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Abstract

Background: Gene expression time series data are usually in the form of high-dimensional arrays. Unfortunately, the
data may sometimes contain missing values: for either the expression values of some genes at some time points or
the entire expression values of a single time point or some sets of consecutive time points. This significantly affects
the performance of many algorithms for gene expression analysis that take as an input, the complete matrix of gene
expression measurement. For instance, previous works have shown that gene regulatory interactions can be
estimated from the complete matrix of gene expression measurement. Yet, till date, few algorithms have been
proposed for the inference of gene regulatory network from gene expression data with missing values.

Results: We describe a nonlinear dynamic stochastic model for the evolution of gene expression. The model
captures the structural, dynamical, and the nonlinear natures of the underlying biomolecular systems. We present
point-based Gaussian approximation (PBGA) filters for joint state and parameter estimation of the system with
one-step or two-step missing measurements. The PBGA filters use Gaussian approximation and various quadrature rules,
such as the unscented transform (UT), the third-degree cubature rule and the central difference rule for computing
the related posteriors. The proposed algorithm is evaluated with satisfying results for synthetic networks, in silico
networks released as a part of the DREAM project, and the real biological network, the in vivo reverse engineering and
modeling assessment (IRMA) network of yeast Saccharomyces cerevisiae.

Conclusion: PBGA filters are proposed to elucidate the underlying gene regulatory network (GRN) from time series
gene expression data that contain missing values. In our state-space model, we proposed a measurement model that
incorporates the effect of the missing data points into the sequential algorithm. This approach produces a better
inference of the model parameters and hence, more accurate prediction of the underlying GRN compared to when
using the conventional Gaussian approximation (GA) filters ignoring the missing data points.

Keywords: Gene expression, Missing data, Bayesian inference, Gaussian filters, Network inference

1 Introduction

Gene regulation happens to be one of the most important
processes that take place in living cells [1, 2]. For instance,
it includes controls over the transcription of messenger
RNA (mRNA) and the eventual translation of mRNA into
protein via gene regulatory networks (GRNs). A detailed
network may depict various inter-dependencies among
genes where nodes of the network represent the genes and
the edges correspond to interactions among the genes [3].
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The strength of these interactions represents the extent
to which a gene is affected by other genes in the net-
work. For instance, some of the genes encode specific
proteins, known as the transcription factors that can bind
deoxyribonucleic acid (DNA) as part of a complex or inde-
pendently and regulate their rate of transcription [4, 5].
Binding of the DNA by the transcription factors may, in
some occasions, include genes that encode for other tran-
scription factors and also genes that encode proteins for
other functions. Hence, this results in a complex level
of interaction among the genes in the cell. Among oth-
ers, understanding the complex intracellular network in
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a human cell may lead to the identification of diseased
genes, drug targets, and biomarkers for complex diseases
[6]. Thus, identifying the structure of GRNs has become a
major focus in the systems approach to biology [7-10].

The generation of high throughput time series measure-
ment of transcript levels (e.g., via microarray experiments)
has become an increasingly powerful tool for investigat-
ing complex biological processes and a useful resource
for GRN inference [11]. Modeling of the gene networks
with gene expression data can be loosely categorized into
static and dynamic models. A static approach to modeling
gene expressions makes use of the following properties:
correlation, statistical independence for clustering, and
mutual information [12, 13]. Particularly, the clustering
approach has gained significant popularity [14, 15]. On
the other hand, the dynamic modeling of GRNs from time
series data has also received considerable interest. For
instance, Boolean network models quantize the empirical
gene expression data into binary values [16] and view the
network structures as constraints. Further, via the estima-
tion of the parameters in S-systems, a kind of nonlinear
mathematical models based on power law, few authors like
[17, 18] have performed the reverse engineering of GRNs.
Probabilistic Boolean network models are an extension to
the Boolean network models which incorporate the inher-
ent stochasticity of gene expression and the uncertainties
introduced by the measurement noise [19]. Also, dynamic
Bayesian networks (DBNs) have been proposed to model
the time series gene expression data [20, 21] because
DBNs can model stochasticity and handle noisy/hidden
variables.

