a variable region. For a letter x in a variable
region the encoding is straightforward: simply use the back-
ground probability of x according to the transformed substi-
tution matrix.

For a block, the encoding considers pairs of letters x and
y that occur in the same relative position in the block. The
number of bits to encode the letter x in one sequence is based
on p(x), the same as in a variable region, but for the letter y
in the other sequence, the conditional probability p(y | x) is
used to reflect the fact that x and y are aligned. Since by def-
inition p(y | x) = p(x, y)/p(x), the substitution matrix pro-
vides the necessary information to compute the conditional
probabilities.

To summarize, the cost, in bits, of encoding letters in a
canonical form sequence expression is defined as follows:

(i) for a letter x in a variable region or in the first line
of a block, the code length is a function of p(x), the
marginal probability of observing x :c(x)=−log2p(x);

(ii) for a letter y in the second line of a block, the code
length is a function of p(y | x), the conditional prob-
ability of seeing y in this location given character x in
the same position in the first line: c(y, x)=−log2p(y |x).

Table 1: Cost (in bits) of aligning pairs of letters. Sx,y is the score
for letters x and y in the PAM100 substitution matrix. c(x) + c(y)
is the sum of the costs of the two letters, which is incurred when
the letters are in a variable region. c(x) + c(y | x) is the cost of the
same letters when they are aligned in a block. The benefit of align-
ing two letters is the difference between the unaligned cost and the
aligned cost: a positive benefit results from aligning similar letters,
a negative benefit from aligning dissimilar letters.

x y Sx,y c(x) + c(y) c(x) + c(y | x) benefit(y, x)

W W 12 6.36 + 6.36 6.36 + 0.44 5.92

I I 6 3.65 + 3.65 3.65 + 1.25 2.40

L L 6 3.09 + 3.09 3.09 + 0.72 2.37

M L 3 4.97 + 3.09 4.97 + 2.26 0.83

L I 1 3.09 + 3.65 3.09 + 3.66 −0.01

L Q −2 3.09 + 5.02 3.09 + 6.09 −1.07

L C −6 3.09 + 5.78 3.09 + 9.38 −3.60

When x and y are the same letter, or similar according to
the substitution matrix being used, the cost using the condi-
tional probability will be lower. For any two letters x and y,
the benefit of aligning y with x is the difference between the
cost of placing the two letters in a variable region versus their
cost in a block:

benefit(y, x) = (c(x) + c(y)
)− (c(x) + c(y | x)

)

= c(y)− c(y | x).
(5)

In general, there is a positive benefit for pairs of letters
that have positive scores in a substitution matrix. On the
other hand, a negative benefit is incurred when an algorithm
tries to align two dissimilar letters. Table 1 shows a few exam-
ples of pairs of letters, the cost of placing them unaligned in
a variable region, and the benefit gained from aligning them
in a block.

3.3. Encodingmarker symbols

Three different methods for encoding of the marker symbols
that identify the boundaries between blocks and variable re-
gions are illustrated in Figure 4. All three methods are based
on the transformation in which the # and > symbols have
been replaced by periods. The difference between the three
methods is in the representation of each marker and the ad-
ditional information included in the preamble.

3.3.1. Indexed representation

The indexed representation for marker symbols is based on
the observation that it is not necessary to include the marker
symbols themselves, but only their locations in each string. If
an expression has m segments, the transmitter can construct
a table of (m− 1) entries for each string. The number of bits
for each table entry depends on n, the length of the corre-
sponding input sequence. Using this technique, the preamble
of a message is constructed as follows:

(i) order the input sequences so the longest sequence is
the first one in the message;
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(c)

∑
p(x, y) = 1

∑
q(x, y) = (1− γ)γ = q(·)

q(x, y) = (1− γ)× p(x, y)

(d)

Figure 4: The items in blue correspond to information added to a string to specify the locations of marker symbols. (a) Indexed represen-
tation. The preamble contains two tables of m − 1 numbers to specify the locations of the m marker symbols (the first marker is always
at the front of the string) in each sequence. Each table entry has k = �log2n� bits to specify a location in a string of length n. (b) Tagged
representation. A one-bit tag added to each symbol identifies the symbol class (letter or marker), and is followed by the bits that represent
the symbol itself. (c) Scaled representation. The number of bits for each symbol x is simply −log2q(x) where q(x) is the probability of the
symbol based on a distribution that includes the probability of a marker. (d) Given a probability γ for marker symbols, the joint probabilities
for the letter pairs are scaled by 1.0− γ so the sum of probabilities over all symbols is 1.0.

