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Abstract

Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways
abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner
students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might
happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important
scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human
colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid
biologists/informaticians in understanding the design of computational experiments that is interleaved with
exposition of the MATLAB code and causal models from Bayesian network toolbox. The manuscript elucidates the
coding contents of the advance article by Sinha (Integr. Biol. 6:1034–1048, 2014) and takes the reader in a step-by-step
process of how (a) the collection and the transformation of the available biological information from literature is done,
(b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the
simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational
framework, and (e) results and inferences drawn using d-connectivity/separability are reported. The manuscript finally
ends with a programming assignment to help the readers get hands-on experience of a perturbation project.
Description of MATLAB files is made available under GNU GPL v3 license at the Google code project on https://code.
google.com/p/static-bn-for-wnt-signaling-pathway and https://sites.google.com/site/shriprakashsinha/
shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.

Keywords: Wnt signaling pathway, Bayesian network, Prior biological knowledge, Epigenetic information,
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1 Introduction
A tutorial introduction to computational modeling ofWnt
signaling pathway in a human colorectal cancer dataset
using static Bayesian network models is provided. This
work endeavors to expound in detail the simulation study
in MATLAB along with the code while explaining the
concepts related to Bayesian networks. This is done in
order to ease the understanding of beginner students and
researchers in transition to computational signaling biol-
ogy, who intend to work in the field of modeling of the
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signaling pathways. The manuscript elucidates (a) embed-
ding of prior biological knowledge, (b) integration of het-
erogeneous information, (c) transformation of biological
hypothesis into computational framework, and (d) design
of the experiments, in a simple manner. This is interleaved
with aspects of Bayesian network toolbox and MATLAB
code so as to help readers get a feel of a project related
to modeling of the pathway. Programming along with the
exposition in the manuscript could clear up issues faced
during the execution of the project.
This manuscript uses the contents of the advance article

[1] as a basis to explain the workflow of a computational
simulation project involving Wnt signaling pathway in
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human colorectal cancer (See Table 2 and Fig. 1 for
description). The aim of [1] was to computationally test
whether the activation of β-catenin and TCF4-based
transcription complex always corresponds to the tumor-
ous state of the test sample or not. To achieve this,
the gene expression data provided by [2] was used in
the computational experiments. Furthermore, to refine
the model, prior biological knowledge related to the
intra/extracellular factors of the pathway (available in lit-
erature) was integrated along with epigenetic information.
Section 4 of [1] has been reproduced for completeness

in Tables 1, 2, 3, 4, 5, 6, and 7 in order. These tables pro-
vide introductory theory that will help in understanding
the various aspects of the MATLAB code for modeling
and simulation experiments that are explained later. More
specifically, Table 1 gives an introduction to Bayesian net-
works. Tables 2 and 3 give a brief introduction to the
canonical Wnt signaling pathway and the involved epige-
netic factors, respectively. Table 4 gives a description of
the three Bayesian network models developed with(out)
prior biological knowledge. Tables 5 and 6 develop the
network models with epigenetic information along with
biological knowledge (Tables 8 and 9). Finally, Table 7 dis-
cusses a networkmodel that has negligible prior biological
knowledge. Code will be presented in typewriter font
and functions in the text will be presented in sans serif.
Reasons for taking certain approach and important infor-
mation within the project are presented in small capitals.

2 Motivation
2.1 The project and issues involved
Drafting a manuscript that contains a pedagogical outlook
of all the theory and the MATLAB code is a challenging

task. This is because the background work of coding in a
modeling and simulation project faces several issues that
need to be overcome. Here, a few of these issues are dis-
cussed, but they are by no means complete. Some of the
issues might be general across different computational
biology projects while othersmight bemore specific to the
current project.
The advanced article of [1] contains three different net-

work models, one of which is the naive Bayes model.
The implemented naive Bayes model in [1] is a sim-
plification of the primitive model proposed in [3]. The
other two models are improvements over the naive Bayes
model which incorporate prior biological knowledge. This
manuscript describes the implementation of these mod-
els using a single colorectal cancer dataset. The reason
for doing this was to test the effectiveness of incorpo-
rating prior biological knowledge gleaned from litera-
ture study of genes related to the dataset as well as test
a biological hypothesis from a computational point of
view. The main issues that one faces in this project are
(a) finding biological causal relations from already pub-
lished wet lab experiments, (b) designing the graphical
network from biological knowledge, (c) translating the
measurements into numerical values that form the prior
beliefs of nodes in the network, (d) estimating the condi-
tional probability values for nodes with parents, (e) fram-
ing the biological hypothesis into computational frame-
work, (f ) choosing the design of the learning experiment
depending on the type of data, (g) inferring the hidden
biological relations after the execution of the Bayesian
network inference engine, and finally (h) presenting the
results in a proper format via statistical significance
tests.

Fig. 1 A cartoon of Wnt signaling pathway contributed by [3]. Part a represents the destruction of β-catenin leading to the inactivation of the Wnt
target gene. Part b represents activation of Wnt target gene
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Table 1 Bayesian networks from [1]

Bayesian networks. In reverse engineering methods for control networks [10] there exist many methods that help in the construction of the networks
from the datasets as well as give the ability to infer causal relations between components of the system. A widely known architecture among these
methods is the Bayesian network (BN). These networks can be used for causal reasoning or diagnostic reasoning or both. It has been shown through
reasoning and examples in [11] that the probabilistic inference mechanism applied via Bayesian networks are analogous to the structural equation
modeling in path analysis problems. Initial works on BNs in [12, 13] suggest that the networks only need a relatively small amount ofmarginal probabilities
for nodes that have no incoming arcs and a set of conditional probabilities for each node having one or more incoming arcs. The nodes form the driving
components of a network and the arcs define the interactive influences that drive a particular process. Under these assumptions of influences the joint
probability distribution of the whole network or a part of it can be obtained via a special factorization that uses the concept of direct influence and
through dependence rules that define d-connectivity/separability as mentioned in [14] and [15]. This is illustrated through a simple example in [11].

The Bayesian networks work by estimating the posterior probability of the model given the dataset. This estimation is usually referred to as the Bayesian
score of the model conditioned on the dataset. Mathematically, let S represent the model given the data D and ξ is the background knowledge. Then
according to the Bayes Theorem [16]:

P(S|D, ξ) = P(S ∩ D|ξ)

P(D|ξ)

= P(S|ξ) × P(D|S , ξ)

P(D|ξ)

posterior = prior × likelihood

constant
(1)

Thus the Bayesian score is computed by evaluating the posterior distribution P(S |D, ξ) which is proportional to the prior distribution of the model
P(S |ξ) and the likelihood of the data given the model P(D|S , ξ). It must be noted that the background knowledge is assumed to be independent of
the data. Next, since the evaluation of probabilities require multiplications a simpler way is to take logarithmic scores which boils down to addition. Thus,
the estimation takes the form

logP(S|D, ξ) = logP(S|ξ) + logP(D|S , ξ)

− logP(D|ξ)

= logP(S|ξ) + logP(D|S , ξ)

+ constant

(2)

Finally, the likelihood of the function can be evaluated by averaging over all possible local conditional distributions parameterized by θis that depict the
conditioning of parents. This is equated via

P(D|S , ξ) =
∫

θ1

· · ·
∫

θn

P(D, θi|S)dθi

=
∫

θ1

· · ·
∫

θn

P(D|θiS)P(θi|S)dθi (3)

Work on biological systems that make use of Bayesian networks can also be found in [17–21]. Bayesian networks are good in generating network
structures and testing a targeted hypothesis which confine the experimenter to derive causal inferences [22]. But a major disadvantage of the Bayesian
networks is that they rely heavily on the conditional probability distributions which require good sampling of datasets and are computationally intensive.
On the other hand, these networks are quite robust to the existence of the unobserved variables and accommodate noisy datasets. They also have
the ability to combine heterogeneous datasets that incorporate different modalities. In this work, simple static Bayesian network models have been
developed with an aim to show how (a) incorporation of heterogeneous data can be done to increase prediction accuracy of test samples, (b) prior
biological knowledge can be embedded to model biological phenomena behind the Wnt pathway in colorectal cancer, (c) to test the hypothesis
regarding direct correspondence of active state of β-catenin-based transcription complex and the state of the test sample via segregation of nodes in
the directed acyclic graphs of the proposed models, and (d) inferences can be made regarding the hidden biological relationships between a particular
gene and the β-catenin transcription complex. This work uses MATLAB-implemented BN toolbox from [4].

