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Abstract

Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and
healthcare systems. A significant amount of research has been done on healthcare systems based on supervised
learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using
semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related
statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible
medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the
availability of labeled training data required for supervised learning, and therefore offers the major advantage of
flagging any unusual and visually observable symptoms.

Keywords: Computer vision, Imbalanced dataset, Anomaly detection, Semi-supervised Learning, Classification,
Clinical informatics

1 Introduction
Previous works based on machine learning and com-
puter vision [1–4] have shown the commercial potential
and the practical value of symptoms detection and clas-
sification using computing devices. A generalized algo-
rithm is useful as an independent step before higher-
level algorithms like recognition and prediction; the
existing recognition algorithms are usually based on as-
sumptions and trained for specific symptoms, therefore
the performance and utility are constrained by lacking
training data of unusual symptoms.
We propose to adopt semi-supervised anomaly detec-

tion combining with computer vision features extracted
from normal faces datasets to produce a reliable mech-
anism of detecting and classifying abnormal symptoms
that are visually observable from faces.
This study makes several contributions, including

1) Analyzing and quantifying common facial features
which are generally shared among human beings
regardless of race, gender and age. The data and
results are produced upon applying computer vision
algorithms and statistical analysis on faces databases
[5]. The actual data in use include more than 8200

frontal face images following gender, age, and race
distributions of the adult U.S. population [5].

2) Detecting and categorizing suspected illness features
on the testing data by adopting the semi-supervised
outliers based on the statistical facts obtained from
normal faces dataset. The illness featuring data are
collected from UCSD School of Medicine and VA
Medical Center [6], The Primary Care Dermatology
Society [7], and other multiple online resources [8].
The testing dataset is consisted of 237 pictures of
more than 20 diseases (Central CN 7 Palsy, Cervical
Adenopathy, Hematoma of the Scalp with Cellulitis,
Parotitis, Peripheral CN7 Palsy, Submandibular
Abscess, Zoster and Cellulitis, Corneal Ulcer,
Cyanosis, Extraocular Muscle Entrapment (Inf
Rectus), Horner's Syndrome, Icterus, Muddy Brown
Sclera, Periorbital Cellulitis, Periorbital Echymosis,
Scleritis, Subconjunctival Hemorrhage and different
types of Acnes) which can be reflected as abnormal
facial features under a variety of different conditions,
and 237 pictures of normal randomly picked from
databases [9–13].

3) Unifying multiple symptom-detecting processes for
different diseases into one automatic procedure by a
relatively simple implementation, such that the
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recognition of specific diseases can be isolated as an
independent module with less assumptions.

Figure 1 displays the workflow of the proposed
methods.
The results of this research are expected to be a prac-

tical tool for preliminary diagnosis. It could be used as a
component of health systems and increase the efficiency
of treatment process and makes use of previously unused
data. It is important to note that the algorithms intro-
duced in this paper are intended to be a supplementary

tool for existing medical assessment and treatment mech-
anisms, not a replacement.

2 Related Works
Early works investigated the utility of systems based on
supervised learning, which provide gratifying perform-
ance but also require significant feature engineering and
high quality training data. Quentin Ferry et al. introduced
SVM classifier and PCA to extract phenotypic information
from ordinary non-clinical photographs to model human
facial dysmorphisms in a multidimensional 'Clinical Face

Fig. 1 The proposed framework adopting our methods: training data processing and feature extracting are introduced in section 3.1 and 3.2;
detecting process running on testing dataset is introduced in section 3.3

Fig. 2 An example of data labeling process by ASMs. Bounding boxes on facial components were applied to increase the precision of the
ASMs algorithm
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Phenotype Space' [1]; Jane Reilly Delannoy and Tomás E.
Ward proposed a computer vision based system for auto-
matically measuring patients’ ability to perform a smile
[2], where the degree of facial paralysis can be identified
with the aid of Active Appearance Models; Mingjia Liu
and Zhenhua Guo introduced an approach to detecting
jaundice by investigating skin color with reasonable accur-
acy [3]; Lilian de Greef et al. introduced a system on mo-
bile phone to monitoring newborn jaundice by analyzing
the skin conditions of infants along with color calibration
cards [4]. Compared to previous works, our methods
focus on detecting and classifying ill faces without assum-
ing specific targeting symptoms by adopting semi-
supervised anomaly detection.