The state-space approach, an extension of the DBN, is
a popular technique to model the GRNs [22, 23], where
the hidden state of the network can be estimated by Gaus-
sian approximation (GA) filters. The conventional Kalman
filter, being optimal for a linear Gaussian system [24],
requires some modifications to be able to cope with the
nonlinearity of the activation function that regulates the
gene activity profile. For instance, the extended Kalman
filter (EKF) uses the first-order terms of the Taylor’s series
expansion [25] to linearize the nonlinear functions in the
model. The EKF only calculates the posterior densities
accurately to the first order with all higher moments trun-
cated. A different paradigm of the GA filtering approach
is the point-based filtering technique, which involves
numerically integrating nonlinear functions by using a set
of deterministic points. This approach lowers the compu-
tational complexity when compared to the Monte Carlo
numerical integration which relies on randomly generated
points, since it requires much less number of points with
the same accuracy.

However, in reality, gene expression time series data may
not contain sufficient quantity of data in the appropriate
format for the inference of GRNs because of the missing
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data points [26]. For example, in microarray measurement
of gene expression, errors such as insufficient resolution
and image corruption or simply due to dust or scratches
on the slide of a microarray chip may occur in the exper-
imental process which lead to corruption or absence of
some expression measurements. In the engineering liter-
ature, similar problems are inherent in networked con-
trol systems (NCS) and sensor networks where packet
dropouts and time delays are an unavoidable phenomenon
during data transmission [27]. Classical methods fail to
solve the filtering and estimation problems for such cases
with delays and missing data and cannot accurately infer
the underlying network structure.

In this paper, we present a class of GA filters for infer-
ring GRN from data with missing measurement values,
which can be modeled in the same unifying framework as
in the case of state estimation from one-step or two-step
randomly delayed measurements [28]. A general frame-
work is presented through augmenting the state variables
and with Gaussian assumptions on the posterior state
and missing measurement. To make GRN inference from
measurements that contain missing data, we describe the
network by a nonlinear model and a measurement model
that incorporates the missing data. The inferred parame-
ter set can be used to identify the underlying regulatory
network structure.

In the literature, several point-based Gaussian approxi-
mation (PBGA) filters have been used for solving the GRN
inference problem from DNA microarray gene expres-
sion data and genome-wide knockout fitness data [29, 30];
however, there is no solution that outperforms all other
counterparts. Thus, one has to pick the filter balancing
the estimation performance, implementation complexity,
and filter stability. Prominent among the PBGA filters are
the cubature Kalman filter (CKF) that makes use of the
third-degree cubature rule [31], the unscented Kalman fil-
ter (UKF) that makes use of the unscented transformation
[30, 32], and the central difference Kalman filter (CDKF)
that makes use of the difference rule.

The remainder of this paper is organized as follows. In
Section 2, we describe the system model and problem for-
mulation. In Section 3, we describe the corresponding GA
filter. In Section 4, we investigate the performance of the
proposed algorithm on a synthetic network and a diverse
set of in silico networks released as a part of the DREAM
project, from which observations can be made for bench-
marking purposes [33, 34]. In addition, we present results
on a real data obtained from the IRMA network of yeast
Saccaromyces cerevisiae [35]. Finally, Section 5 concludes
the paper.

In this paper, we use the following notations:

1. N(xu, ¥) denotes the Gaussian probability density
function with mean © and covariance X.
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2. E4{-|u, £} denotes the Gaussian integral with respect
to N (x; i, ).

3. X represents the estimate of variable x , X = x — X is
the estimation error, and E[-] denotes the
expectation operation.

4. X! and X7 represent the inverse and transpose of
matrix X, respectively, and I,, denotes the
n-dimensional identity matrix.

2 Methods

2.1 Problem formulation and system model

Gene regulatory networks can be modeled as either static
or dynamic systems. In this paper, the state-space model
is used which is an instance of the dynamic modeling
and can effectively cope with time variations in the gene
expression data. Consider a GRN consisting of N genes.
Letgix,i=1,...,N,k=1,...,K denote the gene expres-
sion level for the ith gene at time step k where K is the
total number of data points available. Here, “time” is a
discrete index enumerating data points sampled at regu-
lar intervals. A well-adopted nonlinear model [25, 30] that
captures the gene interactions and the evolution of gene
expression values effectively is the discrete-time nonlinear
stochastic dynamical system which is proposed in [36] as
follows:

N N
Gi= Y ayg—1j+ Y byf @—1o 1) + o + ex—1i

j=1 j=1
Lj=1,...,N, k=1,...,K,

1)

where a;; is the linear regulatory coefficient from gene j to
gene i, bj; is the nonlinear regulatory coefficient from gene
j to gene i, N is the total number of genes in the gene net-
work, and f(g, t) is a nonlinear sigmoid function defined
as

1
fgwn = 11 ere (2)

e—1g’
with p being a parameter to be identified and Iy; being
the external bias on the ith gene. The noise vector e, =
lex1,exas .- exn]’ is Gausssian distributed with zero
mean and covariance matrix Q;(, fork=1,...,K.