Table 2 Canonical Wnt pathway from [1]

Canonical Wnt signaling pathway. The canonical Wnt signaling pathway is a transduction mechanism that contributes to embryo development and
controls homeostatic self-renewal in several tissues [8]. Somatic mutations in the pathway are known to be associated with cancer in different parts of
the human body. Prominent among them is the colorectal cancer case [23]. In a succinct overview, the Wnt signaling pathway works when the Wnt lig-
and gets attached to the frizzled(fzd)/LRP coreceptor complex. Fzdmay interact with the disheveled (Dvl) causing phosphorylation. It is also thought that
Wnts cause phosphorylation of the LRP via casein kinase 1 (CK1) and kinase GSK3. These developments further lead to attraction of axin which causes
inhibition of the formation of the degradation complex. The degradation complex constitutes of axin, the β-catenin transportation complex APC, CK1,
and GSK3. When the pathway is active, the dissolution of the degradation complex leads to stabilization in the concentration of β-catenin in the cyto-
plasm. As β-catenin enters into the nucleus, it displaces the Groucho and binds with transcription cell factor TCF, thus instigating transcription of Wnt
target genes. Groucho acts as lock on TCF and prevents the transcription of target genes whichmay induce cancer. In cases when theWnt ligands are not
captured by the coreceptor at the cell membrane, axin helps in the formation of the degradation complex. The degradation complex phosphorylates
β-catenin which is then recognized by Fbox/WD repeat protein β − TrCP. β − TrCP is a component of ubiquitin ligase complex that helps in ubiquiti-
nation of β-catenin, thus marking it for degradation via the proteasome. Cartoons depicting the phenomena of Wnt activation are shown in Fig. 1a, b,
respectively.
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Table 3 Epigenetic factors from [1]

Epigenetic factors. One of the widely studied epigenetic factors is methylation [24–26]. Its occurrence leads to decrease in the gene expression which
affects the working of Wnt signaling pathways. Such characteristic trends of gene silencing like that of secreted frizzled-related proteins (SFRP) family
in nearly all human colorectal tumor samples have been found at extracellular level [27]. Similarly, methylation of genes in the Dickkopf (DKKx [28, 29]),
Dapper antagonist of catenin (DACTx [2]), and Wnt inhibitory factor-1 (WIF1 [30]) family are known to have a significant effect on the Wnt pathway. Also,
histone modifications (a class of proteins that help in the formation of chromatin which packs the DNA in a special form [31]) can affect gene expression
[32]. In the context of the Wnt signaling pathway, it has been found that DACT gene family shows a peculiar behavior in colorectal cancer [2]. DACT1
and DACT2 showed repression in tumor samples due to increased methylation while DACT3 did not show obvious changes to the interventions. It is
indicated that DACT3 promoter is simultaneously modified by both the repressive and activating (bivalent) histone modifications ([2]).

2.2 Biological causal relations
Often, biological causal relations are embedded in the
literature pertaining to wet lab experiments in molecular
biology. These relations manifest themselves as discov-
ery/confirmation of one or multiple factors affecting the
expression of a gene by either inhibiting or activating it.
In context of the dataset used in the current work, the
known causal relations were gleaned from review of such
literature for each intra/extracellular factor involved in the
pathway. The arcs in the Bayesian networks with prior
biological knowledge encode these causal semantics. For
those factors whose relations have not been confirmed
but known to be involved in the pathway, the causal
arcs were segregated via a latent variable that is intro-
duced into the Bayesian network. The latent variable in
the form of “sample” (see Fig. 2) is extremely valuable
as it connects the factors whose relations have not been
confirmed till now, to factors whose influences have been
confirmed in the pathway. Detailed explanation of the
connectivity can be found in Table 6. Also, the introduc-
tion of latent variable in a causal model opens an avenue
to assume the presence of measurements that haven’t
been recorded. Intuitively, for cancer samples the hidden
measurements might be different from those for normal
samples. The connectivity of factors through the variable
provides an important route to infer biological relations.
Finally, the problem with such models is that it is static
in nature. This means that the models represent only a
snapshot of the connectivity in time, which is still an
important information for further research. By using time
course data it might be possible to reveal greater bio-
logical information dynamically. The current work lacks
in this endeavor and considers the introduction of time
course-based dynamic models for future research work.

2.3 Bayesian networks, parameter estimation, biological
hypothesis

Bayesian networks are probabilistic graphical models that
encode causal semantics among various factors using arcs
and nodes. The entire network can represent a frame-
work for a biological pathway and can be used to predict,
explore or explain certain behaviors related to the path-
way (See Tables 5 and 6 and Fig. 3 for description). As
previously stated, the directionality of the arcs define the
causal influence while the nodes represent the involved
factors. Also, it is not just the arcs and nodes that play
a crucial role. Information regarding the strength of the
belief in a factor’s involvement is encoded as prior proba-
bility (priors) or conditional probability values. Estimation
of these probabilities are either via expert’s knowledge or
numerical estimations in the form of frequencies gleaned
from measurements provided in the literature from wet
lab experiments. In this project, the nodes are discrete in
nature. Since the models are a snapshot in time, discrete
nodes help in encoding specific behavior in time. Here,
discretization means defining the states in which a factor
can be (say a gene expression is on or off, or methyla-
tion is on or off, etc). As stated above, this leads to loss of
continuous information revealed in time series data.
As depicted in the model in Fig. 2 and described in

Tables 5 and 6, to test one of the biological hypothesis
that TRCMPLX is not always switched on (off ) when the
sample is tumorous (normal), the segregation of TRCM-
PLX node from Sample node was made in [1]. Primi-
tive models of the Naive Bayes network assume direct
correspondence of TRCMPLX and Sample as depicted
in [1] and [3]. The segregated design helps in framing
the biological hypothesis into computational framework.
The basic factor in framing the biological hypothesis to

Table 4 Bayesian Wnt pathway from [1]

BayesianWnt pathway. Three static models have been developed based on particular gene set measured for human colorectal cancer cases [2]. Available
epigenetic data for individual gene is also recorded. For sake of simplicity, the models are connoted asMPBK+EI (model with prior biological knowledge
(PBK) and epigenetic information (EI)), MPBK (model with PBK only), and MNB+MPBK (model with naive Bayes (NB) formulation and minimal PBK). All
models are simple directed acyclic graphs (DAG) with nodes and edges. Figure 2 shows a detailed influence diagram of MPBK+EI between the nodes
and the edges. The nodes specify status of gene expression (DKK1, DKK2, DKK3-1, DKK3-2, DKK4, DACT1, DACT2, DACT3, SFRP1, SFRP2, SFRP3, SFRP4,
SFRP5, WIF1, MYC, CD44, CCND1, and LEF1), methylation (MeDACT1, MeDACT2, MeSFRP1, MeSFRP2, MeSFRP4, MeSFRP5, MeDKK1, MeDKK4, and MeWIF1),
histone marks for DACT3 (H3K27me3 and H3K4me3), transcription complex TRCMPLX, samples Sample and factors involved in formation of TRCMPLX like
β-catenin, TCF4, and LEF1. Note that there were two recordings of gene expression DKK3 and thus were distinguished by DKK3− 1 and DKK3− 2. Some
causal relations are based on prior biological knowledge and others are based on assumptions, elucidation of which follows in the next section.
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Table 5 Network with PBK+EI from [1]

