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Questions of understanding and quantifying the representation and amount of information in organisms have become a central
part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of
information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated.
We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical
as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of
dependencies between biological segments is explored. These tools are used in two specific applications. First, they are used for the
identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between
the 5

′
untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet

unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI’s combined DNA index system
(CODIS), we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats—an
application of importance in genetic profiling.
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1. INTRODUCTION

Questions of quantification, representation, and description
of the overall flow of information in biosystems are of cen-
tral importance in the life sciences. In this paper, we de-
velop statistical tools based on information-theoretic ideas,
and demonstrate their use in identifying informative parts
in biomolecules. Specifically, our goal is to detect statistically
dependent segments of biosequences, hoping to reveal po-
tentially important biological phenomena. It is well known
[1–3] that various parts of biomolecules, such as DNA, RNA,
and proteins, are significantly (statistically) correlated. For-
mal measures and techniques for quantifying these correla-
tions are topics of current investigation. The biological im-
plications of these correlations are deep, and they themselves
remain unresolved. For example, statistical dependencies be-
tween exons carrying protein coding sequences and noncod-
ing introns may indicate the existence of as-yet unknown er-
ror correction mechanisms or structural scaffolds. Thus mo-

tivated, we propose to develop precise and reliable method-
ologies for quantifying and identifying such dependencies,
based on the information-theoretic notion of mutual infor-
mation.

Biomolecules store information in the form of monomer
strings such as deoxyribonucleotides, ribonucleotides, and
amino acids. As a result of numerous genome and protein
sequencing efforts, vast amounts of sequence data is now
available for computational analysis. While basic tools such
as BLAST provide powerful computational engines for iden-
tification of conserved sequence motifs, they are less suitable
for detecting potential hidden correlations without experi-
mental precedence (higher-order substitutions).

The application of analytic methods for finding regions
of statistical dependence through mutual information has
been illustrated through a comparative analysis of the 5′ un-
translated regions of DNA coding sequences [4]. It has been
known that eukaryotic translational initiation requires the
consensus sequence around the start codon defined as the
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Kozak’s motif [5]. By screening at least 500 sequences, an
unexpected correlation between positions −2 and −1 of the
Kozak’s sequence was observed, thus implying a novel trans-
lational initiation signal for eukaryotic genes. This pattern
was discovered using mutual information, and not detected
by analyzing single-nucleotide conservation. In other rele-
vant work, neighbor-dependent substitution matrices were
applied to estimate the average mutual information con-
tent of the core promoter regions from five different organ-
isms [6, 7]. Such comparative analyses verified the impor-
tance of TATA-boxes and transcriptional initiation. A similar
methodology elucidated patterns of sequence conservation
at the 3′ untranslated regions of orthologous genes from hu-
man, mouse, and rat genomes [8], making them potential
targets for experimental verification of hidden functional sig-
nals.

In a different kind of application, statistical dependence
techniques find important applications in the analysis of gene
expression data. Typically, the basic underlying assumption
in such analyses is that genes expressed similarly under di-
vergent conditions share functional domains of biological ac-
tivity. Establishing dependency or potential relationships be-
tween sets of genes from their expression profiles holds the
key to the identification of novel functional elements. Statis-
tical approaches to estimation of mutual information from
gene expression datasets have been investigated in [1].

Protein engineering is another important area where sta-
tistical dependency tools are utilized. Reliable predictions of
protein secondary structures based on long-range depen-
dencies may enhance functional characterizations of pro-
teins [9]. Since secondary structures are determined by both
short- and long-range interactions between single amino
acids, the application of comparative statistical tools based
on consensus sequence algorithms or short amino acid se-
quences centered on the prediction sites is far from optimal.
Analyses that incorporate mutual information estimates may
provide more accurate predictions.

In this work we focus on developing reliable and pre-
cise information-theoretic methods for determining whether
two biosequences are likely to be statistically dependent. Our
main goal is to develop efficient algorithmic tools that can
be easily applied to large data sets, mainly—though not
exclusively—as a rigorous exploratory tool. In fact, as dis-
cussed in detail below, our findings are not the final word on
the experiments we performed, but, rather, the first step in
the process of identifying segments of interest. Another moti-
vating factor for this project, which is more closely related to
ideas from information theory, is the question of determin-
ing whether there are error correction mechanisms built into
large molecules, as argued by Battail; see [10] and the ref-
erences therein. We choose to work with protein coding ex-
ons and noncoding introns. While exons are well-conserved
parts of DNA, introns have much greater variability. They
are dispersed on strings of biopolymers and still they have
to be precisely identified in order to produce biologically rel-
evant information. It seems that there is no external source
of information but the structure of RNA molecules them-
selves to generate functional templates for protein synthesis.
Determining potential mutual relationships between exons

and introns may justify additional search for still unknown
factors affecting RNA processing.