The goal of inference is to estimate the parame-
ters (coefficients) of the model in (1), which form
the basis of the GRN. To that end, the state vec-
tor is concatenated with the model parameters to
form augmented state vector as follows. Denote
A :[an,...,alN,agl,...,agN,...,aNl,...,aNN]T,B =
[blll--'iblN’bZI’“-’bZNr- . -rbN1!~ . .,bNN]T,[L :[/Ll,

copndT and Ig =[o1,...,Jon]T and we denote
the expression level for all genes at time step k by
g =[gikr---> gN,k]T. Then, the augmented state vector
can be described by
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T
x 2 [gf, AT, BT, u7, 1} e ROV, 3)

The augmented version of the state transition equations
include (1) and the following

Ajjk = ijk—1> bijk = bijk—1,

. (4)
ik = Wik—1> loik = loik—1,5 j=1,...,N.

Succinctly, the state transition of the dynamic model is
written as

Xk = f (Xe—1) + Wi—1, (5)

where f(-) is the nonlinear function associated with
(2) and (4); wk = lex1,---,€xN>0,...,0] is the aug-
mented noise vector with covariance matrix Q; =
diag([Q/k 0,51 on2]), where 0, denotes an m x m all-zero
matrix.

The measured gene expression levels can be modeled as

2k = h(xg) + i, (6)

where z; is the output data from the experiments at time
k, h(xy) = g and v; € RN is Gaussian distributed noise
with zero mean and covariance matrix Ry € RN*N,

Now, we consider the case that some measurement out-
puts z, are missing and the estimation is made from the
available measurements, y;. We assume that z; is avail-
able. At time k = 2, if the measurement output is missing,
estimation is done with z; and at any time instant k > 3,
maximum of two consecutive time points may be miss-
ing. In summary, if z; is missing estimation is done with
zr_1 and if z;_; is unavailable, estimation is done with
Zg_o. Thus, the measurement output at each time can be
modeled as [27, 37]

min(k—1,2)

Yk = Z

d=0

Viza (k=1 (7)
with

v=1-c¢u vt =l — 1), and ¥ = sksk—1,
(8)

where ¢1 = 0, ¢ is a Bernoulli random variable with prob-
ability p(cx = 1)(k > 2) = q. Moreover, it is assumed that
X0, {wg, k > 0}, {vi, k = 1}, {sx, k > 2} are mutually inde-
pendent. Denote PZ (d = 0,1,2) as the probabilities that
measurements z, Zx_1, and z;_, are used at time k. Then,
we have

REPY =1 =Elyl=1-g
prEpyt =1 =Elyll=q1-9), ©9)
prEpyi =1 =Eil=4%

Finally, (5)—(8) describe the dynamic model we propose
for inferring GRNs with one-step or two-step missing
measurements.
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To estimate the GRN based on (5)—(8), we solve the opti-
mal filtering problem by finding the estimator E [x;|Y],
where Yy £ (Y1, - - -»Yk)- With the Bayes rule, the con-
ditional probability density function (PDF) p(x|Y), and
subsequently its first two moments, i.e., Xgx = E [x¢|Yg]
and PZTk = E [f(k‘kileka], are recursively obtained
through estimating the posterior predictive PDF of the
state ]o(xle/< 1) and the measurement p(yx|Yy—_1), where
X — X is the estimation error. For the purpose
of filtering, we will make use of the following Gaussian
assumptions:

X:

1. The one-step posterior predictive PDF of the state xj
conditioned on Y;_; is Gaussian, i.e.,
POk Yi—1) = N (6 Rek—1, Py 1) (10)

where

. - =T
Xik—1 = B [xa[Ye-1] Pri_1 =E [Xk|k—lxk|k_1|Yk—1] .