Network with PBK and EI the NB model [3] assumes that the activation (inactivation) of β-catenin-based transcription complex is equivalent to the fact
that the sample is cancerous (normal). This assumption needs to be tested and in this research work, the two newly improvised models based on prior
biological knowledge regarding the signaling pathway assume that sample prediction may not always mean that the β-catenin-based transcription
complex is activated. These assumptions are incorporated by inserting another node of Sample for which gene expressionmeasurements were available.
This is separate from the TRCMPLX node that influences a particular set of known genes in the human colorectal cancer. For those genes whose relation
with the TRCMPLX is currently not known or biologically affirmed, indirect paths through the Sample node to the TRCMPLX exist, technical aspect of
which will be described shortly. Since all gene expressions have been measured from a sample of subjects, the expression of genes is conditional on the
state of the Sample. Here, both tumorous and normal cases are present in equal amounts. The transcription factor TRCMPLX under investigation is known
to operate with the help of interaction between β-cateninwith TCF4 and LEF1 [9, 33]. It is also known that the regions in the TSS ofMYC [34], CCND1 [35],
CD44 [36], SFRP1 [37], WIF1 [38], DKK1 [39], and DKK4 [40, 41] contain factors that have affinity to β-catenin-based TRCMPLX. Thus, expression of these
genes are shown to be influenced by TRCMPLX, in Fig. 2.

Roles of DKK2 [42] and DKK3 [43, 44] have been observed in colorectal cancer but their transcriptional relation with β-catenin-based TRCMPLX is not
known. Similarly, SFRP2 is known to be a target of Pax2 transcription factor and yet it affects the β-cateninWnt signaling pathway [45]. Similarly, SFRP4
[46, 47] and SFRP5 [27] are known to have an effect on theWnt pathway but their role with TRCMPLX is not well studied. SFRP3 is known to have a different
structure and function with respect to the remaining SFRPx gene family [48]. Also, the role of DACT2 is found to be conflicting in the Wnt pathway [49].
Thus, for all these genes whose expression mostly have an extracellular effect on the pathway and information regarding their influence on β-catenin-
based TRCMPLX node is not available, an indirect connection has been made through the Sample node. This connection will be explained at the end of
this section.

Table 6 Network with PBK+EI continued from [1]
Network with PBK and EI continued . . . Lastly, it is known that concentration of DVL2 (a member of disheveled family) is inversely regulated by the
expression of DACT3 [2]. High DVL2 concentration and suppression of DACT1 leads to increase in stabilization of β-catenin which is necessary for the
Wnt pathway to be active [2]. But in a recent development [7], it has been found that expression of DACT1 positively regulates β-catenin. Both scenarios
need to be checked via inspection of the estimated probability values for β-catenin using the test data. Thus, there exists direct causal relations between
parent nodes DACT1 and DVL2 and child node, β-catenin. Influence of methylation (yellow hexagonal) nodes to their respective gene (green circular)
nodes represent the effect of methylation on genes. Influence of histone modifications in H3K27me3 and H3K4me3 (blue octagonal) nodes to DACT3
gene node represents the effect of histone modification on DACT3. The β-catenin (blue square) node is influenced by concentration of DVL2 (depending
on the expression state of DACT3) and behavior of DACT1. The aforementioned established prior causal biological knowledge is imposed in the BN
model with the aim to computationally reveal unknown biological relationships. The influence diagram of this model is shown in Fig. 2 with nodes on
methylation and histone modification. Another model MPBK (not shown here) was developed excluding the epigenetic information (i.e., removal of
nodes depicting methylation and histone modification as well as the influence arcs emerging from them) with the aim to check whether inclusion of
epigenetic factors increases the cancer prediction accuracy.

In order to understand indirect connections further, it is imperative to know about d-connectivity/separability. In a BNmodel, this connection is established
via the principle of d-connectivitywhich states that nodes are connected in a path when there exists no node in the path that hasmore than one incoming
influence edge or there exists nodes in the path with more than one incoming influence edge which are observed (i.e., evidence regarding such nodes
is available) [50]. Conversely, via principle of d-separation, nodes are separated in a path when there exists nodes in the path that have more than one
incoming influence edge or there exists nodes in the path with at most one incoming influence edge which are observed (i.e., evidence regarding such
nodes is available). Figure 3 represents three different cases of connectivity and separation between nodesA and C when the path between thempasses
through node B. Connectivity or dependency exists between nodesA and C when (a) evidence is not present regarding node B in the left graphs of I
and II in Fig. 3 or (b) evidence is present regarding node B in the right graph of III in Fig. 3.
Conversely, separation or independence exists between nodesA and C when (a) evidence is present regarding node B in the right graphs of I and II in
Fig. 3 or (b) evidence is not present regarding node B in the left graph of III in Fig. 3. It would be interesting to know about the behavior of TRCMPLX,
given the evidence of state of SFRP3. To reveal such information, paths must exist between these nodes. It can be seen that there are multiple paths
between TRCMPLX and SFRP2 in the BN model in Fig. 2. These paths are enumerated as follows:

1. SFRP3, Sample, SFRP1, TRCMPLX
2. SFRP3, Sample, DKK1, TRCMPLX
3. SFRP3, Sample,WIF1, TRCMPLX
4. SFRP3, Sample, CD44, TRCMPLX
5. SFRP3, Sample, DKK4, TRCMPLX
6. SFRP3, Sample, CCND1, TRCMPLX
7. SFRP3, Sample,MYC, TRCMPLX
8. SFRP3, Sample, LEF1, TRCMPLX
9. SFRP3, Sample, DACT3, DVL2, β-catenin, TRCMPLX
10. SFRP3, Sample, DACT1, β-catenin, TRCMPLX

Knowledge of evidence regarding nodes of SFRP1 (path 1), DKK1 (path 2), WIF1 (path 3), CD44 (path 4), DKK4 (path 5), CCND1 (path 6), and MYC (path
7) makes Sample and TRCMPLX dependent or d-connected. Further, no evidence regarding state of Sample on these paths instigates dependency or
connectivity between SFRP3 and TRCMPLX. On the contrary, evidence regarding LEF1, DACT3, and DACT1 makes Sample (and child nodes influenced by
Sample) independent or d-separated from TRCMPLX through paths (8) to (10). Due to the dependency in paths (1) to (7) and the given state of SFRP3 (i.e.,
evidence regarding it being active or passive), the BN uses these paths during inference to find how TRCMPLX might behave in normal and tumorous
test cases. Thus, exploiting the properties of d-connectivity/separability, imposing a biological structure via simple yet important prior causal knowledge
and incorporating epigenetic information, BN helps in inferring many of the unknown relation of a certain gene expression and a transcription complex.
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Table 7 Network with NB+MPBK from [1]

Network with minimal PBK. Lastly, a naive Bayes model MNB+MPBK with minimal biological knowledge based on [3] model was also developed with
an aim to check if the assumed hypothesis that activation state of TRCMPLX is the same as sample being cancerous is correct. In this model, all gene
expressions are assumed to be transcribed via the β-catenin-based TRCMPLX and thus causal arcs exist from TRCMPLX to different gene nodes. The
complex itself is influenced by β-catenin and TCF4 only. Suchmodels can be used for prediction purpose but are not useful in revealing hidden biological
relationships as no or minimal prior biological information is imposed on the naive Bayes model. Figure 4 shows the naive Bayes model.

a computational framework requires knowledge of how
the known factors of the pathway are involved, how the
unknown factors need to be related to the known factors
and finally intuitive analysis of the design of the model (for
static data). Note that the model is a representation and
not complete. Larger datasets will complicate the model
and call for more efficient designs.

