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Abstract

By 2050, it is estimated that the number of worldwide Alzheimer's disease (AD) patients will quadruple from the
current number of 36 million, while no proven disease-modifying treatments are available. At present, the underlying
disease mechanisms remain under investigation, and recent studies suggest that the disease involves multiple
etiological pathways. To better understand the disease and develop treatment strategies, a number of ongoing studies
including the Alzheimer's Disease Neuroimaging Initiative (ADNI) enroll many study participants and acquire a large
number of biomarkers from various modalities including demographic, genotyping, fluid biomarkers, neuroimaging,
neuropsychometric test, and clinical assessments. However, a systematic approach that can integrate all the collected
data is lacking. The overarching goal of our study is to use machine learning techniques to understand the relationships
among different biomarkers and to establish a system-level model that can better describe the interactions among
biomarkers and provide superior diagnostic and prognostic information. In this pilot study, we use Bayesian network

(BN) to analyze multimodal data from ADNI, including demographics, volumetric MRI, PET, genotypes, and
neuropsychometric measurements and demonstrate our approach to have superior prediction accuracy.
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1 Introduction
Alzheimer’s disease (AD) is a highly prevalent neurode-
genrative disease and is widely recognized as a major,
escalating epidemic and a worldwide challenge to global
health care systems [1]. Considerable research efforts have
been devoted to establish a disease model of AD that
could lead to greater understanding of the events that
occur in AD. One major development is the A3 hypoth-
esis that assumes AD begins with abnormal processing
of transmembrane A3 precursor protein (APP). Such a
malfunction of the APP metabolism will in turn trigger a
series of pathological events, resulting in the toxic beta-
amyloid plaque in the human brain which is one defining
characteristic of AD.

This disease model has been articulated in Jack et al.
[2] who presented a hypothetical model for biomarker
dynamics in AD pathogenesis. The model begins with
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the abnormal deposition of A} fibrils, as evidenced by
a corresponding drop in the levels of soluble Af342 in
cerebrospinal fluid (CSF) and increased retention of the
amyloid positron emission tomography (PET) radioac-
tive tracers in the cortex. Subsequently, neurodegen-
eration and synaptic dysfunction follows, indicated by
increased levels of CSF tau protein, brain atrophy, and
decreased glucose metabolism measured using ['8F]-
fluorodeoxyglucose (FDG) PET. As neuronal degenera-
tion progresses, atrophy in certain areas typical of AD
such as the hippocampus regions becomes detectable
by magnetic resonance imaging (MRI). So far, Jack’s
model has been widely studied, confirmed, refined, and
enriched. While many details in the disease model are still
unknown, investigators from academia and the pharma-
ceutical industry have been actively developing biomark-
ers to gain better and more accurate knowledge of the
mechanisms of AD pathogenesis and progression to facil-
itate a range of clinical tasks such as early diagnosis,
treatment efficacy evaluation, treatment planning, better
clinical trial design, and drug developments.
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While most of the existing efforts mentioned above
focus on single modality of biomarkers, recently, there
have been a few studies that proposed to study many
biomarkers of heterogeneous nature jointly. For instance,
Ye et al. [3] integrated multiple complementary data
and initiated the work to use the multiple kernel learn-
ing method for multimodal integration for AD research.
Zhang et al. did a sequence of work on multimodal classifi-
cation [4] and regression [5] based on multimodality data
and achieved better prediction accuracy than those mod-
els with a single biomarker. However, most of these works
focus on prediction. Less effort has been devoted to study
the interactions of these multimodal biomakers for better
understanding of the disease as a whole.