(ii) use one bit to specify the type of the first segment
(which will be the same for both sequences);

(iii) use �log2s� bits to specify which one of the s substi-
tution matrices was used to encode letters and letter
pairs;

(iv) use 2log2n + 1 bits to specify n, the length of the first
input sequence. This number also allows the receiver
to determine k = log2n, the number of bits required to
represent a single marker table entry;

(v) the next 2log2m + 1 bits specify m, the number of
marker symbols in each sequence;

(vi) create a table of size mk bits for the locations of the
m markers in the first sequence, followed by another
table of the same size for the markers of the second
sequence.

Following the preamble, the body of the message simply
consists of the encoding of the letters defined in the previous
section. Since the receiver knows the length of the first se-
quence, there is no need to include an end-of-string marker
after the first sequence. This location becomes a de facto
marker for the start of the second sequence.

Figure 4(a) shows how the start of the two example se-
quences would be encoded with the indexed representation.
The numbers in blue are indices between 0 and the length of
the longer of the two sequences.

The advantage of this representation is that no additional
parameters are required to align a pair of sequences: the only
alignment parameter is the substitution matrix, which deter-

mines the individual probability for each letter and the joint
probability for each letter pair.

3.3.2. Tagged representation

There are two drawbacks to the indexed representation. The
first is that the number of bits used to represent a marker
grows (albeit very slowly) with the length of the input se-
quences. That means one might get a different alignment for
the same two substrings of sequence letters in different con-
texts; if the substrings are embedded in longer sequences,
the number of bits per marker will increase, and the align-
ment algorithm might decide on a different placement for
the markers in the middle of the substrings.

The second disadvantage is that in many cases marker
symbols identify the locations of insertions and deletions,
which are evolutionary events. The number of bits used to
represent a marker should correspond to the likelihood of an
insertion or deletion, but not the length of the sequence. If
anything, longer sequences are more likely to have had inser-
tions or deletions, so the number of bits representing those
events should be lower, not higher.

The tagged representation addresses these problems by
defining a prefix code for markers and embedding the marker
codes in the appropriate locations within each sequence
string. This method requires the user to specify a value for a
new parameter, named α, the number of bits required to rep-
resent a marker. Each symbol in the expression is preceded by
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a one-bit tag that identifies the type of symbol, for example,
a zero for a marker and a one for a sequence letter. Following
the tag is the representation of the symbol itself: α bits for
markers, and c(x) bits for a letter x using the cost function
defined in the previous section.

The preamble of a message based on the tagged repre-
sentation is much simpler: it only contains the single bit des-
ignating whether the first segment is a block or a variable
region, the substitution matrix ID, and the value of α. The
tagged representation of the alignment of the example se-
quences is shown in Figure 4(b).

3.3.3. Scaled representation

The additional bits attached to each symbol in the tagged
representation result in a rather awkward code from an in-
formation theoretic point of view, where the number of bits
used to represent a symbol should depend on the probability
of observing that symbol.

In order to define the number of bits for each symbol s
as −log2q(s), where s is either a sequence letter or a marker
symbol, one can scale each element in the joint probability
matrix by a constant factor 1− γ (where 0 < γ < 1) and then
define the number of bits in the representation of a marker as
α = −log2(γ) (Figure 4(d)). Now the body of the message is
simply the representation of each symbol, encoded according
to the modified probability matrix (see also Figure 4(c)):

c(x) = −log2q(x),

c(y | x) = −log2q(y | x),

c(·) = −log2(γ).

(6)

The preamble of a message encoded with the scaled represen-
tation is the same as the preamble for a tag-based message,
except that the additional parameter is γ instead of α.

Since the probability of each single letter is the marginal
probability summed over a row of the joint probability ma-
trix, and each matrix entry was multiplied by a constant scale
factor, the single-letter probabilities are also scaled by this
same amount:

q(x) =
∑

y

(1− γ)p(x, y)

= (1− γ)
∑

y

p(x, y) = (1− γ)p(x).
(7)

But note that conditional probabilities are not affected by
the scaling since the scale factors cancel out:

q(y | x) = q(x, y)
q(x)

= (1− γ)p(x, y)
(1− γ)p(x)

= p(x, y)
p(x)

= p(y | x).