2.4 Choice of data
In a data dependent model, the data guides the work-
ing of the model and the results obtained depend on the
design of the experiments to be conducted on the data.
The current work deals with gene expression data from
24 samples each of human colorectal tumor and matched
normal mucosa. Different expression values across the
samples are recorded for total of 18 genes known to
work at different cellular regions in the pathway. This
dataset from [2] was specifically chosen because it cov-
ers a small range of important genes whose expression
measurements are influenced by epigenetic factors, cru-
cial information about which is enough to build a working

Table 8 Conditional probability tables for nodes (excluding gene
expression) ofMPBK+EI

Conditional probability table for nodes

Node Parents Cpt values rep. Node states

Sample - [0.50 0.50]T [n t]

TCF4 - [0.10 0.90]T [ia a]

DVL2 DACT3 [0.01 0.99; 0.99 0.01]T [lc hc]

β-catenin DACT1, [0.99 0.99 0.99 0.01; [lc hc]

DVL2 0.01 0.01 0.01 0.99]T

TRCMPLX TCF4, LEF1, [0.99*ones(1,7) 0.01; [ia a]

β-catenin 0.01*ones(1,7) 0.99]T

MeDACT1 - [0.8370 0.1630]T [nm m]

MeDACT2 - [0.3376 0.6624]T [nm m]

MeWIF1 - [0.1667 0.8333]T [nm m]

MeSFRP1 - [0.6316 0.3684]T [nm m]

MeSFRP2 - [0.6316 0.3684]T [nm m]

MeSFRP4 - [0.8572 0.1428]T [nm m]

MeSFRP5 - [0.7500 0.2500]T [nm m]

H3K27me3 - [0.2391 0.7609]T [ia a]

H3K4me3 - [0.3661 0.6339]T [ia a]

Notations in the table mean the following “-” implies no parents exist for the
particular node; “n” - normal, “t” - tumorous, “ia” - inactive, “a” - active, “lc” - low
concentration, “hc” - high concentration, “nm” - non-methylated, “m” - methylation

Table 9 Conditional probability tables for gene nodes ofMPBK+EI

Conditional probability table for nodes

Node Parents Cpt values rep.

LEF1 Sample [0.84 0.16; 0.16 0.84]T

MYC Sample, [0.94 0.89 0.78 0.31;

TRCMPLX 0.06 0.11 0.22 0.69]T

CCND1 Sample, [0.95 0.89 0.81 0.28;

TRCMPLX 0.06 0.11 0.18 0.72] T

CD44 Sample, [0.93 0.90 0.67 0.42;

TRCMPLX 0.07 0.10 0.33 0.58]T

DKK1 Sample, [0.95 0.93 0.07 0.05 0.77 0.60 0.40 0.23;

MeDKK1, 0.05 0.07 0.93 0.95 0.23 0.40 0.60 0.76]T

TRCMPLX

DKK2 Sample [0.40 0.60; 0.60 0.40]T

DKK3-1 Sample [0.36 0.64; 0.64 0.36]T

DKK3-2 Sample [0.56 0.44; 0.44 0.56]T

DKK4 Sample, [0.94 0.88 0.82 0.28;

TRCMPLX 0.06 0.11 0.18 0.72]T

DACT1 Sample, [0.56 0.74 0.26 0.44;

MeDACT1 0.44 0.26 0.74 0.56]T

DACT2 Sample, [0.60 0.71 0.29 0.40;

MeDACT2 0.40 0.29 0.71 0.60]T

DACT3 Sample, [0.88 0.88 0.12 0.88 0.88 0.88 0.12 0.88;

H3K27me3, 0.12 0.12 0.88 0.12 0.12 0.12 0.88 0.12]T

H3K4me3

SFRP1 Sample, [0.88 0.98 0.02 0.12 0.20 0.96 0.04 0.80;

MeSFRP1, 0.12 0.02 0.98 0.88 0.80 0.04 0.96 0.20]T

TRCMPLX

SFRP2 Sample, [0.31 0.88 0.11 0.69;

MeSFRP2 0.69 0.11 0.89 0.31]T

SFRP3 Sample [0.20 0.80; 0.80 0.20]T

SFRP4 Sample, [0.71 0.60 0.40 0.29;

MeSFRP4 0.29 0.40 0.60 0.71]T

SFRP5 Sample, [0.31 0.89 0.11 0.69;

MeSFRP5 0.69 0.11 0.89 0.31]T

WIF1 Sample, [0.96 0.91 0.09 0.04 0.85 0.47 0.56 0.15;

MeWIF1, 0.04 0.09 0.91 0.96 0.15 0.53 0.47 0.85]T

TRCMPLX

The state of the gene nodes remains [ia a], i.e., “ia” - inactive or “a” - active [ia a]. Note
that these values are from one iteration of the 2-holdout experiment
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Fig. 2 Influence diagram ofMPBK+EI contains partial prior biological knowledge and epigenetic information in the form of methylation and histone
modification. In this model, the state of Sample is distinguished from state of TRCMPLX that constitutes the Wnt pathway

prototype model. Also, this dataset though not complete,
contains enough information to design small computa-
tional experiments to test certain biological hypothesis
which will be seen later.
From one point of view, this paper’s analysis is essen-

tially an exercise in biomarker validation: do the genes
selected for follow-up predict tumor status of tissue sam-
ples? In the implementation used here, they do not do
so with full reliability. This raises the question of the
validity of using the small subset of the WNT path-
way chosen as a predictive biomarker of tumor status—
This is true! That is why the idea was to segregate the
node Sample from TRCMPLX and check the biological
hypothesis whether the active (inactive) state of tran-
scription complex is directly related to the sample being
tumorous (normal), from a computational perspective.
It was found that it is not necessary that TRCMPLX is

switched on (off ) when the sample is tumorous (normal)
given a certain gene expression. By developing a biolog-
ically inspired model on this small dataset, one is able
to detect if the predictions always point to the biolog-
ical phenomena or not. In this case, the sample being
tumorous or normal given the gene expression evidence
is based on a Naive Bayes model (similar to [3]) which
does not incorporate prior biological knowledge. It is
not the small dataset always that matters but how the
network is designed that matters. The status of a sam-
ple being tumorous/normal might be inferred in a better
way if the prior biological knowledge regarding the path-
way was also incorporated and the dominant factor like
the activation of transcription complex along with estab-
lished biomarkers was studied. Sinha [1] gave an improve-
ment over the model implemented in [3] for this very
reason.

Fig. 3 Cases for d-connectivity and d-separation. Black (gray) circlesmean that evidence is available (not available) regarding a particular node
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2.5 Design of experiments
A two holdout experiment is conducted in order to reduce
the bias induced by unbalanced training data. From a
machine learning perspective, this bias is removed by
selecting one sample from normal and one sample from
tumor for testing purpose and the remaining samples to
form the training dataset. The procedure of selection is
repeated for all possible combinations of a normal sam-
ple and a tumor sample. What happens is that the training
data remains balanced and each pair of test sample (one
normal and one tumor) gets evaluated for prediction of
the label. Repetitions of a normal (tumor) sample across
test pairs give equal chance for each of the tumor (normal)
sample to be matched and tested.