The complexity and importance of the RNA processing
system is emphasized by the largely unexplained mechanisms
of alternative splicing, which provide a source of substantial
diversity in gene products. The same sequence may be recog-
nized as an exon or an intron, depending on a broader con-
text of splicing reactions. The information that is required
for the selection of a particular segment of RNA molecules is
very likely embedded into either exons or introns, or both.
Again, it seems that the splicing outcome is determined
by structural information carried by RNA molecules them-
selves, unless the fundamental dogma of biology (the unidi-
rectional flow of information from DNA to proteins) is to be
questioned.

Finally, the constant evolution of genomes introduces
certain polymorphisms, such as tandem repeats, which are an
important component of genetic profiling applications. We
also study these forms of statistical dependencies in biologi-
cal sequences using mutual information.

In Section 2 we develop some theoretical background,
and we derive a threshold function for testing statistical sig-
nificance. This function admits a dual interpretation either
as the classical log-likelihood ratio from hypothesis testing,
or as the “empirical mutual information.”

Section 3 contains our experimental results. In Section
3.1 we present our empirical findings for the problem of de-
tecting statistical dependency between different parts in a
DNA sequence. Extensive numerical experiments were car-
ried out on certain regions of the maize zmSRp32 gene [11],
which is functionally homologous to the human ASF/SF2 al-
ternative splicing factor. The efficiency of the empirical mu-
tual information in this context is demonstrated. Moreover,
our findings suggest the existence of a biological connection
between the 5′ untranslated region in zmSRp32 and its alter-
natively spliced exons.

Finally, in Section 3.2, we show how the empirical mu-
tual information can be utilized in the difficult problem of
searching DNA sequences for short tandem repeats (STRs),
an important task in genetic profiling. We extend the simple
hypothesis test of the previous sections to a methodology for
testing a DNA string against different “probe” sequences, in
order to detect STRs both accurately and efficiently. Experi-
mental results on DNA sequences from the FBI’s combined
DNA index system (CODIS) are presented, showing that the
empirical mutual information can be a powerful tool in this
context as well.

2. THEORETICAL BACKGROUND

In this section, we outline the theoretical basis for the mu-
tual information estimators we will later apply to biological
sequences.

Suppose we have two strings of unequal lengths,

Xn
1 = X1,X2, . . . ,Xn,

YM
1 = Y1,Y2,Y3, . . . ,YM ,

(1)
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where M ≥ n, taking values in a common finite alphabet A.
In most of our experiments, M is significantly larger than
n; typical values of interest are n ≈ 80 and M ≈ 300.
Our main goal is to determine whether or not there is some
form of statistical dependence between them. Specifically,
we assume that the string Xn

1 consists of independent and
identically distributed (i.i.d.) random variables Xi with com-
mon distribution P(x) on A, and that the random vari-
ables Yi are also i.i.d. with a possibly different distribution
Q(y). Let {W(y | x)} be a family of conditional distribu-
tions, or “channel,” with the property that, when the in-
put distribution is P, the output has distribution Q, that is,∑

x∈AP(x)W(y | x) = Q(y) for all y. We wish to differentiate
between the following two scenarios:

(i) independence: Xn
1 and YM

1 are independent,
(ii) dependence: First Xn

1 is generated, then an index J ∈
{1, 2, . . . ,M−n+1} is chosen in an arbitrary way, and YJ+n−1

J

is generated as the output of the discrete memoryless channel
W with input Xn

1 , that is, for each j = 1, 2, . . . ,n, the condi-
tional distribution of Yj+J−1 given Xn

1 is W(y | Xj). Finally,
the rest of the Yi’s are generated i.i.d. according to Q. (To
avoid the trivial case where both scenarios are identical, we
assume that the rows of W are not all equal to Q so that in
the second scenario Xn

1 and YJ+n−1
J are actually not indepen-

dent.)
It is important at this point to note that although nei-

ther of these two cases is biologically realistic as a descrip-
tion of the elements in a genomic sequence, it turns out that
this set of assumptions provides a good operational starting
point: the experimental results reported in Section 3 clearly
indicate that, in practice, the resulting statistical methods ob-
tained under the present assumptions can provide accurate
and biologically relevant information. Of course, the natu-
ral next step in any application is the careful examination of
the corresponding findings, either through purely biological
considerations or further testing.

To distinguish between (i) and (ii), we look at every pos-
sible alignment of Xn

1 with YM
1 , and we estimate the mutual

information between them. Recall that for two random vari-
ables X , Y with marginal distributions P(x), Q(y), respec-
tively, and joint distribution V(x, y), the mutual information
between X and Y is defined as

I(X ;Y) =
∑

x,y∈A
V(x, y) log

V(x, y)
P(x)Q(y)

. (2)

Recall also that I(X ;Y) is always nonnegative, and it equals
zero if and only if X and Y are independent. The loga-
rithms above and throughout the paper are taken to base 2,
log = log 2, so that I(X ;Y) can be interpreted as the number
of bits of information that each of these two random vari-
ables carries about the other (cf. [12]).