3 Approaches
For the purpose of detecting multiple symptoms and the
future extensibility of our algorithm, we avoided using
techniques which are sensitive to specific symptoms
only, like the House-Brackman scoring system [2]; in-
stead, we relied on studying the statistical models of
general facial features, e.g. color and proportion, as those
are likely to be distorted by infections and disorders.
Machines perform more sensitive to the eccentricity of
statistical data than human beings do, therefore the de-
pendency on special calibrations, like House-Brackman
scoring system mentioned above, can be reduced and re-
placed by those general calibrations with a relatively low
cost.

Fig. 3 Two examples of hand labeled data for faces with symptoms. Hand labeling followed the same criteria of the ASMs algorithms

Fig. 4 A set of binary features on a face corresponding to left eye, right eye, face contour, upper lip, lower lip and nose
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3.1 Data Collecting and Labeling
The training dataset is composed of 8278 pictures of
normal frontal face images [5] following gender, age, and
race distributions of the adult US population [5]; we fur-
ther collected 237 pictures of faces with symptoms [6–8]
paired with 237 pictures randomly picked from normal
face datasets [9–13] as our testing dataset.

3.1.1 Training Dataset
The training dataset is composed of 8278 pictures of
normal frontal faces [5]. We used active shape models
(ASMs) to label this dataset. The algorithm adopted in
this study is a reimplementation of Face Alignment by
Explicit Shape Regression [14], licensed by MIT. The

version of Face Alignment algorithm used in this experi-
ment is trained by the Helen Database [15] with 194
landmarks.
Figure 2 displays an example of data labeling process

by ASMs for our training dataset.

3.1.2 Testing Dataset
The testing dataset is composed of 237 pictures of ill
face [8] expanded from from UCSD School of Medicine
and VA Medical Center [6] and The Primary Care
Dermatology Society [7] and 237 pictures randomly
picked from normal faces datasets [9–13]; 474 pictures
in total. 20 diseases are featured in this dataset (Central
CN 7 Palsy, Cervical Adenopathy, Hematoma of the
Scalp with Cellulitis, Parotitis, Peripheral CN7 Palsy,
Submandibular Abscess, Zoster and Cellulitis, CN3
Palsy, Corneal Ulcer, Cyanosis, Extraoccular Muscle En-
trapment (Inf Rectus), Horner's Syndrome, Icterus,
Muddy Brown Sclera, Periorbital Cellulitis, Periorbital
Echymosis, Scleritis, Subconjunctival Hemorrhage and
different types of Acnes).
Source URLs for our collected testing dataset [8] were

converted to shortened versions for the purposes of pub-
lication using TinyUrl (http://tinyurl.com/). The links

Table 1 Variants for the outlier detection algorithm, with their
mean values and corresponding standard deviation

Variant μ δ

1 α(Eye)/Σ(Eye) 138.426 12.412

2 β(Eye)/Σ(Eye) 138.214 13.345

3 α(Lip)/Σ(Lip) 150.725 9.752

4 Σ(LFace)/ Σ(RFace) 0.962 0.186

5 Σ(LEye)/ Σ(REye) 0.958 0.071

6 H(Face) 2.233 3.141

Fig. 5 Two sets of features for Variant 6. 1st row illustrates the CIELAB features and their clusters of a normal face; 2nd row illustrates the CIELAB
features and their clusters of a face with acne. Yellow circles are the results of applying Size Invariant circle detection. For above examples, 0
circle was found for the normal face; 119 circles were found for the acne featuring face
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provided are expected to decay with time and should
only be considered exemplars of database composition.
We paired 237 pictures of face with symptoms with