2.6 Inference and statistical tests
The inference of the biological relations is done by feed-
ing the the evidence into the model and computing
the conditional probability of the effect of a factor(s)
given the evidence. Note that the Bayesian network used
in the BNT toolbox by [4] uses the two-pass junction
tree algorithm. In the first pass, the Bayesian network
engine is created and initialized with prior and estimated
probabilities for the nodes in the network. In the sec-
ond pass, after feeding in the evidence for some of the
nodes, the parameters for the network are recomputed.
It is these recomputed parameters that give insight into
the hidden biological relations based on the design of
the network as well as the use of the principle of d-
connectivity/separability. Since the computed conditional
probabilities may change depending on the quality of
evidence per test sample that is fed to the network, statis-
tical estimates are deduced and receiver operator curves
(ROC) along with respective their area under the curve
(AUC) are plotted. These estimates give a glimpse of the
quality of predictions. Apart from this, since a distribu-
tion of predictions is generated via 2-holdout experiment,
Kolmogorov-Smirnov test is employed to check the sta-
tistical significance between the distributions. The sig-
nificance test helps in comparing the prediction results
for hypothesis testing in different models and thus point
to the effectiveness of the models regarding biological
interpretations.
This non-parametric test will reject the null hypothe-

sis when distributions differ in shape. The author notes
that his more complex biologically inspired models give
significant KS test p values when comparing predictions
of the β-catenin transcription factor complex state and
the tumor/non-tumor status of the samples. While the
result is interesting, the KS test adds little information on
interpretation. Are the biological models incorrect? Are
the predictions produced using faulty assumptions? Are
false positives or false negatives more frequent, and if
so why?

Biological models might be lacking in biological infor-
mation and correctness depends on how the model is
designed. This does not mean that the inferences are
wrong and the assumptions are faulty. The differences in
the distribution is due to the prior biological knowledge
that has been incorporated into the models. So indi-
rectly, the KS test points to the significance of adding
the biological data. While using the naive Bayes model
(from [3]), it was found that the prediction accuracy
was almost 100 %. But w.r.t. issue raised regarding the
biomarker prediction earlier, the accuracy value drops
due to the model complexity and correct biological infer-
ences can be made. From the Bayesian perspective, the
numerical value represents a degree of belief in an event
and the 100 % prediction accuracy might not capture
the biological phenomena as well as the influence of the
biomarker properly from the naive Bayes model with
minimal prior biological knowledge in [3] and [1]. Thus,
KS test gives an indirect indication regarding the signif-
icance of using the prior biological knowledge in com-
parison to the negligible knowledge while designing the
models.

2.7 MATLAB and Bayesian network toolbox
The choice of MATLAB was made purely because of its
ability to handle various types of data structures which
can be used for fast prototype building. Also, the BNT
toolbox is freely available and provides most of the func-
tions necessary to deal with the design of the Bayesian
network models of different types (both static and
dynamic). There are many packages freely available in R
that could be used for development of these projects, but
they lack the level of details that the BNT toolbox pro-
vides. The downside of the BNT toolbox is that one needs
a MATLAB license. Finally, the BNT toolbox can be down-
loaded from https://code.google.com/p/bnt/. Instructions
for installations as well as how to use the package is avail-
able in the website. The material from [1] has been made
available in the Google drive https://drive.google.com/
folderview?id=0B7Kkv8wlhPU-T05wTTNodWNydjA&
usp=sharing. This contains the individual files, contents
of which are used in this manuscript. The drive and its
contents can be accessed via the URLs mentioned earlier
in the abstract. To ease the understanding of the know-
how-it-works of BNT toolbox, the drive contains two files
namely sprinkler_rain_script.m and sprinkler_rain.mat.
The former contains code from BNT toolbox in a
procedural manner and the latter contains the saved
results after running the script. As a toy example, these
can be used for quick understanding.
An important point of observation—while executing the

code—if the chunks of code are not easy to follow, then
please use the MATLAB facility of debugging by setting up
breakpoints and a range of functions starting with prefix

https://code.google.com/p/bnt/
https://drive.google.com/folderview?id=0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing
https://drive.google.com/folderview?id=0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing
https://drive.google.com/folderview?id=0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing
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DB. Note that the breakpoints appear as solid red dots
on the left hand side of the MATLAB editor when being
used. When the code is running, solid green arrows stop
at these breakpoints and let the user analyze the query of
interest. More help is available on Internet as well as via
the MATLAB help command.

3 Modeling and simulation
3.1 Data collection and estimation
An important component of this project is the Bayesian
network toolbox provided by [4] and made freely avail-
able for download on https://code.google.com/p/bnt/ as
well as aMATLAB license. Instructions for installations are
provided on the mentioned website. To begin the project,
one can make a directory titled temp with a subdirectory
named data and transfer the geneExpression.mat file into
data.

>> mkdir temp

>> cd temp

>> mkdir data

>>

This .mat file contains expression profiles from [2] for
genes that play a role in Wnt signaling pathway at an
intra/extracellular level and are known to have inhibitory
effect on the Wnt pathway due to epigenetic factors. For
each of the 24 normal mucosa and 24 human colorec-
tal tumor cases, gene expression values were recorded for
14 genes belonging to the family of SFRP, DKK, WIF1,
and DACT. Also, expression values of established Wnt
pathway target genes like LEF1,MYC, CD44, and CCND1
were recorded per sample.
The directory temp also contains some of the .m files,

parts of the contents of which will be explained in the
order of execution of the project. The main code begins
with a script titled twoHoldOutExp.m (Note that the
original unrefined file is under the name twoHoldOutExp-
original.m). This script contains the function twoHold-
OutExp which takes two arguments named eviDence
and model. eviDence implies the evidence regarding
“ge” for gene evidence, “me” for methylation, “ge+me” for
both gene and methylation, while model implies the net-
work model that will be used for simulation. Sinha [1]
uses three different models, i.e., “t1” or MPBK+EI that
contains prior biological knowledge as well as epigenetic
information, “t2” or MPBK that contains only prior
biological knowledge, and, finally, “p1” orMNB+MPBK that
is a modified version of the naive Bayes framework from
[3]. On the MATLAB command prompt, one can type the
following

>> twoHoldOutExp(’ge’, ’t1’)

The code begins with the extraction of data from
the gene expression matrix by reading the geneEx-
pression.mat file via the function readCustomFile in
the readCustomFile.m and generates the following vari-
ables as the output: (1) uniqueGenes—name of genes
gleaned from the file, (2) expressionMatrix—2D
matrix containing the gene expression per sample data,
(3) noGenes—total number of genes available, (4)
noSamples—total number of samples available, (5)
groundTruthLabels—original labels available from
the files, and (6) transGroundTruthLabels—labels
transformed into numerals.