(8)

Recall from Section 3.2 that a pair of letters will be included
in a block if there is a positive benefit from aligning them,
that is, if c(y) − c(y | x) > 0. In the scaled representation,
this calculation compares a cost based on a scaled probabil-
ity with a cost defined by an unscaled probability. Since the

scaled probabilities are lower than the original probabilities,
the scaled costs of single letters are higher, and some letter
pairs that had a negative benefit according to the original
probabilities will now have a positive benefit. For example,
in the PAM matrices, letter pairs with scores of 0 or higher
have a positive benefit using unscaled probabilities, but when
scaled with 1 − γ = 0.75 pairs of slightly dissimilar amino
acids with scores of −1 have a positive benefit.

3.4. Example

Two different alignments of the sequences of Figure 2 are
shown in Figure 5. The alignments were made using the
scaled representation with the PAM20 substitution matrix
and γ = 0.02. The code length for the null hypothesis—
a single variable region containing all letters from the two
productions—is 240.279 bits. The code length of the expres-
sion with two variable regions and one block is 224.728 bits.
The cost of the expression with the block is less because
the net benefit from using conditional probabilities to com-
pute the costs of the aligned letters (129.508 − 91.381 =
38.127 bits) outweighs the cost of introducing four marker
symbols (4 × 5.644 = 22.576 bits) for the boundaries of the
block.

4. EXPERIMENTAL RESULTS

To evaluate the feasibility of aligning pairs of sequences by
finding the minimum cost sequence expression, a simple
graph search algorithm was developed and implemented in a
program named realign. The algorithm creates a directed
acyclic graph where nodes represent candidate blocks de-
fined by equal-length substrings from each input sequence.
Weights assigned to nodes represent the cost in bits of the
corresponding block, and weights on edges connecting two
nodes are defined by the cost of a variable region for the
characters between the two blocks. The minimum cost path
through the graph corresponds to the optimal alignment.

In one set of experiments, alignments produced by
realign were compared to pairwise alignments generated
by CLUSTALW [33], one of the most widely used alignment
programs. In a second experiment, realign was used to
align pairs of sequences from the BaliBase benchmark suite
[34].

4.1. Plasmodium orthologs

An important concept in evolutionary biology is homology,
defined to be similarity that derives from common ancestry.
In molecular genetics, two genes in different organisms are
said to be orthologs if they are both derived from a single gene
in the most recent common ancestor.

In genome-scale computational experiments, a simple
strategy known as “reciprocal best hit” is often used to iden-
tify pairs of orthologous genes. For each gene a from organ-
ism A, do a BLAST search [2] to find the gene b from or-
ganism B that is most similar to a. If a search in the other
direction, using BLAST to find the gene most similar to b in
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Cost of null hypothesis:
228.99 + 2α = 240.279 bits

(a)

∑
c(x) + c(y) for letters in the block: 129.508 bits

∑
c(x) + c(y|x) for the block: 91.381 bits

Cost of the expression with one block:
64.272 + 91.381 + 35.211 + 6α = 224.728 bits

(b)

Figure 5: Cost of alternative expressions for the example sequences using the PAM20 substitution matrix and γ = 0.02. The cost for each
marker symbol is α = −log2γ = 5.644 bits. (a) The cost for the null hypothesis is the sum of all the individual letter costs plus the cost of the
two marker symbols. (b) When the letters in blue are aligned with one another, the costs of the letters in the second sequence are computed
with conditional probabilities. This reduces the cost of the letters in the block by 129.508− 91.381 = 38.127 bits. The transformed grammar
has four additional markers, but the reduction in cost afforded by using the block outweighs the cost of the new markers (4 × 5.644 =
22.576 bits) so the expression with one block has a lower overall cost.