(11)
2. The one-step posterior predictive PDF of yi
conditioned on Y;_; is Gaussian, i.e.,
POYKIYi-1) = N Yrk-1, PZ‘Y,H), (12)

where

Yrik—1 = E [yx|Yi-1], ng_l =E [?k\k—1?121<_1|Yk—1] .
(13)

2.2 Gaussian approximation filters with missing
measurements

In this section, we briefly present the general GA filtering
framework for the PBGA filters with one-step or two-
step missing measurements for the state-space dynamic
model. In Additional file 1, we detail its derivation, we
review different numerical techniques for approximat-
ing multidimensional Gaussian weighted integrals that
involve nonlinear transformation of random vectors, and
we present the algorithm that implements the UKF ver-
sion of the filter. Given all the measurements up to the
present time in the system described in (5) and (6), the
standard Gaussian filter operates by updating only the
posterior PDF of the state, i.e., p(xx|Yx) [38]. However,
in the case that the measurements are randomly delayed
(or missing) by one or two sampling times as described
in (7), apart from p(xg|Yy), the posterior PDFs p(vg|Yk),
P(Xx—11Yx), and p(vk_1|Y) also must be updated. Specifi-
cally, substituting (6) and (8) into (7), we obtain

2
ye = velhGu—a) +Vi—al (k> 3). (14)

d=0
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Substituting (14) into (13) to incorporate the delayed
measurement in the GA filter, whereby ;x—; and Pﬁk—l
depend on the estimates X;_4 and V¢_4, d = 0,1,2. By
the Gaussian assumptions, it boils down to computing
the first two moments of p(vi_1|Yx—1), p(xx—2|Yx—1), and
P(Vk—2|Yk—1). This is achieved through augmenting the
state x; as follows:

a

Xk x7_
xz:[ }, sz[ kal}‘

Vi X

Given the Gaussian approximations to p(xg|Y),
PVEYr), p(xk—11Yk), and p(vk_1|Yx), the posterior PDFs
p(xz_1|Yk), p(xZ|Yk), and p(Xg|Yr) of the augmented
states xz_l, XZ’ and Xj; are approximated as Gaussian
respectively as

(15)

P(XZ,1|Y/<) = N(XZ 1;),\(Zfl|k’PZfI|k)’
P = N (X X P,

(16)

where

s I)XX PXV
24 _ |:X/<—1|k] paa k—1k - k—1lk
S T R AR L AR
. < T
with P/):‘i“k = E[Xk—l\kvk_l‘kwk] ,
(17)

A PXx PXv
24 |:)fkk ] ) P?cz _ klk . k|k ,
k| Vk\k <| (Pklk) Pk|k (18)

with Pﬁk = ]E[iklk{’/gUYk] ,

k—1lk
Xk

and

3€k|k = |:

As with the general GA filtering, the filtering procedure
consists of the state update and measurement update.

)T
k—1,k|k klk

aa aa
Pxx Pk 11k Pk 1,k|k
| klk — (Patl Pan 4
. ~ ~aT
with sz1,/<|1< = E[fol‘kleUYk] .

(19)

2.2.1 State update
Given the augmented state PDF p(X;_1|Yx—1) at time
k — 1, with its mean and covariance defined as

A X
k—2)k-1
Xp—1jk—1 = za !
k—1lk—1
aa
|:P1< k-1 P o k-1 1:|

PZ{%
a
(Pk 2,k—1]k— 1) Pk 1|k—1

k—1lk—1 —

with Py gy = E [ii—z\k—1’~‘Z—1\/<—1|Y/<—l] ’
(20)



Ogundijo et al. EURASIP Journal on Bioinformatics and Systems Biology (2017) 2017:2

the predicted conditional PDF is p(Xk|Yi-1) =
N (Xk; Xkjk—15 P,ﬁf_l), with

- ra

N Xe—11k—1
Xijk—1 = | Xik—1
0N><1
'Pi“uk 1 P kkc1 Oen2ian)xn
Pk\k = | ey e Df Plk—1 Opn243N)xN
L Onscon2+4an) Onxnz4sny R

(21)

where *Z_1|k_1 and P7? 1k_1 in (21) are available from
Xk—1jk—1 and P,af_xllk_l in (20), and

Xklk—1 = Eg{f(xk71)|£k71|k71,P/3(€xl|k b
Pkt = Eg{f (xe— DS (e DIXr_ 14— 1, DX 1k—1}
- Xklk—lxk|k_1 + Q-1

T % xx
PZ£1,/<|/<—1 = Eg{x¢_1/k— 1(Xk—1)|3€k—1\k—1’Pkfukq}

;T

sa
— Xp—11k— Xk\k 1

(22)
For the detailed derivations, see Additional file 1.