% Data Collection

%=====

% Extract data from the gene expression

% matrix

[uniqueGenes, expressionMatrix,...

noGenes,noSamples,groundTruthLabels,...

transGroundTruthLabels] = ...

readCustomFile(’data/geneExpression.mat’);

3.2 Assumed and estimated probabilities from literature
Next, the probability values for some of the nodes in
the network is loaded depending on the type of the
network. Why these assumed and estimated probabili-
ties have been addressed in the beginning of the com-
putation experiment is as follows. It can be seen that
the extra/intracellular factors affecting the Wnt path-
way in the dataset provided by [2] contain some genes
whose expression is influenced by epigenetic factors
mentioned in Table 3. Hence, it is important to tabu-
late and store prior probability values for known epige-
netic biological factors that influence the pathway. Other
than the priors for epigenetic nodes, priors for some
of the nodes that are a major component of the path-
way but do not have data from prior approximation, are
assumed based on expert knowledge. Once estimated
or assumed based on biological knowledge, these prob-
abilities need not be recomputed and are thus stored
in proper format at the beginning of the computational
experiment.
The estimation of prior probabilities is achieved

through the function called dataStorage in the file dataS-
torage.m. The function takes the name of the model as
an input argument and returns the name of the file called
probabilities.mat in the variable filename. The .mat file
contains all the assumed and computed probabilities of
nodes for which data is available and is loaded into the
workspace of the MATLAB for further use. The workspace
is an area which stores all the current variables with their
assigned instances such that the variables can be manip-
ulated either interactively via command prompt or from
different functions.

https://code.google.com/p/bnt/
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% Load probability values for some of

% the nodes in the network

fname = dataStorage(model);

load(fname);

MPBK+EI (model = “t1”) requires more prior estima-
tions thanMPBK (model = “t2”) andMNB (model = p1),
due to use of epigenetic information. Depending on the
type of model parameter fed to the function dataStorage,
the probabilities for the following factors are estimated:

1. Repressive histone mark H3K27me3 for DACT3 11
loci from [2] was adopted. Via fold enrichment, the
effects of the H3K27me3 were found 500 bp
downstream of and near the DACT3 transcription
start site (TSS) in HT29 cells. These marks were
recorded via chromatin immuno-precipitation
(ChiP) assays and enriched at 11 different loci in the
3.5- to 3.5-kb region of the DACT3 TSS. Fold
enrichment measurements of H3K27me3 for normal
FHs74Int and cancerous SW480 were recorded and
normalized. The final probabilities are the average of
these normalized values of enrichment
measurements.

2. Active histone mark H3K4me3 for DACT3 loci from
[2] was adopted. Via fold enrichment, the effects of
the H3Kme3 were found 500 bp downstream of and
near the DACT3 transcription start site (TSS) in
HT29 cells. These marks were recorded via
chromatin immuno-precipitation (ChiP) assays and
enriched at 11 different loci in the 3.5- to 3.5-kb
region of the DACT3 TSS. Fold enrichment
measurements of H3K4me3 for normal FHs74Int
and cancerous SW480 were recorded and
normalized. The final probabilities are the average of
these normalized values of enrichment
measurements.

3. Fractions for methylation of DKK1 andWIF1 gene
taken from [5] via manual counting through visual
inspection of intensity levels from methylation-
specific PCR (MSP) analysis of gene promoter region
and later normalized. These normalized values form
the probability estimates for methylation.

4. Fractions for methylation and non-methylation
status of SFRP1, SFRP2, SFRP4, and SFRP5 (CpG
islands around the first exons) was recorded from six
affected individuals each having both primary CRC
tissues and normal colon mucosa from [6] via manual
counting through visual inspection of intensity levels
from MSP analysis of gene promoter region and later
normalized. These normalized values form the
probability estimates for methylation.

5. Methylation of DACT1 (+52 to +375 BGS) and
DACT2 (+52 to +375 BGS) in promoter region for

Normal, HT29, and RKO cell lines from [2] was
recorded via counting through visual inspection of
open or closed circles indicating methylation status
estimated from bisulfite sequencing analysis and later
normalized. The averaged values of these
normalizations form the probability estimates for
methylation.

6. Concentration of DVL2 decreases with expression of
DACT3 and vice versa [2]. Due to the lack of exact
proportions, the probability values were assumed.

7. Concentration of β-catenin-given concentrations of
DVL2 and DACT1 varies; and for static model, it is
tough to assign probability values. High DVL2
concentration or suppression (expression) of DACT1
leads to increase in the concentration of β-catenin
[2, 7]. Wet lab experimental evaluations might reveal
the factual proportions.

8. Similarly, the concentrations of TRCMPLX [8, 9]
and TCF4 [3] have been assumed based on their
known roles in the Wnt pathway. Actual proportions
as probabilities require further wet lab tests.

9. Finally, the probability of Sample being tumorous or
normal is a 50 % chance level as it contains an equal
amount of cancerous and normal cases.

Note that all these probabilities have been recorded in
Table 1 of [1] and their values stored in the probabili-
ties.mat file.

3.3 Building the Bayesian network model
Next comes the topology of the network using prior bio-
logical knowledge which is made available from the results
of wet lab experiments documented in literature. This
network topology is achieved using the function gener-
ateInteraction in the file generateInteraction.m.
The function takes in the set of uniqueGenes and the
type of the model and generates a cell of interaction
for the Bayesian network as well as a cell of unique set
of names of the nodes, i.e., Nodenames. A cell is like a
matrix but with elements that might be of different types.
The indexing of a cell is similar to that of a matrix except
for the use of parenthesis instead of square brackets.
interaction contains all the prior established biolog-
ical knowledge that carries causal semantics in the form
of arcs between the parent and child nodes. It should be
noted that even though the model is not complete due to
its static nature, it has the ability to encode prior causal
relationships and has the potential for further refinement.
Note that a model not being complete does not conclude
that the results will be wrong.

% Building the Bayesian Network model

%=====

% Generate directionality between
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% parent and child nodes

[interaction, nodeNames] = ...

generateInteraction(uniqueGenes,...

model);

The interaction and nodeNames are used as input
arguments to the function mk_adj_mat, which then gen-
erates an adjacency matrix for a directed acyclic graph
(DAG) stored in dag. Using functions biograph and input
arguments dag and nodeNames generates a structure
gObj that can be used to view the topology of the net-
work. A crude representation ofMPBK+EI andMNB+MPBK
shown in Figs. 2 and 4 was generated using the function
view.

% Generate dag for the interaction

% between nodeNames

dag = mk_adj_mat(interaction, nodeNames, 0);

% To visualise the graphs or bayesian

% network

gObj = biograph(dag,nodeNames)

gObj = view(gObj);

Once the adjacency matrix is ready, the initializa-
tion of the Bayesian network can be done easily. The
total number of nodes is stored in N and the size of the
nodes are defined in nodeSizes. In this project, each
node has a size of two as they contain discrete values
representing binary states. Here, the function ones defines
a row vector with N columns. The total number of dis-
crete nodes is defined in discreteNodes. Finally, the
Bayesian network is created using the function mk_bnet
from the BNT that takes the following as input arguments:
(1) dag—the adjacency matrix, (2) nodeSizes—defines
the size of the nodes, and (3) discreteNodes—the vec-
tor of nodes with their indices marked to be discrete
in the Bayesian network and dumps the network in the
variable bnet. bnet is of the type STRUCTURE which
contains fields, each of which can be of different types
like vector, character, array, matrix, cell, or structure. The
contents of a field of a structure variable (say bnet), with
proper indices, if necessary can be accessed and seen using
“bnet.fieldname.”