In order to distinguish between the two scenarios above,
we compute the empirical mutual information between Xn

1

and each contiguous substring of YM
1 of length n: for each

j = 1, 2, . . . ,M − n + 1, let p̂ j(x, y) denote the joint

empirical distribution of (Xn
1 ,Y

j+n−1
j ), that is, let p̂ j(x, y)

be the proportion of the n positions in (X1, Yj), (X2,
Yj+1), . . . , (Xn,Yj+n−1) where (Xi,Yj+i−1) equals (x, y). Sim-

ilarly, let P̂(x) and q̂ j(y) denote the empirical distributions

of Xn
1 and Y

j+n−1
j , respectively. We define the empirical (per-

symbol) mutual information Î j(n) between Xn
1 and Y

j+n−1
j

by applying (2) to the empirical instead of the true distribu-
tions, so that

Î j(n) =
∑

x,y∈A
p̂ j(x, y) log

p̂ j(x, y)

p̂(x)q̂ j(y)
. (3)

The law of large numbers implies that as n→∞, we have
p̂(x)→P(x), q̂ j(y)→Q(x), and p̂ j(x, y) converges to the true
joint distribution of X ,Y .

Clearly, this implies that in scenario (i), where Xn
1 and

Yn
1 are independent, Î j(n)→0, for any fixed j, as n→∞. On

the other hand, in scenario (ii), ÎJ(n) converges to I(X ;Y) >
0 where the two random variables X , Yare such that X has
distribution P and the conditional distribution of Y given
X = x is W(y | x).

In passing we should point out there are other methods
of checking statistical (in)dependence, for instance, random-
ization or permutation tests discussed in [13, 14].

2.1. An independence test based on
mutual information

We propose to use the following simple test for detecting de-
pendence between Xn

1 and YM
1 . Choose and fix a threshold

θ > 0, and compute the empirical mutual information Î j(n)

between Xn
1 and each contiguous substring Y

j+n−1
j of length

n from YM
1 . If Î j(n) is larger than θ for some j, declare that

the strings Xn
1 and Y

j+n−1
j are dependent; otherwise, declare

that they are independent.
Before examining the issue of selecting the value of the

threshold θ, we note that this statistic is identical to the
(normalized) log-likelihood ratio between the above two hy-
potheses. To see this, observe that expanding the definition
of p̂ j(x, y) in Î j(n), we can simply rewrite

Î j(n) =
∑

x,y∈A

1
n

n∑

i=1

I{(Xi ,Yj+i−1)}(x, y) log
p̂ j(x, y)

p̂(x)q̂ j(y)

= 1
n

n∑

i=1

∑

x,y∈A
I{(Xi,Yj+i−1)}(x, y) log

p̂ j(x, y)

p̂(x)q̂ j(y)
,

(4)

where the indicator function I{(Xi ,Yj+i−1)}(x, y) equals 1 if
(Xi,Yj+i−1) = (x, y) and it is equal to zero otherwise. Then,

Î j(n) = 1
n

n∑

i=1

log
p̂ j
(
Xi,Yj+i−1

)

p̂
(
Xi
)
q̂ j
(
Yj+i−1

)

= 1
n

log

[ ∏ n
i=1 p̂ j

(
Xi,Yj+i−1

)

∏ n
i=1 p̂

(
Xi
)
q̂ j
(
Yj+i−1

)

]

,

(5)

which is exactly the normalized logarithm of the ratio be-
tween the joint empirical likelihood

∏ n
i=1 p̂ j(Xi,Yj+i−1) of

the two strings, and the product of their empirical marginal
likelihoods

[∏ n
i=1 p̂(Xi)][

∏ n
i=1 q̂ j(Yj+i−1)

]
.



4 EURASIP Journal on Bioinformatics and Systems Biology

2.2. Probabilities of error

There are two kinds of errors this test can make: declaring
that two strings are dependent when they are not, and vice
versa. The actual probabilities of these two types of errors
depend on the distribution of the statistic Î j(n). Since this
distribution is independent of j, we take j = 1 and write
I(n) for the normalized log-likelihood ratio Î1(n). The next
two subsections present some classical asymptotics for Î1(n).

Scenario (i): independence

We already noted that in this case I(n) converges to zero as
n→∞, and below we shall see that this convergence takes
place at a rate of approximately 1/n. Specifically, I(n)→0
with probability one, and a standard application of the mul-
tivariate central limit theorem for the joint empirical distri-
bution p̂ j shows that nI(n) converges in distribution to a
(scaled) χ2 random variable. This a classical result in statis-
tics [15, 16], and, in the present context, it was rederived by
Hagenauer et al. [17, 18]. We have

(2 ln 2)nI(n)
D−→ Z∼ χ2((|A| − 1

)2)
, (6)

where Z has a χ2 distribution with k = (|A| − 1)2 degrees of
freedom, and where |A| denotes the size of the data alphabet.