(a)

(b)

Untrim Trim

Aligned by both 0.473 0.469

Aligned by neither 0.147 0.258

clustalw only 0.38 0.267

Realign only <0.001 0.006

(c)

Figure 6: Alignment of sequences MAL7P1.11 and Pv087705 from ApiDB [35]. (a) Comparison of CLUSTALW alignment (top two lines of
text) and the regular expression alignment (bottom two lines). Background colors indicate whether the two algorithms agree. Green: columns
aligned by both algorithms; blue: letters not aligned by both algorithms; white: letters aligned by CLUSTALW but appearing in variable regions
in the regular expression; red: letters aligned in the regular expression but not by CLUSTALW. (b) Same as (a), but comparing the trimmed
CLUSTALW alignment with regular expression alignment. The middle row of two lines shows the result of the alignment trimming algorithm;
an asterisk identifies a column from the CLUSTALW alignment that was removed by “gap expansion.” (c) Proportion of each type of column
averaged over all 3909 alignments.

organism A, reveals that a is most similar to b, then a and b
are most likely orthologs.

Once pairs of genes are identified as reciprocal best hits,
a more detailed comparison is done using a global alignment
algorithm such as CLUSTALW [33]. To see how well the reg-
ular expression-based alignment algorithm performs on real
sequences, a series of alignments of orthologous genes made
with realign were compared to the CLUSTALW alignments
of the same genes. The complete set of genes from Plasmod-
ium falciparum, the parasite that causes malaria, and a close
relative known as Plasmodium vivax were downloaded from
ApiDB, the model organism database for this family of or-
ganisms [35]. A set of 3909 orthologs were identified by us-

ing BLAST to search for reciprocal best hits. Since P. falci-
parum diverged from P. vivax approximately 200 MYA [36],
all the alignments used the PAM20 substitution matrix. The
realign alignments were made using the scaled representa-
tion for marker symbols with γ = 0.02 since insertion and
deletion events are relatively rare at this short evolutionary
time scale.

Figure 6 shows a detailed comparison of the alignments
for one pair of genes (MAL7P1.11 and Pv087705). The top
two lines in Figure 6(a) are the alignment produced by
CLUSTALW, and the bottom two are the regular expression
alignment. To make it easier to compare the alignments, the
marker symbols have been deleted, and the letters in variable
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regions printed in italics to distinguish them from letters
in blocks. The four background colors indicate the level of
agreement between the two alignments: a pair can be aligned
by both programs, aligned by neither, or aligned by one but
not the other.

Researchers often apply an “alignment trimming” algo-
rithm to the output of an alignment algorithm to identify
suspect columns in an alignment [37]. An example of a sus-
pect column is the one shown in Figure 1 where an inser-
tion occurred in the middle of a codon. Figure 6(b) shows
the alignment of the Plasmodium genes after an alignment
trimming operation [38] was applied to the CLUSTALW align-
ments. The middle two lines in this figure show the results
of the trimming application: an X indicates a letter that was
left in the alignment, and a � indicates a position that was
originally aligned but has now been converted to a gap. In
this example, the alignment trimming algorithm agreed with
the regular expression alignment: columns that were previ-
ously shown as aligned (white background color) are now
unaligned (blue).

Over all the 3909 pairs of sequences, the two alignment
methods agreed on 62% of the letters (top two rows of
Figure 6(c)). The disagreement was almost entirely due to the
fact that in 38% of the columns, the regular expression align-
ment was more conservative and placed characters in an un-
aligned region when CLUSTALW aligned those same letters.
There are very few instances where realign put letters in
an aligned block and CLUSTALW did not. Applying the align-
ment trimming algorithm increases the level of agreement:
approximately one fourth of the columns originally consid-
ered aligned by CLUSTALW were reclassified as unaligned, in
agreement with realign. The number of columns aligned
only by realign also increased, but that is simply due to the
fact that the alignment trimming algorithm used here [38] is
very conservative and also trims away the last character in an
aligned region (as shown by the red columns at the ends of
blocks in Figure 6(b)).

These results show that for sequences with a high degree
of similarity (separated by only 200MY of evolution), the
MDL method implemented in realign does a credible job
of global alignment. A more detailed analysis of genes with
known alignments, preferably including structural and func-
tional alignment, would be required to determine whether
the 25% of the letter pairs aligned by CLUSTALW should in
fact be aligned, or whether realign was correct in leaving
them in variable regions.