2.2.2 Measurement update

After obtaining the approximation to the predictive PDF
P(Xk|Yr—1), the Gaussian approximation of the aug-
mented state posterior PDF p(Xk|Yy) is obtained by the
Kalman filter equations:

i = Xppr + I<;§ (Y& — Vrlk—1)s

Yy X\ T
PR = PR — KPR (KO, (23)
_ Yy 1
Ki = Pk|k 11
where Kff is the Kalman gain and
min(k—1,2)
Yak-1= >,  Plk-ak-1,
d=0
min(k—1,2)
oo
Pk = Z v dik—1t
min(k—I,Z)
ds AT A T
Z Py Zk—dik—1Zk_gjg—1 — Yklk=1Yik—1)»
d=0
min(k—1,2)
Xy _ dpX
Parr = D PPk aur
(24)

The delayed/missing measurement statistics Zx_gjk—1,
77 Xz 3
Pe k-1 and P ka1 are defined as follows.
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Ford = 0:

A1 =Eglhi| Xxk—1, P21 b

Py =EglhCoh{ (901 k-1, PR 11— 2121 + R

PRt =Bt %4 () + Vi) T 1 X1, PR 1= k-1 251
(25)

ford = 1:

B 1ik—1 = EglhO_1 + vie DI Xkix-1, Pfjf_l},
PP 1 kmy = Bl (h0g—1) + Vi) Ur0—1) + Vi) |

5 XX 5 2T
xk|k—l1 Pk\k—l} = Zk=11k=1Zf—1|k—-1

Pljfli 1k—1 = Eg{Xie(h(xx—1) + V/<—1)T|£k\k—1»P/§|/§_1}
- 3€k|k—12,{‘k_1,
(26)

and ford = 2:

a1 = Eglh(xk—a + Vi) Xjk—1, Pﬁf_l},

PY ket = Bl (O 4+ vi—2) (h0x—2) +vi—2) |
Xk—1 PRI} — Braik—12f_yp 1
Egb¢_y2{_oYa 11 Ex 11, PRy )

T N
Eg{xkzk_2|Yk—1 |xk—l|k—1¢ Pl:f—xﬂk—l}
OnxN

PrF k1 =

5 AT
- xklk—lzk—mk—l'
(27)

The filtering estimate X, and covariance Pz)\(k of the sys-

tem state are obtained from ~%ka and Pk‘ i respectively.
(See Additional file 1 for derivations).

However, the Gaussian weighted integrals in (22)
and (25)-(27) contain nonlinear functions which ren-
der the analytical calculation infeasible and the algorithm
becomes intractable. To deal with this, we employ the
point-based numerical integration techniques, which is
presented in Additional file 1.

3 Results

We assess the proposed algorithm using both synthetic
data and real data. Gold standards or the ground-truths
are provided for both categories of data and the inferred
networks are “benchmarked” against the gold standards.
Benchmarking is done by counting the number of links
correctly predicted by the algorithm (true positives, TP),
the number of incorrectly predicted links (false positives,
FP), the number of true links missed in the inferred
network (false negatives, FN), and the number of cor-
rectly identified non-existing links (true negatives, TN).
Thus, the following performance metrics will be defined
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accordingly: true positive rate or recall also known as
the sensitivity (TPR = TP/(TP+FN)), positive predictive
value or precision (PPV = TP/(TP+FP)), and false posi-
tive rate (FPR = FP/(FP+TN), where specificity = 1-FPR).
All the metrics are computed for different thresholds
and the area under the receiver operating characteristic
(AUROC) curve and the area under the precision-recall
(AUPR) curve are estimated to illustrate the overall infer-
ence performance of the algorithms. As the inference
result comprises of the estimates of both the linear and
nonlinear regulatory coefficients among the genes, if at
least one of the regulatory coefficients between any two
genes is recovered, the link is designated as TP.

In addition, y; = z;; at time k = 2 the measurement
output can be missing by one-step; and at any time instant
k > 3 it can be missing by one-step or two-step. With the
prior knowledge of the number of missing data points to
be replaced in the experimental output, an estimate of the
value of g, the success probability of the Bernoulli vari-
able ¢x can be made. Specifically, if the number of missing
data points is less than 20% of the total number of data
points, a g value chosen in the interval [0.05, 0.2] is a good
choice. In our experiments, ¢ = 0.1, so that the proba-
bility that zj is used in the estimation is pg = 0.9, the
probability that z;_; is used in the estimation p,1< = 0.09,
and the probability that z;_ is used in the estimation is
p,z( = 0.01. In the remainder of this paper, we denote the
datasets that have no missing values as the complete mea-
surements (CM) and we demote the datasets with missing
but replaced data points as the missing measurements
(MM). The MM is created in the following manner: at
time k, if z; is missing and z;_; is available, we replace
z; with zg_1; otherwise, we replace z; with z;_5, as there
can be maximum of two consecutive missing data points
in the measurement.