Therefore, for a fixed threshold θ > 0 and large n, we can
estimate the probability of error as

Pe,1 = Pr{declare dependence | independent strings}
= Pr

{
I(n) > θ | independent strings

}

≈ Pr
{
Z > (2 ln 2)θn

}
,

(7)

where Z is as before. Therefore, for large n the error proba-
bility Pe,1 decays like the tail of the χ2 distribution function,

Pe,1 ≈ 1− γ
(
k, (θ ln 2)n

)

Γ(k)
, (8)

where k = (|A| − 1)2/2, and Γ, γ denote the Gamma function
and the incomplete Gamma function, respectively. Although
this is fairly implicit, we know that the tail of the χ2 distribu-
tion decays like e−x/2 as x→∞; therefore,

Pe,1 ≈ exp
{− (θln2)n

}
, (9)

where this approximation is to first-order in the exponent.

Scenario (ii): dependence

In this case, the asymptotic behavior of the test statistic I(n)
is somewhat different. Suppose as before that the random
variables Xn

1 are i.i.d. with distribution P, and that the con-
ditional distribution of each Yi given Xn

1 is W(Y | Xi), for
some fixed family of conditional distributions W(y | x); this
makes the random variables Yn

1 i.i.d. with distribution Q.
We mentioned in the last section that under the sec-

ond scenario, I(n) converges to the true underlying value

I = I(X ;Y) of the mutual information, but, as we show be-
low, the rate of this convergence is slower than the 1/n rate
of scenario (i): here, I(n)→I with probability one, but only at
rate 1/

√
n, in that

√
n [I(n) − I] converges in distribution to

a Gaussian

√
n
[
I(n)− I

] D−→ T∼N(0, σ2), (10)

where the resulting variance σ2 is given by

σ2 = Var
(

log
W(Y | X)
Q(Y)

)

=
∑

x,y∈A
p(x)W(y | x)

(

log
W(y | x)
Q(y)

− I
)2

.
(11)

An outline of the proof of (10) is given below; for another
derivation see [19].

Therefore, for any fixed threshold θ < I and large n, the
probability of error satisfies

Pe,2 = Pr{declare independence |W-dependent strings}
= Pr

{
I(n) ≤ θ |W-dependent strings

}

≈ Pr
{
T ≤ [θ − I]

√
n
}

≈ exp

{

− (I − θ)2

2σ2
n

}

,

(12)

where the last approximation sign indicates equality to first
order in the exponent. Thus, despite the fact that I(n) con-
verges at different speeds in the two scenarios, both error
probabilities Pe,1 and Pe,2 decay exponentially with the sam-
ple size n.

To see why (10) holds it is convenient to use the alterna-
tive expression for I(n) given in (5). Using this, and recalling
that I(n) = Î1(n), we obtain

√
n[I(n)− I] = √n

[
1
n

n∑

i=1

log
p̂1
(
Xi,Yi

)

p̂
(
Xi
)
q̂1
(
Yi
) − I

]

. (13)

Since the empirical distributions converge to the correspond-
ing true distributions, for large n it is straightforward to jus-
tify the approximation

√
n
[
I(n)− I

] ≈ 1√
n

[
1
n

n∑

i=1

log
P
(
Xi
)
W
(
Yi | Xi

)

P
(
Xi
)
Q
(
Yi
) − I

]

.

(14)

The fact that this indeed converges in distribution to a
N(0, σ2), as n→∞, easily follows from the central limit the-
orem, upon noting that the mean of the logarithm in (14)
equals I and its variance is σ2.

Discussion

From the above analysis it follows that in order for both
probabilities of error to decay to zero for large n (so that we
rule out false positives as well as making sure that no depen-
dent segments are overlooked) the threshold θ needs to be
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DNA structure of zmSRp32

5′ untranslated region (5′UTR)
Exons

Intron Intron

3′UTR

Start Protein coding sequence Stop

mRNA structures
Pre-mRNA processing

Alternative intron Alternative exons

178 268 369 3243 3688 3884
3800

4254

Figure 1: Alternative splicings of the zmSRp32 gene in maize. The gene consists of a number of exons (shaded boxes) and introns (lines)
flanked by the 5′ and 3′ untranslated regions (white boxes). RNA transcripts (pre-mRNA) are processed to yield mRNA molecules used as
templates for protein synthesis. Alternative pre-mRNA splicing generates different mRNA templates from the same transcripts, by selecting
either alternative exons or alternative introns. The regions discussed in the text are identified by indices corresponding to the nucleotide
position in the original DNA sequence.

strictly between 0 and I = I(X ;Y). For that, we need to have
some prior information about the value of I , that is, of the
level of dependence we are looking for. If the value of I were
actually known and a fixed threshold θ ∈ (0, I) was chosen
independent of n, then both probabilities of error would de-
cay exponentially fast, but with typically very different expo-
nents:

Pe,1 ≈ exp
{− (θln 2)n

}
,

Pe,2 ≈ exp

{

−
(
I − θ√

2σ

)2

n

}

;
(15)

recall the expressions in (9) and (12). Clearly, balancing the
two exponents also requires knowledge of the value of σ2 in
the case when the two strings are dependent, which, in turn,
requires full knowledge of the marginal distribution P and
the channel W . Of course this is unreasonable, since we can-
not specify in advance the exact kind and level of dependence
we are actually trying to detect in the data.