4.2. BAliBASE reference alignments

The main parameter of the regular expression alignment
method is the substitution matrix, which defines the proba-
bilities for amino acid letters. A second parameter, the num-
ber of bits to use for a marker symbol or the probability as-
sociated with a marker symbol, is required if expressions are
encoded with the tagged or scaled representations, respec-
tively. To illustrate the effects of these parameters, an exper-
iment evaluated the accuracy of realign alignments com-
pared to known reference alignments from the BAliBASE
[34] benchmark suite.

Sequences in BAliBASE are organized in a collection of
different test sets. The sets were designed to provide differ-
ent challenges to multiple alignment programs, for example,
all sequences in a test are equally distant, or sequences are in
two distinct subgroups. Sequences in each set have known 3D
structures, and each test set was manually curated to iden-
tify conserved core blocks within each multiple alignment.
The accuracy of an alignment algorithm can be assessed by
comparing how it aligns amino acids in the core blocks. The
comparisons reported here were made by aligning all pairs of
sequences in each test set.

Figure 7 illustrates how the choice of a substitution ma-
trix affects the accuracy of an alignment. The blocks in
Figure 7(b) are from an alignment based on PAM20, and the
blocks in Figure 7(c) are from the same pair of sequences
aligned with PAM250. Letters shown in blue are accurate
pairings of letters in core blocks in the reference alignment,
and letters in red are misaligned—either they are placed in
variable regions, or if they are in blocks, they are aligned with
the wrong letter from the other sequence (e.g., the letters in
the block marked with (2)). The overall accuracy is higher for
the PAM250 alignment, which is not surprising since these
two sequences are only about 40% identical, and sequences
with this low level of similarity have probably diverged for
much more than 200MY.

The block marked with a (3) in Figure 7 is an example
of how a less strict substitution matrix leads to longer blocks.
The letter pair Q and G are dissimilar in PAM20, and the block
ends at this letter pair. But with PAM250, there is a slight ben-
efit to aligning Q with G (c(G|Q) < c(G)) so these two letters
are aligned.

Note that in the region indicated by (1) in Figure 7, the
letters G and F still have a negative benefit with PAM250. But
they are included in a longer block in the PAM250 alignment
because they are surrounded on both sides by runs of simi-
lar letters, and it was less expensive for the algorithm to keep
them in this block than to break them out into a short vari-
able region.

Varying the alignment parameter that determines the
number of bits used to represent a marker symbol also has
an effect on accuracy. The longer sequences evolve, the more
likely it is that an insertion or deletion mutation occurs in
one or both sequences, and the regular expression alignment
algorithm will need the flexibility to insert more marker sym-
bols. When aligning pairs of sequences from BAliBASE, small
values of α, either specified directly when the tagged repre-
sentation is used or computed as−log2γ for the scaled repre-
sentation, yields the most accurate alignments.

Since the goal of the alignment algorithm is to find the
sequence expression that can be represented in the fewest
number of bits, a natural question is whether the algorithm
should try to search for the value of γ that leads to the over-
all lowest cost expression. A related question, for sequences
which have a known reference alignment, is whether the ex-
pression with the shortest encoding also corresponds to the
most accurate alignment.

Unfortunately, the answers to these questions are not
straightforward. The plots in Figure 8 show the results of a
set of experiments that measure the effect of γ on the number
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(a)

(b) (c)

Figure 7: Portions of alignments of sequences 1aho and 1bmr from the BAliBASE alignment benchmark (Release 3) [34]. (a) The reference
alignment from BAliBASE. Letters in core blocks are highlighted in blue. (b) Alignment from realign, using PAM20 and γ = 0.2. (c) Same
as (b) but using PAM250. In (b) and (c) lines starting with % are comments that show the degree of similarity of corresponding letters in the
preceding block: identical (=), similar (+), or dissimilar (−). Sequence letters in blue are correctly aligned core blocks. Red letters are core
block column that should have been aligned but were left in variable regions. The circled numbers highlight changes in the alignment (see
text).

of bits needed to encode a set of sequence expressions and
the accuracy of the alignments. To make sure the alignment
algorithm had enough data to work with, the alignments
were done on the longest set of sequences in BAliBASE. There
are eight sequences in this test set (BB12007), ranging in
length from 994 to 1084 letters, with a mean length of 1020
letters. 28 pairwise alignments were created, using all possi-
ble pairs of sequences from the set.