% BN initialization

N = length(nodeNames); % # of nodes

% Define node sizes. NOTE - nodes are

% assumed to contain discrete values

nodeSizes = 2*ones(1, N);

% Discrete nodes

discreteNodes = 1:N;

% Create

BN bnet = mk_bnet(dag, nodeSizes,’

names’,...

nodeNames, ’discrete’, discreteNodes);

3.4 Holdout experiment
After the framework of the Bayesian network has been
constructed and initialized, the holdout experiment is
conducted. The purpose of conducting the experiment
is to generate results on different test data while train-
ing the Bayesian network with different sets of training
data. From [1], the design of the experiment is a simple
2-holdout experiment where one sample from the nor-
mal and one sample from the tumor are paired to form
a test dataset. Excluding the pair formed in an iteration
of 2-holdout experiment, the remaining samples are con-
sidered for training of a BN model. Thus, in a dataset of
24 normal and 24 tumorous cases, an iteration will have
a training set which will contain 46 samples and a test set
which will contain 2 samples (one of normal and one of
tumor). This procedure is repeated for every normal sam-
ple which is combined with each of the tumorous sample
to form a series of test dataset. In total, there will be 576
pairs of test data and 576 instances of training data. Note
that for each test sample in a pair, the expression value
for a gene is discretized using a threshold computed for
that particular gene from the training set. Computation
of threshold will be elucidated later. This computation is
repeated for all genes per test sample. Based on the avail-
able evidences from the state of expression of all genes that
constitute the test data, inference regarding the state of the
both β-catenin transcription complex and the test sample
is made. These inferences reveal (a) hidden biological rela-
tionship between the expressions of the set of genes under

Fig. 4 Influence diagram ofMNB+MPBK is a naive Bayes model that contains minimal prior biological knowledge. In this model, the state of TRCMPLX
is assumed to be indicate whether the sample is cancerous or not
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consideration and the β-catenin transcription complex
and (b) information regarding the activation state of the
β-catenin transcription complex and the state of the test
sample, as a penultimate step to the proposed hypothesis
testing. Two-sample Kolmogorov-Smirnov (KS) test was
employed to measure the statistical significance of the
distribution of predictions of the states of the previously
mentioned two factors.
Apart from testing the statistical significance between

the states of factors, it was found that the prediction
results for the factors obtained from models includ-
ing and excluding epigenetic information were also sig-
nificantly different. The receiver operator curve (ROC)
graphs and their respective area under the curve (AUC)
values indicate how the predictions on the test data
behaved under different models. Ideally, high values of
AUC and steepness in ROC curve indicate good quality
results.
The holdout experiment begins with the computa-

tion of the total number of positive and negative labels
present in the whole dataset as well as the search of the
indices of the labels. For this, the values in the variable
noSamples and transGroundTruthLabels com-
puted from function readCustomFile are used. noPos
(noNeg) and posLabelIdx (negLabelIdx) store the
number of positive (negative) labels and their indices,
respectively.

% Hold out experiment

%=====

% Compute no. of positive and negative

% labels and find indices of both

noPos = 0;

posLabelIdx = [];

noNeg = 0;

negLabelIdx = [];

for i = 1:noSamples

if transGroundTruthLabels(i) > 0

noPos = noPos + 1;

posLabelIdx = [posLabelIdx, i];

else

noNeg = noNeg + 1;

negLabelIdx = [negLabelIdx, i];

end

end

For storing results as well as the number of times the
experiment will run, variables runCnt and Runs are ini-
tialized. Runs is of the type structure. The condition in
the if statement is not useful now and will be described
later.

runCnt = 0;

Runs = struct([]);

if ~isempty(strfind(eviDence, ’me’))

RunsOnObservedMethylation = struct([]);

end

For each and every positive (cancerous) and negative
(normal) labels, the number of times the experiments
run is incremented in the count variable runCnt. Next,
the indices for test data is separated by using the ith
positive and the jth negative label and these indices
are stored in testDataIdx. The test data itself is
then separated from expressionMatrix using the
testDataIdx and stored in dataForTesting. The
corresponding ground truth labels of the test data
are extracted from transGroundTruthLabels using
testDataIdx and stored in labelForTesting.

for i = 1:noPos

for j = 1:noNeg

% Count for number of runs

runCnt = runCnt + 1;

% Build test dataset (only 2

% examples per test set)

testDataIdx = [negLabelIdx(j),...

posLabelIdx(i)];

dataForTesting = expressionMatrix(:,...

testDataIdx);

labelForTesting = ...

transGroundTruthLabels(:, testDataIdx);

After the storage of the test data and its respec-
tive indices, trainingDataIdx is used to store
the indices of training data by eliminating the indices
of the test data. This is done using temporary
variables tmpPosLabelIdx and tmpNegLabelIdx.
trainingDataIdx is used to store the train-
ing data in variable dataForTraining using
expressionMatrix and the indices of train-
ing data in variable labelForTraining using
transGroundTruthLabels.

% Remove test dataset from the whole

% dataset and build train dataset

tmpPosLabelIdx = posLabelIdx;

tmpNegLabelIdx = negLabelIdx;

tmpPosLabelIdx(i) = [];

tmpNegLabelIdx(j) = [];

trainDataIdx = [tmpNegLabelIdx,...

tmpPosLabelIdx];

dataForTraining = expressionMatrix(:,...

trainDataIdx);

labelForTraining = ...

transGroundTruthLabels(:, trainDataIdx);
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3.4.1 Defining and estimating probabilities and conditional
probabilities tables for nodes in bnet

Till now, the probabilities as well as conditional probabil-
ity tables (cpt) for some of the nodes have been stored in
the probabilities.mat file and loaded in the workspace. But
the cpt for all the nodes in the bnet remain uninitialized.
The next procedure is to initialize the tables using assumed
values for some of the known nodes while estimating the
entries of cpt for other nodes (i.e., of nodes representing
genes) using the training data.
To this end, it is important to define a variable by the

name cpdStorage of the format structure. Starting with
all the nodes that have no parents and whose probabilities
and cpt have been loaded in the workspace (saved in prob-
abilities.mat), the for loop iterates through all the nodes in
the network defined by N, stores the index of the kth node
in nodeidx using function bnet.names with input argu-
ment nodeNames{k} and assigns values to cpt depend-
ing on the type of the model. If MPBK+EI (model = “t1”)
is used and the kth entry in nodeNames matches with
TCF4, then the cpt value in PrTCF4 is assigned to
cpt. The parent node of this node is assigned a value
0 and stored in cpdStorage(k).parentnode{1}.
The name TCF4 or nodeNames{k} is assigned to
cpdStorage(k).node. The cpt values in cpt is
assigned to cpdStorage(k).cpt. Finally, the condi-
tional probability density cpt for the node with name
TCF4 is stored in bnet.CPD using function tabu-
lar_CPD, the Bayesian network bnet, the node index
nodeidx, and cpt. Similarly, values in PrMeDKK1,
avgPrMeDACT1, avgPrMeDACT2, avgPrH3K27me3,
avgPrH3K4me3, PrMeSFRP1, PrMeSFRP2, PrMeS-
FRP4, PrMeSFRP5, PrMeWIF1, and PrSample ini-
tialize the cpt values for nodes MeDACT1, MeDACT2,
H3k27me3, H3k4me3, MeSFRP1, MeSFRP2, MeSFRP4,
MeSFRP5, MeWIF1, and Sample, respectively. It might
not be necessary to hard code the variables and more effi-
cient code could be written. Currently, the selection of the
hard-coded variables is for ease in reading the code from a
biological point of view for person with computer science
background. But surely, this programming style is bound
to change when large and diverse datasets are employed.
Similar initializations happen for models MPBK

(model = “t2”) and MNB+MPBK (model = “p1”). It should
be noted that in MPBK (MNB+MPBK), the only nodes
without parents are TCF4 and Sample (TCF4 and BETA-
CAT). To accommodate for these models, the necessary
elseif statements have been embedded in the for loop
below.