Thus, in our study, we take a systematical perspec-
tive to study patterns of disease progression. We take
into consideration multimodal biomarkers such as APOE
(apolipoprotein E) genotypes, SNP variants, demograph-
ics, FDG-PET, amyloid PET, MRI, and neuropsycholog-
ical assessment. We adopt a powerful machine learning
model, the Bayesian Network (BN), as the major tool
for studying the influential relationships among the vari-
ables. A main premise of using BN model for multimodal
biomarker integration is that it could provide more details
regarding the potential mechanism of the disease pro-
gression than those black-box prediction models [3-5].
Specifically, while the existing black-box prediction mod-
els throw in all the multimodal biomarkers as predic-
tors parallel in the prediction equation regardless of
their heterogeneous clinical nature, their clinical roles
are not revealed since each biomarker is assigned with a
quantitative weight in the prediction equation that only
determines whether or not the biomarker is important.
Moreover, this weight is not an absolute presentation of
evidence, as it is essentially a multivariate concept that
depends on the existence of other biomarkers in the
equation. This results in the risk of excluding impor-
tant biomarkers which hold significant clinical value but
not significant statistical prediction value due to redun-
dancy with other biomarkers. Also, from these black-box
prediction models, there is no indication of how the
biomarkers influence each other, whether or not some
biomarkers mediate the effects from other biomarkers to
disease outcomes. Presumably, the relationships between
the multimodal biomarkers could be very complex, and
our study is motivated by the lack of capacity of exist-
ing multimodal biomarker integration methods to dis-
cover and model these relationships. On the other hand,
although not a causal model, BN models have been found
very effective in a range of applications to study the
“layers” of influence among variables. It could lead to
very useful knowledge regarding the “chain reaction” of
a sequence of events captured by the biomarkers’ mea-
surements. BN is a powerful data-driven model that seeks
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the best mechanistic model that is consistent with a
set of measurements from a cohort of patients. Thus,
it translates naturally into a semantic description of the
disease similar to a clinician’s intuitive description of its
progression.

The remainder of the paper is structured as follows: In
Section 2, we will provide description of the dataset that
will be used in this study and the BN, particularly the
mixed type Bayesian network due to the heterogeneous
nature of the biomarkers. In Section 3, we will present the
learning results and validation efforts. We then conclude
our study in Section 4.

2 Methods

2.1 Data

The data used in this paper were obtained from ADNI
database adni.loni.usc.edu. The primary goal of ADNI has
been to test whether the serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. Determination
of sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials.

ADNI is the result of efforts of many co-investigators
from academic institutions and private corporations, sub-
jects have been recruited from over 50 sites across the
USA and Canada. The initial goal of ADNI was to recruit
800 adults, aged 55 to 90, to participate in the research
with approximately 200 cognitively normal older individu-
als followed up for 3 years, 400 people with MCI followed
up for 3 years, and 200 people with early AD followed up
for 2 years.

2.2 Subjects

The ADNI general eligibility criteria are described at
www.adni-info.org. Briefly, subjects are between 55 and
90 years of age, having a study partner able to pro-
vide an independent evaluation of functioning. Specific
psychoactive medications will be excluded. The general
inclusion/exclusion criteria are as follows: (1) healthy
subjects: mini-mental state examination (MMSE) scores
between 24 and 30, a Clinical Dementia Rating (CDR)
of 0, non-depressed, non-MCI, and non-demented; (2)
MCI subjects: MMSE scores between 24 and 30, a mem-
ory complaint, having objective memory loss measured
by education adjusted scores on Wechsler Memory Scale
Logical Memory II, a CDR of 0.5, absence of significant
levels of impairment in other cognitive domains, essen-
tially preserved activities of daily living, and an absence
of dementia; and (3) mild AD: MMSE scores between 20
and 26, CDR of 0.5 or 1.0, and meets the National Insti-
tute of Neurological and Communicative Disorders and
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Stroke and the Alzheimer’s Disease and Related Disorders
Association (NINCDS/ADRDA) criteria for probable AD.

Our study includes the baseline measurements of 517
ADNI subjects. The cohort contains 114 AD patients, 283
MCI patients, and 120 healthy controls. Table 1 lists the
demographics of these subjects.

2.3 Biomarkers

The description about biomarkers to be analyzed is
listed in Table 2. These biomarkers are heterogeneous
in terms of both clinical nature and statistical character-
istics. While this list is still limited, it provides a good
presentation of the genetic, demographic, neuroimaging,
and clinical aspects of the disease. Among these mark-
ers, some are categorical biomarkers, such as sex (male or
female) and SNPs (carrier or non-carrier), while some are
numeric biomarkers such as some clinical measurements.
Note that we also include some SNPs variants which are
the top genetic risk factors for AD reported at http://www.
alzgene.org/TopResults.asp.