3.1 Synthetic network

The synthetic network in Fig. 1a is assumed to have both
linear and nonlinear connections. The dynamics of the
network are based on the model given by (5)—(8), with
arrows denoting the direction of regulatory interactions.
The parameters of the network, i.e., the linear connection
coefficients (LCC) and the nonlinear connection coeffi-
cients (NCC), are given in the second column in Table 1
with the NCC in parentheses. The underlying zero-mean
Gaussian process noise has a covariance matrix Qx =
0.0041, and the zero-mean Gaussian measurement noise
has a covariance matrix Ry = 0.001L, k = 1,..., M. Time
series data are generated for a total of M = 50 time
points. To quantify the results more rigorously, we set the
noise threshold at 40% of the maximal variation for lin-
ear and nonlinear coefficients such that if an inferred link
is less than this threshold, it is considered noise and sub-
sequently filtered off. In the end, we come up with sparse
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networks and the TPR and PPV metrics are calculated for
the networks.

First, we supplied the CM data to the UKF algorithm.
The inferred model parameters are shown in the third
column in Table 1, with the NCC in parentheses. The
corresponding network is displayed in Fig. 1b where the
solid edges indicate the inferred linear connections and
the dashed edges indicate the inferred nonlinear connec-
tions. Next, we create the MM data by removing data
points 10, 11, 25, 35, 36, and 40 from the time series data;
the removed data points are then replaced accordingly. To
investigate the impact of missing data points on the per-
formance of inference algorithms, we supplied the MM
data to the UKF algorithm. The inferred model parame-
ters are shown in the fourth column in Table 1 and the
network structure is shown in Fig. 1c. The black dotted
arrows indicate the false positives, i.e., incorrectly pre-
dicted links. Finally, using the same MM data we tested the
proposed UKF with one-step or two-step missing mea-
surements (UKFMM). The inferred model parameters are
shown in the fifth column in Table 1 and the inferred
network is displayed in Fig. 1d. It is observed that the
missing data points have great impact on the performance
of the UKF algorithm; whereas the proposed UKFMM
algorithm can deal with the missing data effectively by dis-
playing a robust performance which is in fact at par with
the performance of the UKF with CM. To average out
the influence of random data deletion, we run the experi-
ment 1000 times, where at each run, we randomly deleted
up to five data points, with maximum of two consecutive
data points, and replaced the deleted data points in similar
manner as described above. For all the runs, we record the
TPR and the PPV, and the average TPR and PPV with their
standard deviations (shown in parentheses) are shown in
Table 2.

3.2 DREAM4 in silico gene regulatory networks

In order to assess the performance of GRN inference
algorithms, several in silico gene networks have been pro-
duced as the benchmarking data sets, specifically, the
DREAM in silico gene networks [39-41]. We made use of
the 10-gene networks by the DREAM4 challenge to test
the efficacy of the proposed algorithm. All networks and
data were generated with version 2.0 of GeneNetWeaver
(GNW) [42]. In total, there are five separate networks,
each with 10 genes, whose topologies were extracted from
the known GRNSs in Escherichia coli and Saccharomyces
cerevisiae. The time series measurements were gener-
ated using parametrized stochastic differential equations
(SDEs), with observations uniformly sampled (21 time
points, single replicate) under five different perturba-
tions, for a total of 105 observations per gene. The
inference is performed by using all the perturbations. Self-
interaction/autoregulatory edges were not expected in the
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Fig. 1 Synthetic network. Solid black edges denote the linear connections, dashed blue edges denote the nonlinear connections, and the dotted red
arrows indicate false positives. a Gold standard for the synthetic network. b Inferred linear and nonlinear connections by the UKF with CM. ¢ Inferred
linear and nonlinear connections by the UKF with MM. d Inferred linear and nonlinear connections with the proposed UKFRMM with MM

predictions and were subsequently removed. Since the We first test the UKF algorithm on the five 10-gene
number of possible edges in an N-gene network without network data sets (CM) and the result is shown in col-
autoregulatory interactions is N(N — 1), the length of a  umn 2 in Table 3. To average out the influence of random
complete list of predictions is 90 edges for a network of  data deletion, we ran 1000 experiments where at each run,

size 10 [33, 34].