equal amount of normal faces data because we had no
information about the prior probabilities of various dis-
eases. On the other hand, it is common to evaluate the
performance of a system by assuming an equal prior
when the actual prior is highly skewed because a trivial
classifier that always predicts the popular class will
seemingly do extremely well.
The 237 pictures of face with symptoms in the testing

dataset were hand labeled. Most of those images were
collected along with mosaics or clipped to protect per-
sonal privacy; therefore, ASMs were not applicable to
them. Applying ASM algorithm on images with those
unpredictable conditions is another different challenging
problem. Since it is not directly related to the challenge
addressed in this paper, we decided to hand label this
testing dataset for simplifying purpose. We plan on ad-
dressing this problem in future work.
Hand labeling mostly followed the same criteria of

ASMs algorithm used in training dataset; we did not
label the features were not observable, for example, eyes
covered by mosaic; we labeled the skin area only if no
common facial feature in the image.
Figure 3 displays two examples of hand labeled data in

our testing data set.

3.2 Feature Extraction
The labels we made in the pictures of the training data-
set and the testing dataset suggested the polygons that
bounded all related pixels for certain face components,
for example, left eye and lips. For each set of labels, we
obtained its binary imaging to represent its correspond-
ing facial component.
Because of the limits of the ASMs with 194 landmarks,

some labels overlapped with each other, therefore one
pixel could be incorrectly presented in more than one
binary feature; for example, the upper lip might share re-
gions with the lower lip. The overlapping pixels usually
represent neither lips, but the teeth and tongue on a
smiling face, which are not the region of interest in our
experiments. To avoid including errors, we further sani-
tized the features by removing those overlapping pixels.
We transformed the original picture from the RGB

color space into the CIELAB color space. The A channel
and B channel of CIELAB color space allows an approxi-
mately linear scale describing the redness and yellowness
of the features to flag the potential symptoms on faces.
Combining with extracted binary features, we could have
a better understanding of the size, color, proportion and
even relative position of those face components.
For one picture of a face, we extracted six possible bin-

ary features: face/skin, upper lip, lower lip, nose, left eye

and right eye (Fig. 4). The extracted binary features ob-
tained from labeled data were used in future steps to
generate variants for anomaly detection algorithm.

3.3 Anomaly Detection
Because the prior probabilities of diseases were un-
known, we instead assumed Guassian distribution on
the features of our normal face data in this preliminary
study. We defined an outlier as one observation contain-
ing at least one variant that appearing to deviate mark-
edly from the obtained mean value of the samples in the
training dataset.