Figure 8(a) shows that the number of bits required to
represent an alignment increases as γ increases. There is a
very slight decrease in cost near γ = 0.02. At smaller values
of γ the cost of representing a marker symbol (−log2γ) is too
high for the algorithm to include any blocks. Near γ = 0.02,
a few blocks are found and the overall cost is lowered. But
as γ increases, the cost of the sequence letters increases, since
they are scaled by a factor of 1 − γ. There are typically far
more letter symbols than marker symbols in a sequence ex-
pression, and the increase in the size of each letter outweighs
any gain from a shorter representation for marker symbols.

One could argue that for a given value of γ, it is not
the total size of a sequence expression that is important,
but rather the amount of compression that results from that
value of γ, where compression is the difference in the number
of bits required to encode the null hypothesis (that the se-
quences have nothing in common) and the number of bits to

encode the shortest sequence expression. Figure 8(b) shows
a plot of the change in compression as a function of γ, where
there is a peak in the range 0.07 ≤ γ ≤ 1.0. Superimposed
on this graph is a plot of the accuracy of the best alignment,
also as a function of γ. The peak in this plot is an accuracy of
69%, at γ = 0.05.

The most accurate alignments, with a mean accuracy of
80%, were created using the tagged representation and very
small values of α between 1.25 and 1.75 bits (including the
tag bit). To obtain a comparable ratio between the cost of a
marker symbol and sequence letter in the scaled representa-
tion γ would have to be around 0.25. But because the scaled
representation requires the algorithm to compare letter prob-
abilities scaled by 1 − γ with unscaled conditional probabil-
ities, the accuracy deteriorates with higher values of γ. This
distortion might be the reason the peak in the accuracy curve
does not correspond more closely to the peak in the compres-
sion curve in Figure 8(b).

5. SUMMARY AND FUTUREWORK

This paper has shown that regular expressions provide use-
ful descriptions of alignments of pairs of sequences. The ex-
pressions are simple concatenations of alternating blocks and
variable regions, where blocks are equal-length substrings
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Figure 8: The effect of the scaling parameter γ on alignments of pairs of sequences from BAliBASE [34] test set BB12007. There are eight
sequences in the set; the data points are based on averages over all (8 × 7)/2 = 28 pairs of sequences. (a) Mean cost (in bits) of alignments
as a function of γ. (b) Mean compression (the difference between the cost of the null hypothesis and the lowest cost alignment for each pair
of sequences) is indicated by open circles. The mean accuracy of the alignments (proportion of core blocks correctly aligned) is indicated by
closed circles (scale shown on the right axis).

from each input sequence and variable regions are strings of
unaligned characters.

Alignment via regular expressions is an application of in-
formation theory: a hypothetical sender constructs a regular
expression that describes the sequences, compresses the ex-
pression by encoding blocks with conditional probabilities,
and transmits the encoded expression to a receiver, who can
recover the original sequences by generating every string that
matches the expression. The only parameter that is required
is a substitution matrix, which sets the background proba-
bilities for unaligned letters and the conditional probabilities
for pairs of aligned letters. For greater flexibility, an optional
second parameter specifies the number of bits to use for the
marker symbols that denote block boundaries. This informa-
tion theoretic framework does not use gaps to align variable-
length sequences—instead a global alignment of sequences
of different length will have at least one variable region with
a different number of letters from the input sequences—and
thus finesses issues associated with gap penalties.

Accurate alignment of biological sequences needs to take
into account the amount of time the sequences have been
changing since they diverged from their most recent com-
mon ancestor. The two parameters that affect the encod-
ing of regular expressions—the choice of substitution matrix
and the number of bits to use for marker symbols—are re-
lated to the two main types of mutations that can occur since

the input sequences diverged. The substitution matrix is the
basis for computing the probability of aligning pairs of let-
ters, and generally reflects the probability that one of the let-
ters changed via point mutation into the other letter. Marker
symbols typically denote block boundaries that are the result
of insertion or deletion mutations, and for very diverse se-
quences a smaller number of bits per marker reflect a higher
probability of an insertion or deletion.