2.4 Bayesian network

A BN is a graphical model that characterizes the influen-
tial relationships among variables X = {X,;v € V}. Let
D = (V,E) be a directed acyclic graph (DAG), where V'
is a finite set of nodes and E is a finite set of directed
edges between the nodes. The DAG defines the structure
of the BN. Each node v € V in the graph corresponds
to a random variable X,, i.e., in our study, a biomarker
is a variable. In the DAG, the relationship between each
variable X, with its parent variables denoted as pa(v) can
be characterized as a conditional probability distribution,
PXxv|xpay). Then, the joint probability distribution of a
BN could be deduced as

px) = ]_[ PXy|Xpaq)) (1)

veV

For this reason, the set of conditional probability distri-
butions for all variables in the network, denoted as P, is
called the parameter of the BN. A Bayesian network for a
set of random variables X is then the pair (D, P).

Table 1 Subject information at baseline
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2.5 Mixed type Bayesian network

In this paper, we adopt the mixed type Bayesian network
model that handles both discrete and continuous vari-
ables, which is developed in [6]. For mixed type BNs, the
set of nodes V' can be further specified as V = A U T,
where A and T are the sets of discrete and continuous
nodes, respectively. The set of variables X can then be
denoted as X = {X,;v € V} = (I,Y) = {(5,Y7);8 €
A, 7 € T}, where I and Y are the sets of discrete and con-
tinuous variables, respectively. For a discrete variable §, we
let Z, denote the set of levels.

It has been a challenge to model the mixed type Bayesian
network. As mentioned earlier, a BN consists of the struc-
ture D and the parameter P. The central challenge for
modeling mixed type Bayesian network is the develop-
ment of appropriate models for characterizing P. In our
study, we follow the seminar work in [6] that models
the joint probability distribution by factorizing it into a
discrete part and a mixed part, so

p@) =pGi,y) = [ | p(islipa@) - [ [ 2 (0 lipar) Ypaco))
SeA teT

2)

where the first part of products of conditional proba-
bilities is for discrete nodes and the second part is for
continuous nodes.

For discrete nodes, conditional probabilities are param-
eterized as

Oy lipatory = P (iclipa(o)» Oolipaioy ) » (3)
where 05, ;) = (0i, lipyo))is €7, - The parameters are sub-
ject to the constraints that >, .7 6i,)i,, = 12and 0 <
gia‘ipa((r) E 1

For continuous nodes, the local probability distributions
are Gaussian linear regressions on the continuous parents
with parameters depending on the configuration of the
discrete parents, as shown in below:

— . . 2
9T|ipa(f) - <bf|lpa(1-)) wtl’pa(r) ’ O—rlipa(r)> ’ (4)
so that
Y: |ipa(r);ypa(t)¢ erlipa(,)

~ . . 2
_N (bf‘lpa(r) + yPa(T)WT‘lpa(r)’ Gf|ipa(r)> .

AD (n = 114;47 M/67 F)

MCI (n = 283; 128 M/155F)

HC (n = 120;52 M/68 F)

Mean SD Range Mean SD Range Mean SD Range
Age 74.6 8.1 56.5-89.6 739 6.7 585-90.6 734 7.3 55.0-89.6
Edu 16.0 26 8.0-200 164 27 9.0-20.0 16.8 26 9.0-20.0
MMSE 238 1.6 20.0-26.0 27.0 2.1 24.0-30.0 288 19 24.0-30.0
ADAS 155 7.8 40-51.0 14.6 95 0.0-51.0 108 88 3.0-310
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Table 2 Description of heterogeneous multimodal biomarkers

Biomarker Description

Age Age

Sex Gender

Edu Years of education

FDG Average FDG-PET

AV45 Average AV45 SUVR

HippoNV The normalized hippocampus volume
APOE4 Apolipoprotein E4 polymorphism
153818361 CR1 gene rs3818361 polymorphism
15744373 BIN1 gene rs744373 polymorphism
rs11136000 Clusterin CLU gene rs11136000 polymorphism
610932 MS4A6A gene rs610932 polymorphism
rs3851179 PICALM gene rs3851179 polymorphism
153764650 ABCA7 gene rs3764650 polymorphism
153865444 CD33 gene rs3865444 polymorphism
MMSE Mini-mental state examination
ADAS-cog Alzheimer's Disease Assessment Scale