A practical (and standard) approach is as follows: since
the probability of error of the first kind P1,e only depends on
θ (at least for large n), and since in practice declaring false
positives is much more undesirable than overlooking poten-
tial dependence, in our experiments we decide on an accept-
ably small false-positive probability ε, and then select θ based
on the above approximation, by setting Pe,1 ≈ ε in (7).

3. EXPERIMENTAL RESULTS

In this section, we apply the mutual information test de-
scribed above to biological data. First we show that it can
be used effectively to identify statistical dependence between
regions of the maize zmSRp32 gene that may be involved

in alternative processing (splicing) of pre-mRNA transcripts.
Then we show how the same methodology can be easily
adapted to the problem of identifying tandem repeats. We
present experimental results on DNA sequences from the
FBI’s combined DNA index system (CODIS), which clearly
indicate that the empirical mutual information can be a pow-
erful tool for this computationally intensive task.

3.1. Detecting DNA sequence dependencies

All of our experiments were performed on the maize zm-
SRp32 gene [11]. This gene belongs to a group of genes that
are functionally homologous to the human ASF/SF2 alter-
native splicing factor. Interestingly, these genes encode alter-
native splicing factors in maize and yet themselves are also
alternatively spliced. The gene zmSRp32 is coded by 4735
nucleotides and has four alternative splicing variants. Two
of these four variants are due to different splicings of this
gene, between positions 1–369 and 3243–4220, respectively,
as shown in Figure 1. The results given here are primarily
from experiments on these segments of zmSRp32.

In order to understand and quantify the amount of cor-
relation between different parts of this gene, we computed
the mutual information between all functional elements in-
cluding exons, introns, and the 5′ untranslated region. As be-
fore, we denote the shorter sequence of length n by Xn

1 =
(X1,X2, . . . ,Xn) and the longer one of length M by YM

1 =
(Y1,Y2, . . . ,YM). We apply the simple mutual information
estimator Î j(n) defined in (3) to estimate the mutual infor-

mation between Xn
1 and Y

j+n−1
j for each j = 1, 2, . . . ,M −

n + 1, and we plot the “dependency graph” of Î j = Î j(n) ver-
sus j; see Figure 2. The threshold θ is computed, according
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Figure 2: Estimated mutual information between the exon located between bases 1–369 and each contiguous subsequence of length 369
in the intron between bases 3243–4220. The estimates were computed both for the original sequences in the standard four-letter alphabet
{A,C,G,T} (shown in (a)), as well as for the corresponding transformed sequences for the two-letter purine/pyrimidine grouping {AG,CT}
(shown in (b)).

to (7), by setting ε, the probability of false positives, equal to
0.001; it is represented by a (red) straight horizontal line in
the figures.

In order to “amplify” the effects of regions of potential
dependency in various segments of the zmSRp32 gene, we
computed the mutual information estimates Î j on the origi-
nal strings over the regular four-letter alphabet {A,C,G,T},
as well as on transformed versions of the strings where
pairs of letters were grouped together, using either the
Watson-Crick pair {AT ,CG} or the purine-pyrimidine pair
{AG,CT}. In our results we observed that such groupings are
often helpful in identifying dependency; this is clearly illus-
trated by the estimates shown in Figures 2 and 3. Sometimes
the {AT ,CG} pair produces better results, while in other
cases the purine-pyrimidine pair finds new dependencies.

Figure 2 strongly suggests that there is significant depen-
dence between the bases in positions 1–369 and certain sub-
strings of the bases in positions 3243–4220. While the 1–
369 region contains the 5′ untranslated sequences, an intron,
and the first protein coding exon, the 3243–4220 sequence
encodes an intron that undergoes alternative splicing. After
narrowing down the mutual information calculations to the
5′ untranslated region (5′UTR) in positions 1–78 and the
5′UTR intron in positions 78–268, we found that the initially
identified dependency was still present; see Figure 3. A close
inspection of the resulting mutual information graphs indi-
cates that the dependency is restricted to the alternative exons
embedded into the intron sequences, in positions 3688–3800
and 3884–4254.