Table 2 Statistical results collected by choosing thresholds from
t = 0.0 to 3.0

t = TP FP Precision Recall Accuracy F-1

0.0 237 237 0.500 1.000 0.500 0.667

0.1 237 237 0.500 1.000 0.500 0.667

0.2 236 237 0.499 0.996 0.498 0.665

0.3 232 235 0.497 0.979 0.494 0.659

0.4 231 229 0.502 0.975 0.504 0.663

0.5 229 221 0.509 0.966 0.517 0.667

0.6 222 186 0.544 0.937 0.576 0.688

0.7 218 175 0.555 0.920 0.591 0.692

0.8 216 154 0.584 0.911 0.631 0.712

0.9 212 125 0.629 0.895 0.684 0.739

1.0 209 110 0.655 0.882 0.709 0.752

1.1 207 97 0.681 0.873 0.732 0.765

1.2 200 77 0.722 0.844 0.759 0.778

1.3 196 71 0.734 0.827 0.764 0.778

1.4 191 65 0.746 0.806 0.766 0.775

1.5 186 58 0.762 0.785 0.770 0.773

1.6 183 40 0.821 0.772 0.802 0.796

1.7 176 35 0.834 0.743 0.797 0.786

1.8 171 33 0.838 0.722 0.791 0.776

1.9 163 25 0.867 0.688 0.791 0.767

2.0 160 22 0.879 0.675 0.791 0.764

2.1 157 19 0.892 0.662 0.791 0.760

2.2 155 18 0.896 0.654 0.789 0.756

2.3 151 17 0.899 0.637 0.783 0.746

2.4 145 14 0.912 0.612 0.776 0.732

2.5 144 13 0.917 0.608 0.776 0.731

2.6 141 10 0.934 0.595 0.776 0.727

2.7 139 9 0.939 0.586 0.774 0.722

2.8 136 5 0.965 0.574 0.776 0.720

2.9 134 5 0.964 0.565 0.772 0.713

3.0 133 4 0.971 0.561 0.772 0.711
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3.3.1 Variants Selection and Extraction
Table 1 illustrates the variants we used in the outlier de-
tection and their statistical summarization obtained. For
abbreviation, α represents the aggregate value of the CIE-
LAB alpha channel (red-green channel) of the feature; β
represents the aggregate value of the CIELAB beta chan-
nel (yellow-blue channel) of the interested feature; Σ rep-
resents the total count of all the pixels belonging to the
feature; H is the process of applying the well-known
Hough Transform on the CIELAB feature of the skin area,
and then further applying a counting function to count
how many circular structures we found; the mechanism is
based on Size Invariant Circle Detection [16].
For Variant 4, the middle line of a face was defined as

the line passing through the middle label of the nose
and the middle label of the face contour because the la-
bels of ASM algorithm were indexed.
For Variant 6, the K-Means Clustering algorithm was

applied on the CIELAB feature before applying size

invariant circle detection in our experiments. The clus-
tered features of symptom featuring faces are usually
rigid; we further applied Hough Transform on the clus-
ters to find potential circular structures.
Figure 5 displays a comparison of exploring Variant 6

on a normal example and an abnormal example.
In Table 1, Variants 1–3 reflect the color properties

(average color); Variants 4–5 reflect the proportion
properties; Variant 6 reflect any other special features
that one normal face should not contain.
The values of those variants listed in Table 1 can

be easily computed by investigating binary features
and the corresponding CIELAB feature. We further
summarized the mean values (μ) and standard devia-
tions (δ) of the data in training dataset. An outlier is
hence defined as a variant whose value is not in μ ±
t × δ, where t is the multipler we used to tighten the
degree of normality. We applied the threshold μ ± t
× δ on our observations with assumed distribution

Fig. 6 The ROC curve computed by statistical data in Table 2, and its statistical summary

Fig. 7 True positive examples flagged by the outlier detection. Left: Periorbital Cellulitis; right: Cyanosis
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function and eventually divided the testing dataset into
flagged group and unflagged group with respect to differ-
ent t values.
For those data with no certain binary features because

of the data quality issue, some variants were not applic-
able, e.g.,Variant 1 (the redness of eye) could not be ap-
plicable because no corresponding binary feature of eyes
was available for this picture. In addition, color related
variants require colored images; proportion related vari-
ants require frontal face images.

4 Results
In this study, we picked the threshold t from t = 0.0 to t
= 3.0, with the interval of 0.1, 31 sets of experiments in
total. The statistical results are shown in Table 2.
We collected 60 pictures of 20 different diseases from

UCSD School of Medicine and VA Medical Center [6]
and The Primary Care Dermatology Society [7] as our
starting point, and then expanded this dataset by collect-
ing the images with the same descriptions from other
online resources. We eventually obtained 237 pictures of
faces with symptoms [8]. In this way the professional
suggestions and symptom descriptions [6, 7] are also ap-
plicable to this expanded dataset.

Figure 6 displays the ROC curve computed with the
31 sets of experiments displayed in Table 2, using the
maximum likelihood fit of a binormal model [17]. The
fitted ROC Area (AUC) is 0.846; the Area under curve
(AUC) evaluates the overall performance of the algorithm.
Figures 7 and 8 display some examples of the detec-

tion of the true positive data.
Figure 7 displays two outliers at t = 1.0 captured be-

cause of color information; the left picture was flagged
as an outlier by Variant 1 (i.e., redness of eyes, value =
168); the right picture was flagged as an outlier by Vari-
ant 3 (i.e., lips color, value = 139).
Figure 8 displays two outliers at t = 1.0 captured because

of proportion information; the left picture was flagged as
an outlier by Variant 5 (i.e., proportion of eyes, value =
3.03); the right picture was flagged as an outlier by Variant
4 (i.e., proportion of face, value = 1.71).
We also recorded the variant flagged each outlier

and the its value; we compared these factors with the
ground truth; the flagged cases were counted as true
positive reports reflected in Table 2 only if the vari-
ants matched the ground truth; we further classified
these true positive reports into multiple categories by
the reporting variants. The results were displayed in
Table 3.