2.6 Learning of mixed type BN from data

With the BN model specified for mixed type variables, the
next task is to identify a structure learning algorithm that
can find the optimal DAG structure. The basic formula-
tion of this problem, according to the score-based method,
starts with a dataset T and a scoring function ¢. Then, the
task is to find a Bayesian network B € B,, that maximizes
the values ¢ (B, T). The standard methodology is to use
search algorithms, such as heuristic search, greedy hill-
climbing, genetic algorithms, and tabu search, conducted
over eligible search space 5;, to search the DAG structure
that maximizes the score. In this study, we use the score
function developed in [7] for mixed type BN, which can be
readily implemented in the R package “bnlearn” [7]. After
having identified the optimal DAG structure, parameter
estimation could be conducted via maximum likelihood
estimation according to (2). We refer interested readers
to [8—10] for more details of the learning algorithms for
mixed type BN.

3 Results

We apply the mixted type BN on the heterogeneous
biomarkers of the ADNI cohort we have collected. In
order to identify a stable DAG structure, first, we use a
bootstrap method to generate 100 new training sets by
sampling the original data set with replacement, then,
learn the optimal DAG structure on each bootstrapped
dataset. We then derive the final DAG structure by keep-
ing those arcs which appear at least in half of these
DAG structures learned from bootstrapped datasets. This
strategy has been suggested in previous works for BN
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applications [11] that has been found effective to robus-
tify the learning result. Note that, here, we also utilize
the prior knowledge in the learning of the DAG struc-
ture, i.e., the genetic factors could be parents of other
factors not the other way around, while the disease out-
come variables such as ADAS-cog and MMSE score could
only be in the bottom of the BN model. This prior knowl-
edge is used in the BN learning and greatly reduces the
search space of the eligible DAG structures. Note that,
to impute missing values, the median is used for con-
tinuous variables while the mode is used for discrete
variable.

The final BN model is shown in Fig. 1. Note that some
variables in Table 2 are not shown in Fig. 1. This indi-
cates that the algorithm was not able to detect significant
and robust relationship among these variables with oth-
ers. We use green to represent categorical variables while
using blue to represent numerical variables. The proba-
bility tables of categorical variables and the parameters of
the conditional Gaussian distribution w, b for continuous
variables are shown along the DAG structure as well. For
example, node HippoNV in Fig. 1 has five parents: sex is
binary when the other four are numerical. The relation-
ship between the HippoNV with other variables such as
AGE, EDU, AV45, and FDG is characterized as a regres-
sion model, while parameters of this regression model
vary according to the categorical variable SEX.

Overall, this network structure is consistent with the
existing knowledge in AD literature. As expected [12-16],
the APOE e4 was associated with higher amyloid burden
(as measured by AV45 PET imaging) and lower cere-
bral glucose metabolism (as measured by FDG-PET). A
direct impact of e4 to MMSE score was also identified in
our results in agreement with previous reports [17, 18],
although its underlying mechanism warrants further
investigation. An association of the SNP rs11136000 with
amyloid burden was also identified, in agreement with
the potential role of clusterin (CLU, the gene that SNP
rs11136000 is associated with) in AP clearance [19, 20].
Based on this study, it is also identified that there were
direct relationships between amyloid burden and cogni-
tive performance which may reflect the direct neurotoxic
effect of AP and its derivatives or indirect impact through
pathways that were not represented in the biomarkers
we included in this study [21-23]. The direct interac-
tion between cerebral glucose metabolism and cognitive
function as identified in this study was also in agreement
with prior knowledge [24—27]. The identified relationship
between years of education and the cognitive perfor-
mance might be a cognitive reserve effect as reported by
a number of studies [28—31]. In summary, using Bayesian
network, we identified inter-biomarker relationships that
are in good agreement with the existing knowledge about
AD.
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1 9.08 0.14 1.15 -1.22 15.53

Fig. 1 Learn mixed type Bayesian network using heterogeneous multimodality data at baseline

3.1 Evaluation of the prediction accuracy with BN

Besides comparing our results with AD literature, we fur-
ther pursue numerical validation. Specifically, as “M MSE”
and “ADAS-cog” are two important clinical outcomes,
it is of interest to see if the learned BN owns signifi-
cant prediction capability of the two outcomes. Thus, in
this section, we compare the prediction capability of BN
with three common regression techniques (implemented
in R environment), such as linear regression (Im()), deci-
sion tree (rpart()), and random forest (randomForest()).
The target metric we would like to measure and com-
pare is mean square error (MSE), which serves as the
goodness of fit in a regression problem. We use 10-fold
cross validation to obtain unbiased estimates of MSE. To
set up cross validation procedure, we randomly divide
the original dataset into 10 subsamples. In each round,
a single subsample is retained for testing the model
while the remaining nine subsamples are used as training
set.