These findings suggest that there might be a deeper con-
nection between the 5′UTR DNA sequences and the DNA
sequences that undergo alternative splicing. The UTRs are
multifunctional genetic elements that control gene expres-
sion by determining mRNA stability and efficiency of mRNA
translation. Like in the zmSRp32 maize gene, they can pro-
vide multiple alternatively spliced variants for more com-
plex regulation of mRNA translation [20]. They also con-
tain a number of regulatory motifs that may affect many as-

pects of mRNA metabolism. Our observations can therefore
be interpreted as suggesting that the maize zmSRp32 5′UTR
contains information that could be utilized in the process of
alternative splicing, yet another important aspect of mRNA
metabolism. The fact that the value of the empirical mutual
information between 5′UTR and the DNA sequences that
encode alternatively spliced elements is significantly greater
than zero clearly points in that direction. Further experimen-
tal work could be carried out to verify the existence, and fur-
ther explore the meaning, of these newly identified statistical
dependencies.

We should note that there are many other sequence
matching techniques, the most popular of which is probably
the celebrated BLAST algorithm. BLAST’s working princi-
ples are very different from those underlying our method. As
a first step, BLAST searches a database of biological sequences
for various small words found in the query string. It identi-
fies sequences that are candidates for potential matches, and
thus eliminates a huge portion of the database containing
sequences unrelated to the query. In the second step, small
word matches in every candidate sequence are extended by
means of a Smith-Waterman-type local alignment algorithm.
Finally, these extended local alignments are combined with
some scoring schemes, and the highest scoring alignments
obtained are returned. Therefore, BLAST requires a consid-
erable fraction of exact matches to find sequences related to
each other. However, our approach does not enforce any such
requirements. For example, if two sequences do not have any
exact matches at all, but the characters in one sequence are
a characterwise encoding of the ones in the other sequence,
then BLAST would fail to produce any significant matches
(without corresponding substitution matrices), while our al-
gorithm would detect a high degree of dependency. This
is illustrated by the results in the following section, where
the presence of certain repetitive patterns in YM

1 is revealed
through matching it to a “probe sequence” Xn

1 which does not
contain the repetitive pattern, but is “statistically similar” to
the pattern sought.
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Figure 3: Dependency graph of Î j versus j for the zmSRp32 gene, using different alphabet groupings: in (a) and (b), we plot the estimated
mutual information between the exon found between bases 1–78 and each subsequence of length 78 in the intron located between bases
3243–4220. Plot (a) shows estimates over the original four-letter alphabet {A,C,G,T} , and (b) shows the corresponding estimates over the
Watson-Crick pairs {AT ,CG}. Similarly, plots (c) and (d) contain the estimated mutual information between the intron located in bases
79–268 and all corresponding subsequences of the intron between bases 3243–4220. Plot (c) shows estimates over the original alphabet, and
plot (d) over the two-letter purine/pyrimidine grouping {AG,CT}. Plots (e) and (f) show the estimated mutual information between the 5′

untranslated region and all corresponding subsequences of the intron between bases 3243–4220, for the four-letter alphabet (in (e)), and for
the two-letter purine/pyrimidine grouping {AG,CT} (in (f)).
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3.2. Application to tandem repeats

Here we further explore the utility of the mutual informa-
tion statistic, and we examine its performance on the prob-
lem of detecting short tandem repeats (STRs) in genomic se-
quences. STRs, usually found in noncoding regions, are made
of back-to-back repetitions of a sequence which is at least two
bases long and generally shorter than 15 bases. The period of
an STR is defined as the length of the repetition sequence
in it. Owing to their short lengths, STRs survive mutations
well, and can easily be amplified using PCR without produc-
ing erroneous data. Although there are many well-identified
STRs in the human genome, interestingly, the number of rep-
etitions at any specific locus varies significantly among indi-
viduals, that is, they are polymorphic DNA fragments. These
properties make STRs suitable tools for determining genetic
profiles, and have become a prevalent method in forensic in-
vestigations. Long repetitive sequences have also been ob-
served in genomic sequences, but have not gained as much
attention since they cannot survive environmental degrada-
tion and do not produce high quality data from PCR analysis.

Several algorithms have been proposed for detecting
STRs in long DNA strings with no prior knowledge about
the size and the pattern of repetition. These algorithms
are mostly based on pattern matching, and they all have
high time-complexity. Finding short repetitions in a long
sequence is a challenging problem. When the query string
is a DNA segment that contains many insertions, deletions,
or substitutions due to mutations, the problem becomes
even harder. Exact- and approximate-pattern matching algo-
rithms need to be modified to account for these mutations,
and this renders them complex and inefficient. To overcome
these limitations, we propose a statistical approach using an
adaptation of the method described in the previous sections.

In the United States, the FBI has decided on 13 loci to be
used as the basis for genetic profile analysis, and they con-
tinue to be the standard in this area. To demonstrate how
our approach can be used for STR detection, we chose to
use sequences from the FBI’s combined DNA index system
(CODIS): the SE33 locus contained in the GenBank sequence
V00481, and the VWA locus contained in the GenBank se-
quence M25858. The periods of STRs found in CODIS typi-
cally range from 2 to bases, and do not exhibit enough vari-
ability to demonstrate how our approach would perform un-
der divergent conditions. For this reason, we used the V00481
sequence as is, but on M25858 we artificially introduced an
STR with period 11, by substituting bases 2821–2920 (where
we know that there are no other repeating sequences) with
9 tandem repeats of ACTTTGCCTAT . We have also intro-
duced base substitutions, deletions, and insertions on our ar-
tificial STR to imitate mutations.