Fig. 8 True positive examples flagged by the outlier detection. Left: Periorbital Cellulitis; right: Cervical Adenopathy

Table 3 Six categories corresponding to their flagging reasons

Flagging Reason Suspected Symptoms

Category 1 Variant 1 > μ + t × δ Scleritis, Subconjunctival Hemorrhage, Corneal Ulcer, Extraocular Muscle Entrapment
(Inf Rectus), Muddy Brown Sclera, Periorbital Cellulitis, Periorbital Echymosis

Category 2 Variant 2 > μ + t × δ Icterus

Category 3 Variant 3 < μ + t × δ Cyanosis

Category 4 Variant 4 > μ + t × δ or Variant 4 > μ - t × δ Central CN 7 Palsy, Cervical Adenopathy, Parotitis, Peripheral CN7 Palsy,
Submandibular Abscess

Category 5 Variant 5 > μ + t × δ or Variant 5 > μ - t × δ Central CN 7 Palsy, Peripheral CN7 Palsy, Extraocular Muscle Entrapment (Inf Rectus),
Horner’s Syndrome, Periorbital Cellulitis, Periorbital Echymosis

Category 6 Variant 6 > μ + t × δ Acnes, Hematoma of the Scalp with Cellulitis, Zoster and Cellulitis

Each flagged outlier was classified into one of the six categories according to its reporting variant. Although most of the categories contain more than one
suspected symptoms, the classified category helps to narrow down the possible medical reasons of the anomaly detection

Wang and Luo EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:13 Page 7 of 8



5 Conclusions and future Works
For the purpose of our study, a dataset containing a wide
range of diversities of symptoms with roughly equal
amount of each is required for testing; similar data scar-
city challenge is also faced by many other studies on
image recognition-based diagnosis [1–4]. We address
this problem by using semi-supervised anomaly detec-
tion which produced promising results. Given the diver-
sity, imbalance, and noise in the dataset, as well as a
simple methodology, the statistical results we achieved
in this study confirm the promise of our approach and
future possibilities.
However, semi-supervised learning also restrained the

performance. Algoritms for medical usages often require
high recall with relatively high precision, which is still
beyond the overall summary statistics of our current
methods. There are other semi-supervised anomaly de-
tecting mechanisms could be used [18]. We investigated
Gaussian Model-Based detecting mechanism in our pre-
liminary study; applying other semi-supervised anomaly
detecting models on our variants should result in similar
performance. We plan to improve the performance of
our algorithm in future work.
The better results could be obtained by combining

multiple variants; as implied in Table 3, some diseases
have symptoms reflected by multiple variants. However,
it would be nontrivial to learn such correlation for the
number of variants without supervision. Given that our
proposed system is motivated by avoiding using expen-
sive supervised learning, exploiting the correlation be-
tween multiple variants is out of the scope of this study.
Our algorithm can be integrated into a multi-cue diag-

nosis system, i.e. Visual Clinial Decision Support System
(CDSS), to help a clinician make a final, reliable diagno-
sis decision combining with temperature, lab test and
other observations. We have initiated some collabora-
tions on automated skin lesion characterization in the
context of CDSS; we plan to deploy our methods to in-
dustrial pipelines to validate and improve our methods.
The anomality detecting mechanism introduced in this
study can also be extended to assist other health related
research like detecting and recognizing psycho-
behavioral signals [19]. In addition, while our study fo-
cuses on the faces, the algorithm itself is readily ex-
tended to body and limbs.
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