Table 3 lists the mean and standard deviation of MSE
of the models. In terms of the average of the MSE, the
BN achieves a better accuracy than the linear regression
and decision tree in both MMSE and ADAS-cog predic-
tion, while its performance is close to the random forest
which has been known to be a very powerful prediction
model despite its black-box nature. Similar observation
could also be made in terms of the variance of the MSE.

3.2 Validation of the identified BN via the covariance
patterns

We also analyze the covariance patterns to help validate
the learned BN model. The covariance patterns essentially
characterize the undirected associations among variables.
Thus, a BN model that aims to explain the influen-
tial relationships between the variables is expected to
be able to explain the associations that are observed in
data. Specifically, to derive the associations among vari-
ables, we use Pearson correlation for continuous variables,
polychoric correlation for categorical variables, and pol-
yserial correlation for a categorical variable and a con-
tinuous variable. The heterogeneous correlation matrix
is computed using R package “polycor” Figure 2 shows
the associations we have observed from the biomarkers.
Each row/column represents one biomarker. The color
intensity shows the strength of an association. Note here

Table 3 Ten fold cross validation MSE result

Mean (SD)
MMSE ADAS-cog
Bayesian network 2.810(0.441) 35.380 (3.244)
Linear regression 3.125(0.439) 38.748 (4.364)
Decision tree 3.758 (0.552) 42.195 (4.306)
Random forest 2.914(0.330) 35.218(4.932)
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that we only present the magnitude of the associations
to focus the purpose on validation with the BN model.
Overall, the association patterns revealed in Fig. 2 is con-
sistent with our learned BN model. For instance, from
Fig. 2, it is clear that the ADAS-cog is strongly associated
with the variables FDG, AV45, HippoNV, and APOE4.
While this is consistent with the BN as shown in Fig. 1,
we also notice that in Fig. 2, we could not detect that
the association between APOE4 with ADAS-cog could
be mediated by the variable FDG. Thus, by learning the
BN model, we could identify more layers in the relation-
ships between the variables and could shed light to useful
discoveries of the underlying mechanism of the disease
progression.

3.3 Validation of the identified BN via RuleFit

In order to validate the structure of the learned BN,
another approach we propose to use is the RuleFit [32]
method. RuleFit is a powerful method to discover com-
plex interactions among variables. Again, it is a predictive
model, so it lacks the capability of the BN to provide possi-
ble explanations of the relationships among the variables.
But in the same spirit as the use of the association pat-
terns to validate the BN model, we hope to see consistence
between the BN structure with the interaction patterns
the RuleFit could identify.

Thus, we apply the Rulefit on our data to identify the
interactions among the biomarkers that can predict the
two outcomes, MMSE and ADAS-cog. Table 4 lists the
five rules we have identified. Column 1 gives the scaled
importance for each rule. Column 2 (support) refers
to the fraction of the samples in the dataset to which
the rule applies. Apparently, it seems that there is great
consistence between the two methods. For example, to
predict MMSE, both the BN and RuleFit identified that
HippoNV, FDG, EDU, and APOE4 are important. And
to predcit ADAS-cog, both the BN and RuleFit identified
that FDG, HippoNV, and AV45 are important. There are
some interesting differences as well, e.g., RuleFit identi-
fied that the interaction between AGE and HippoNV is
important to predict MMSE; however, it is revealed in
the BN model that HippoNV actually mediates the effect
from AGE to MMSE. Thus, given the consistency in the
results, we could conclude that the BN model can pro-
vide more details of the underlying relationships among
the variables.

4 Conclusions

In this paper, we propose to use the mixed type Bayesian
network to model the interactions among heterogeneous
multimodal biomarkers. We conduct this study using
ADNI baseline dataset and find that the learned BN model
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