Let YM
1 = (Y1,Y2, . . . ,YM) denote the DNA sequence in

which we are looking for STRs. The gist of our approach is
simply to choose a periodic probe sequence of length n, say,
Xn

1 = (X1,X2, . . . ,Xn) (typically much shorter than YM
1 ), and

then to calculate the empirical mutual information Î j = Î j(n)
between Xn

1 and each of its possible alignments with YM
1 . In

order to detect the presence of STRs, the values of the em-
pirical mutual information in regions where STRs do appear

should be significantly larger than zero, where “significantly”
means larger than the corresponding estimates in ordinary
DNA fragments containing no STRs. Obviously, the results
will depend heavily on the exact form of the probe sequence.
Therefore, it is critical to decide on the method for select-
ing: (a) the length, and (b) the exact contents of Xn

1 . The
length of Xn

1 is crucial; if it is too short, then Xn
1 itself is likely

to appear often in YM
1 , producing many large values of the

empirical mutual information and making it hard to distin-
guish between STRs and ordinary sequences. Moreover, in
that case there is little hope that the analysis of the previ-
ous section (which was carried out of long sequences Xn

1 )
will provide useful estimates for the probability of error. If,
on the other hand, Xn

1 is too long, then any alignment of the
probe Xn

1 with YM
1 will likely also contain too many irrelevant

base pairs. This will produce negligibly small mutual infor-
mation estimates, again making impossible to detect STRs.
These considerations are illustrated by the results in Figure 4.

As for the contents of the probe sequence Xn
1 , the best

choice would be to take a segment Xn
1 containing an exact

match to an STR present in YM
1 . But in most of the interest-

ing applications, this is of course unavailable to us. A “second
best” choice might be a sequence Xn

1 that contains a segment
of the same “pattern” as the STR present in YM

1 , where we say
that two sequences have the same pattern if each one can be
obtained from the other via a permutation of the letters in
the alphabet (cf. [21, 22]). For example, TCTA and GTGC
have the same pattern, whereas TCTA and CTAT do not
(although they do have the same empirical distribution). For
example, ifXn

1 contains the exact same pattern as the periodic
part of the STR to be detected, and X̃n

1 has the same pattern
as Xn

1 , then, a priori, either choice should be equally effec-
tive at detecting the STR under consideration; see Figure 5.
(This observation also shows that a single probe Xn

1 may in
fact be appropriate for locating more than a single STR, e.g.,
STRs with the same pattern as Xn

1 , as in Figure 5, or with the
same period, as in Figure 4.) The problem with this choice
is, again, that the exact patterns of STRs present in a DNA
sequence are not available to us in advance, and we cannot
expect all STRs in a given sequence to be of the same pattern.

Even though both of the above choices for Xn
1 are usually

not practically feasible, if the sequence YM
1 is relatively short

and contains a single STR whose contents are known, then ei-
ther choice would produce high-quality data, from which the
STR contained in YM

1 we can easily be detected; see Figure 5
for an illustration.

In practice, in addition to the fact that the contents of
STRs are not known in advance, there is also the issue that
in a long DNA sequence there are often many different STRs,
and a unique probe will not match all of them exactly. But
since STRs usually have a period between 2 and 15 bases, we
can actually run our method for all possible choices of rep-
etition sequences, and detect all STRs in the given query se-
quence YM

1 . The number of possible probes Xn
1 can be drasti-

cally reduced by observing that (1) we only need one repeat-
ing sequence of each possible pattern, and (2) it suffices to
only consider repetition patters whose period is prime. Note
that in view of the earlier discussion and the results shown
in Figure 4, the period of the repeating part of Xn

1 is likely to
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Figure 4: Dependency graph of the GenBank sequence YM
1 = V00481, for a probe sequence Xn

1 which is a repetition of AGGT , of length (a)
12, or (b) 60. The sequence YM

1 contains STRs that are repetitions of the pattern AAAG, in the following regions: (i) there is a repetition of
AAAG between bases 62–108; (ii) AAAG is intervened by AG and AAGG until base 138; (iii) again between 138–294 there are repetitions of
AAAG, some of which are modified by insertions and substitutions. In (a) our probe is too short, and it is almost impossible to distinguish
the SE33 locus from the rest. However, in (b) the location SE33 is singled out by the two big peaks in the mutual information estimates; the
shorter peak between the two larger ones is due to the interventions described above. Note that the STRs were identified by a probe sequence
that was a repetition of a pattern different from that of the repeating part of the STRs themselves, but of the same period.
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Figure 5: Dependency graph of the VWA locus contained in GenBank sequence M25858 for a probe sequence Xn
1 with n = 12, which is a

repetition of (a) TCTA , an exactly matching probe, (b) GTGC, a completely different probe, but of the exact same “pattern”. In both cases,
we have chosen Xn