An alignment algorithm based on this approach can be
seen as a process that begins with a default null hypothesis
that the sequences are unrelated, represented by an expres-
sion that has all characters in a single unaligned region. The
algorithm searches for candidate blocks, consisting of equal-
length substrings from each input sequence, and checks to
see if the encoding of an expression that includes a block is
shorter than the encoding without the block. The tradeoff
that must be taken into account is that blocks of similar let-
ters will have denser encodings due to the use of conditional
probabilities, but adding a block means increasing the num-
ber of marker symbols that denote the edges of blocks.

A comparison of this new method with CLUSTALW,
a widely used standard for sequence alignment, shows
that the regular expression alignments generally agree with
CLUSTALW on regions included in blocks in the regular ex-
pression. Approximately, three quarters of the characters left
unaligned in a regular expression are aligned by CLUSTALW,
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but that number drops to one half if the CLUSTALW align-
ments are treated with an “alignment trimming” algorithm
to remove ambiguous regions. A more detailed case-by-case
analysis would be required to determine if the remaining un-
aligned characters should remain unaligned (i.e., alignment
trimming should be more ambitious) or if they need to be
aligned (i.e., the regular expression approach is not aligning
some characters that should be aligned).

A second set of experiments compared the output of the
regular expression method with known reference alignments
from the BAliBASE alignment benchmark. Since the bench-
mark is designed to test multiple alignment algorithms, and
it is generally accepted that multiple alignment is more ac-
curate than simple pairwise alignment [28], it is not possible
to say whether the regular expression approach is as accurate
as recent multiple alignment methods, but the overall accu-
racy of over 80% for sequences with 20% to 40% identity is
encouraging.

One direction for future research is to try to automati-
cally determine, for each substitution matrix, the best value
for α or γ, the parameters that determine the number of bits
per marker symbol. Based on extensive investigation (e.g.,
[39]) of different combinations of substitution matrix and
other parameters BLAST, CLUSTALW, and other applications
set default values for gap penalties based on the choice of sub-
stitution matrix. A similar analysis, perhaps based on inser-
tion and deletion mutation rates, might be used to match a
substitution matrix with a setting of α or γ for regular ex-
pression alignments.

A second direction for future research is to expand the
method to perform multiple alignment of more than two
sequences. One approach would be to use pairwise local
alignments produced by realign as “anchors” for DIALIGN
[22, 23], a progressive multiple alignment program that joins
consistent sets of ungapped local alignments into a com-
plete multiple alignment. A different approach would align
all the sequences at the same time, using sum-of-pairs or
some other method to average conditional costs based on
each of the n× (n− 1)/2 pairs of sequences.

A third direction for future research is to extend the
canonical sequence expressions or the equivalent grammar
to include other forms of descriptions of regions of similarity.
One idea is to use PROSITE blocks [40] as “subroutines” that
can be embedded in blocks. For example, PROSITE block
PS00007 is [RK]-x(2, 3)-[DE]-x(2, 3)-Y, using a notation sim-
ilar to a regular expression where a string in brackets means
“any one of these letters” and x(2, 3) means “any sequence
between 2 and 3 letters long.” A string that matches this pat-
tern, RDIKDPEY, occurs in one of the Plasmodium sequences
discussed in Section 4.1. A block for the region containing
this pattern might include a reference to the PROSITE block,
for example, instead of

#DLLRDIKDPEYSYT (9)

the block would be something like

#DLLps00007 (R,DIK,D,PE)SYT, (10)

where the arguments to the procedure call are pieces of
the sequence to plug in to the pattern. A benefit from us-

ing PROSITE or other predefined collections of patterns is
that blocks can be encoded in fewer bits. Where the pattern
specifies one of a small set of k letters, only log2k bits are
required to encode one of these letters, assuming they are
equally probable in this context. In particular, constants in
the pattern require zero bits, since the receiver knows these
letters as soon as the pattern is specified. A second benefit is
that PROSITE blocks allow the expression to describe small
amounts of variability in the length of a region without in-
troducing a new variable region. Of course these benefits are
offset by the additional complexity of an encoding that allows
for rule names and parameter delimiters.

As the last example shows, regular expressions and gram-
mars are very flexible, with many different rule structures
able to describe the same set of sequences. The different rule
structures convey different information about the strings
generated by the grammars, and the goal will be to see if min-
imum description length encoding of these alternative struc-
tures and selection of the shortest encoding accurately pro-
vides the best description of the relationships between the
sequences.
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