Table 1 Network parameters for the synthetic network

we created the MM by randomly deleting up to five data

Edge LCC and NCC UKF with CM UKF with MM UKFMM with MM
an 0.5(04) —  (0.5880) - = 07313 —
(€3)) 05 (04) 0.3837 (0.4391) 0.7357 (0.5043) 04079 (0.4223)
(32 0.5 (0.4) 0.7380 (0.4390) - — 0.7380 (0.4192)
35 05 (04) 0.6098 (0.4391) 0.6623 (0.5043) 0.8285 (0.4354)
“3) 05 (04) 0.7257 (0.3059) 0.3953 (0.2123) 0.7256 (0.3235)
(52) 05 (04) — (03837 - = — (03235
(54) 05 (0.4) 0.6677 (0.3839) 0.5813 (0.3706) 0.7850 (0.3464)
(4,4) - - - — —  (0.8417) — —
(5,1) - — - - — (0.5916) — —
(5,5) - — - — — (0.3705) — —
(1,5) - - - — - — 0.5722 —

Parameters of the synthetic network and the networks inferred by the UKF algorithm with CM, UKF algorithm with MM, and the proposed UKFMM with MM. The bold edges

do not exist in the original network. The false negatives are represented by (non-bold) dashes, and false positives are given in bold numbers



Ogundijo et al. EURASIP Journal on Bioinformatics and Systems Biology (2017) 2017:2

Table 2 Average TPR and PPV for the synthetic network
(standard deviations are shown in parentheses)

UKF with CM UKF with MM UKFMM with MM
TPR 1.00 048 (0.035) 0.91(0.017)
PPV 1.00 0.53 (0.028) 0.86 (0.013)

points, with maximum of two consecutive data points,
and replaced the deleted data points accordingly. For each
run, we fed both the UKF and the proposed UKFMM algo-
rithms with the MM and we record the average AUROC
and AUPR scores for each of the five networks, where
the empirical averages and standard deviations over 1000
experiments are shown in columns three and six, respec-
tively in Table 3. Again, it is seen from Table 3 that the
proposed UKFMM algorithm is robust against the miss-
ing data conditions where it can infer the network as
accurately as the UKF algorithm that uses the CM.

We also compared our algorithm against a relevant
computational method designed for the GRN network
inference, i.e., [43], which is based on the use of Bayesian
analysis with ordinary differential equations (ODEs) and
non-parametric Gaussian process, an algorithm referred
to as GP4GRN. The inference result of GP4GRN with
CM is shown in the fourth column in Table 3. Similarly,
we tested GP4GRN with the MM where we ran 1000
experiments. At each run, we created the MM by ran-
domly deleting up to five data points with maximum of
two consecutive data points and replaced the deleted data
points accordingly. The averages and standard deviations
of AUROC and AUPR are obtained and the correspond-
ing results are summarized in the fifth column in Table 3.
We conclude that the GPAGRN method has comparable
performance to the UKF in all data sets, and similarly it is
outperformed by the proposed UKFMM algorithm under
missing data conditions.

3.3 Saccharomyces cerevisiae IRMA network

Saccharomyces cerevisiae GAL network in yeast is one of
the most prominent model systems due to its importance
for the studies of eukaryotic regulation and relatively self-
contained nature [44—47]. A synthetic GRN that contains

Table 3 AUROC and AUPR curves for the DREAM4 networks
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5 genes has previously been constructed in the budding
yeast [35]. In the well studied network, popularly referred
to as in vivo reverse engineering and modeling assessment
(IRMA) network, each of the genes regulate at least one
other gene in the network. Expression within the network
is activated in the presence of galactose and then switched
to glucose to obtain the switch-off data which represents
the expressive samples at 21 time points. The switch-on
data consists of 16 sample points and is obtained by grow-
ing the cells in a glucose medium and then changing to
galactose.

The true interactions is shown in Fig. 2a. The real bio-
logical data is first supplied to the UKF algorithm and the
inferred network is shown in Fig. 2b. As standard, some
data points are randomly discarded from the input and
they are replaced accordingly to generate the MM. The
UKEF and the proposed algorithm UKFMM are tested on
the generated data set (MM) and the inferred networks are
shown in Fig. 2¢, d, respectively, and the corresponding
results are summarized in Table 4. Again, on the miss-
ing data condition, the proposed algorithm shows a better
performance compared to the UKF. In addition, we also
test the GP4AGRN algorithm with both CM and MM and
the results are presented in the fourth and fifth columns in
Table 4, which further affirms the impact of missing mea-
surements in the GRN inference methods and the relative
robustness of the proposed UKFMM algorithm.