1 to be long enough to suppress unrelated information. Note that the results in (a) and (b) are almost identical. The VWA
locus contains an STR of TCTA between positions 44–123. This STR is apparent in both dependency graphs by forming a periodic curve
with high correlation.

be more important than the actual contents. For example, if
we were to apply our method for finding STRs in YM

1 with a
probe Xn

1 whose period is 5 bases long, then many STRs with
a period that is a multiple of 5 should peak in the dependency
chart, thus allowing us to detect their approximate positions
in YM

1 . Clearly, probes that consist of very short repeats, such
as AAA . . . , should be avoided. The importance of choosing
an Xn

1 with the correct period is illustrated in Figure 6.
The results in Figures 4, 5, and 6 clearly indicate that the

proposed methodology is very effective at detecting the pres-
ence of STRs, although at first glance it may appear that it
cannot provide precise information about their start-end po-
sitions and their repeat sequences. But this final task can eas-
ily be accomplished by reevaluating YM

1 near the peak in the

dependency graph, for example, by feeding the relevant parts
separately into one of the standard string matching-based
tandem repeat algorithms. Thus, our method can serve as an
initial filtering step which, combined with an exact pattern
matching algorithm, provides a very accurate and efficient
method for the identification of STRs.

In terms of its practical implementation, note that our
approach has a linear running time O(M), where M is the
length of YM

1 . The empirical mutual information of course
needs to be evaluated for every possible alignment of YM

1 and
Xn

1 , with each such calculation done in O(n) steps, where n is
the length of Xn

1 . But n is typically no longer than a few hun-
dred bases, and, at least to first-order, it can be considered
constant. Also, repeating this process for all possible repeat



10 EURASIP Journal on Bioinformatics and Systems Biology

6000500040003000200010000

Base position on GenBank M25858 sequence

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
u

tu
al

in
fo

rm
at

io
n

(a)

6000500040003000200010000

Base position on GenBank M25858 sequence

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
u

tu
al

in
fo

rm
at

io
n

(b)

Figure 6: In these charts we use the modified GenBank sequence M25858, which contains the VWA locus in CODIS between positions
1683–1762 and the artificial STR introduced by us at 2821–2920. The repeat sequence of the VWA locus is TCTA, and the repeat sequence
of the artificial STR is ACTTTGCCTAT . In (a), the probe Xn

1 has length n = 88 and consists of repetitions of AGGT . Here the repeating
sequence of the VWA locus (which has period 4) is clearly indicated by the peak, whereas the artificial tandem repeat (which has period 11)
does not show up in the results. The small peak around position 2100 is due to a very noisy STR again with a 4-base period. In (b), the probe
Xn

1 again has length n = 88, and it consists of repetitions of CATAGTTCGGA. This produces the opposite result: the artificial STR is clearly
identified, but there is no indication of the STR present at the VWA locus.

periods does not affect the complexity of our method by
much, since the number of such periods is quite small and
can also be considered to be constant. And, as mentioned
above, choosing probes Xn

1 only containing repeating seg-
ments with a prime period, further improves the running
time of our method.

We, therefore, conclude that (a) the empirical mutual in-
formation appears in this case to be a very effective tool for
detecting STRs; and (b) selecting the length and repetition
period of the probe sequenceXn

1 is crucial for identifying tan-
dem repeats accurately.

4. CONCLUSIONS

Biological information is stored in the form of monomer
strings composed of conserved biomolecular sequences. Ac-
cording to Manfred Eigen, “The differentiable characteris-
tic of living systems is information. Information assures the
controlled reproduction of all constituents, thereby ensuring
conservation of viability.” Hoping to reveal novel, potentially
important biological phenomena, we employ information-
theoretic tools, especially the notion of mutual information,
to detect statistically dependent segments of biosequences.
The biological implications of the existance of such correla-
tions are deep, and they themselves remain unresolved. The
proposed approach may provide a powerful key to funda-
mental advances in understanding and quantifying biolog-
ical information.

This work addresses two specific applications based on
the proposed tools. From the experimental analysis carried
out on regions of the maize zmSRp32 gene, our findings sug-
gest the existence of a biological connection between the 5′

untranslated region in zmSRp32 and its alternatively spliced
exons, potentially indicating the presence of novel alterna-
tive splicing mechanisms or structural scaffolds. Secondly,

through extensive analysis of CODIS data, we show that our
approach is particularly well suited for the problem of dis-
covering short tandem repeats, an application of importance
in genetic profiling studies.
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USA, 2005.

[14] B. Manly, Randomization, Bootstrap and Monte Carlo Methods
in Biology, Chapman & Hall/CRC, Boca Raton, Fla, USA, 1977.

[15] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses,
Springer, New York, NY, USA, 3rd edition, 2005.

[16] M. J. Schervish, Theory of Statistics, Springer, New York, NY,
USA, 1995.
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