4 Discussion
This work presents a novel algorithm for GRN infer-
ence from time-series gene expression data with one-
step or two-step missing measurements. Gene regulation
is assumed to follow a nonlinear state evolution model
described in (1). The parameters of the model, which are
assumed to be the regulatory coefficients between the
genes, are estimated with a modified unscented Kalman
filtering algorithm. We considered the experimental sce-
narios that lead to total loss of expression values for all
genes at a particular time point or few successive time
points which may significantly diminish the performance
of GRN inference algorithms.

In the proposed algorithm, the state vector which is the
gene expression at each time point in (1) is concatenated

UKF with CM UKF with MM GP4GRN with CM GPAGRN with MM UKFMM with MM
N1 [0.63] [0.42] [0.44(0.024)][0.24(0.020)] [0.66] [0.42] [0.42(0.027)][0.29(0.021)] [0.61(0.015)][0.42(0.008)]
N2 [0.67] [0.49] (0.48(0.018)1[0.26(0.017)] [0.69] [0.44] (0.44(0.015)1[0.28(0.018)] [0.64(0.013)][0.44(0.011)]
N3 [0.72] [0.50] [0.45(0.020)][0.30(0.012)] [0.70] [0.47] (0.50(0.022)1[0.33(0.016)] [0.72(0.021)][0.53(0.012)]
N4 [0.75] [0.52] [0.56(0.019)1[0.28(0.011)] [0.62] [0.35] [0.36(0.031)][0.25(0.027)] [0.72(0.009)1[0.50(0.010)]
N5 [0.81] [0.44] [0.53(0.021)1[0.26(0.019)] [0.86] [0.65] [0.55(0.022)][0.40(0.019)] [0.80(0.012)1[0.42(0.014)]

Column 1 shows the network number. In columns 3, 5, and 6, average AUROC and average AUPR are presented in the square brackets and the standard deviations are in

parentheses
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MM. d Inferred yeast network by the proposed UKFRMM with MM

Fig. 2 Yeast network. Solid black edges denote the combined linear and nonlinear connections, the true positives. The dotted red edge is a false
positive. a Gold standard/ground-truth for the yeast network. b Inferred yeast network by the UKF with CM. ¢ Inferred yeast network by the UKF with

with the model parameters and an augmented state vector
in (3) is defined for the joint estimation of gene expression
values and system parameters. We consider the possibil-
ity that each real measurement is randomly missing and
the estimation is made from the available measurements.
The use of the UKF, an instance of the PBGA filters, for
the state and parameter estimation renders the algorithm
computationally efficient and capable of working offline
or online (when all the measurements are readily available,
or they become available successively, respectively). The
proposed algorithm is tested on both synthetic and real
biological data to evaluate the efficacy of the predictions.
From the series of results obtained for both synthetic data
and the real biological data, we conclude that the gene net-
work structure can be inferred from time series data with
missing values.

In this paper, we have applied the proposed algorithm to
the time series data generated from the DNA microarray
because to our best of knowledge, DNA microarray is still
of interest in transcriptome profiling due to its reduced
cost and widespread use as compared to the RNA-seq.
In addition, it has been shown that there is there is high

Table 4 AUROC and AUPR curve for the yeast networks

correlation between the gene expression profiles gener-
ated between the DNA microarray and RNA-seq [48, 49].
Hence, the proposed method can easily be extended to
time series gene expression data from RNA-seq.

In general, this work addresses the possibility of having
one-step or two-step missing expression values by consid-
ering them as the delayed observations of the full set
of genes. Future work will focus on the inference of the
structure of a (potentially larger) network by incorporat-
ing a general s-step missing values for s-consecutive time
points, which may address more complex missing data
scenarios.

5 Conclusions

Time series gene expression data be modeled with state-
space model and the model parameters can be estimated
using different GA filters. Unfortunately, there are situa-
tions which result in loss of expression values for all genes
at a particular time point or few successive time points.
In this case, conventional filtering approach fails to cor-
rectly estimate the model parameters, which are used to
elucidate the underlying GRN. We have proposed PBGA

UKF with CM UKF with MM GP4GRN with CM GP4GRN with MM Proposed UKFMM
AUROC curve 0.70 042 0.76 0.49 0.68
AUPR curve 0.46 0.34 0.57 0.38 0.46
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filters that treat the missing measurement values as a
set of delayed measurements and demonstrated that the
modified filter can estimate the model parameters, with
missing measurements, as accurate as the conventional
filter with no missing measurements.

Additional file

Additional file 1: Supplemental Material for “Reverse engineering gene
regulatory networks from measurement with missing values”. (PDF 207 kb)
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