% Define P and CPD for the nodes of the

% bnet

cpdStorage = struct([]);

% Store probabilities for nodes with no

% parents

for k = 1:N

nodeidx = bnet.names(nodeNames{k});

if isempty(bnet.parents{nodeidx})

% tables for non-gene measurements

if ~isempty(strfind(model, ’t1’))

if strcmp(nodeNames{k},’TCF4’)

cpt = PrTCF4;

elseif strcmp(nodeNames{k}, ’MeDKK1’)

cpt = PrMeDKK1;

elseif strcmp(nodeNames{k}, ’MeDACT1’)

cpt = avgPrMeDACT1;

elseif strcmp(nodeNames{k}, ’MeDACT2’)

cpt = avgPrMeDACT2;

elseif strcmp(nodeNames{k}, ’H3k27me3’)

cpt = avgPrH3K27me3;

elseif strcmp(nodeNames{k}, ’H3k4me3’)

cpt = avgPrH3K4me3;

elseif strcmp(nodeNames{k}, ’MeSFRP1’)

cpt = PrMeSFRP1;

elseif strcmp(nodeNames{k}, ’MeSFRP2’)

cpt = PrMeSFRP2;

elseif strcmp(nodeNames{k}, ’MeSFRP4’)

cpt = PrMeSFRP4;

elseif strcmp(nodeNames{k}, ’MeSFRP5’)

cpt = PrMeSFRP5;

elseif strcmp(nodeNames{k}, ’MeWIF1’)

cpt = PrMeWIF1;

elseif strcmp(nodeNames{k}, ’Sample’)

cpt = PrSample;

end

elseif ~isempty(strfind(model, ’t2’))

if strcmp(nodeNames{k},’TCF4’)

cpt = PrTCF4;

elseif strcmp(nodeNames{k}, ’Sample’)

cpt = PrSample;

end

elseif ~isempty(strfind(model, ’p1’))

if strcmp(nodeNames{k}, ’TCF4’)

cpt = PrTCF4;

elseif strcmp(nodeNames{k}, ’BETACAT’)

cpt = PrBETACAT;

end

end

cpdStorage(k).parentnode{1} = 0;

cpdStorage(k).node = nodeNames{k};

cpdStorage(k).cpt = cpt;

bnet.CPD{nodeidx} = tabular_CPD(...

bnet, nodeidx, ’CPT’, cpt);

end

end

In the same for loop above, the next step is to ini-
tialize probability as well as the cpt values for nodes
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with parents. Two cases exist in the current scenario, i.e.,
nodes that (1) represent genes and (2) do not represent
genes. To accommodate for gene/non-gene node classifi-
cation, a logical variable GENE is introduced. Also, before
entering the second for loop described below, a variable
gene_cpd of the format structure is defined for stor-
age of the to be computed cpt values for all genes in
the dataset. parentidx stores the indices of the parents
of the child node under consideration using the child’s
index in nodeidx via bnet.parents{nodeidx}. The
total number of parents a child node has is contained in
noParents.
Initially, GENE is assigned a value of 0 indicating that

the node under consideration is not a gene node. If this
is the case, the ˜GENE in the if condition of the for
loop below gets executed. In this case, depending on
the type of the model cpt values of a particular node
is initialized. For MPBK+EI and MPBK (model = “t1”
and model = “t2”), the cpt values for nodes BETA-
CAT, DVL2, and TRCMPLX is stored using values in
PrBETACAT, PrDVL2, and PrTRCMPLX. As before,
using the function tabular_CPD and values in nodeidx,
bnet, and cpt as input arguments, the respective cpt
is initialized in bnet.CPD{nodeidx}. Similar com-
putations are done for MNB+PBK, i.e., model “p1” for
node TRCMPLX. Finally, the indices of the parents of
the kth child node are stored in cpdStorage(k)
.parentnode{m}.
On the other hand, if the name of the node in

the kth index of nodeNames matches the name in
the lth index of uniqueGenes, a parent variable
of format cell is defined within the second nested
for loop below. The names of the parents are stored
in this variable using nodeNames{parentidx(n)}.
Next, the cpt values of these parent nodes are sepa-
rately stored using a cell parent_cpd and a count
cnt. Finally, the cpd values for the lth gene is deter-
mined using the function generateGenecpd in the
script generateGenecpd.m that takes the following input
arguments: (1) vecTraining—gene expression from
training data, (2) labelTraining—labels for train-
ing data, (3) nodeName—name of the gene involved,
(4) parent—name of parents of the child node or
the gene under consideration, (5) parent_cpd—parent
cpd values, (6) model—kind of model and finally
returns the output as a structure gene_cpd con-
taining cpd for the particular gene under considera-
tion given its parents as well as a threshold value
in the form of median. In the code below, the val-
ues of the following variables are used as input argu-
ments for the function generateGenecpd, in order: (1)
dataForTraining(l,:)—training data for the lth
unique gene, (2) labelForTraining—labels for the
training data, (3) uniqueGenes{l}, (4) parent, (5)

parent_cpd, (6) model. The output of the function
is stored in the structure variable x. The threshold
at which the probabilities were computed for the lth
gene is stored in gene_cpd(l).vecmedian using
x.vecmedian and the probabilities themselves are
stored in gene_cpd(l).T using x.T. These probabili-
ties are reshaped into a row vector and stored in cpt. As
mentioned before, using function tabular_CPD and val-
ues in nodeidx, bnet and cpt as input arguments, the
respective cpt is initialized in bnet.CPD{nodeidx}.
Finally, the required values of cpt, name of lth gene or
kth node and indices of its parent nodes are stored in
cpdStorage(k).cpt, cpdStorage(k).node and
cpdStorage(k).parentnode{m}, respectively.
It should be noted that the exposition of the genera-

tion of probability values for the different genes via the
function generateGenecpd needs a separate treatment
and will be addressed later. To maintain the continuity of
the workflow of the program, the next step is addressed
after the code below.

% Store probabilities for nodes with

% parents

gene_cpd = struct([]);

for k = 1:N

nodeidx = bnet.names(nodeNames{k});

if ~isempty(bnet.parents{nodeidx})

parentidx = bnet.parents{nodeidx};

noParents = length(parentidx);

GENE = 0;

for l = 1:noGenes

if strcmp(nodeNames{k}, uniqueGenes{l})

% Find cpt of gene parent

parent = {};

for n = 1:noParents

parent{n} = nodeNames{parentidx(n)};

end

% Assign cpd to parent

cnt = 0;

parent_cpd = {};

for m = 1:length(cpdStorage)

for n = 1:noParents

if strcmp(parent{n},...

cpdStorage(m).node)

cnt = cnt + 1;

parent_cpd{cnt} = cpdStorage(m).cpt;

end

end

end

x = generateGenecpd(...

dataForTraining(l,:),...

labelForTraining, uniqueGenes{l},...

parent, parent_cpd, model);

gene_cpd(l).vecmedian = x.vecmedian;
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gene_cpd(l).T = x.T;

[r, c] = size(gene_cpd(l).T);

cpt = reshape(gene_cpd(l).T,1,r*c);

GENE = 1;

break;

end

end

% tables for non-gene measurements

if ~GENE

if ~isempty(strfind(model,’t1’))

if strcmp(nodeNames{k},’BETACAT’)

cpt = PrBETACAT;

elseif strcmp(nodeNames{k},’DVL2’)

cpt = PrDVL2;

elseif strcmp(nodeNames{k},’TRCMPLX’)

cpt = PrTRCMPLX;

end

elseif ~isempty(strfind(model,’t2’))

if strcmp(nodeNames{k},’BETACAT’)

cpt = PrBETACAT;

elseif strcmp(nodeNames{k},’DVL2’)

cpt = PrDVL2;

elseif strcmp(nodeNames{k},’TRCMPLX’)

cpt = PrTRCMPLX;

end

elseif ~isempty(strfind(model,’p1’))

if strcmp(nodeNames{k},’TRCMPLX’)

cpt = PrTRCMPLX;

end

end

end

% record the parent index

for m = 1:noParents

cpdStorage(k).parentnode{m} = ...

parentidx(m);

end

cpdStorage(k).node = nodeNames{k};

cpdStorage(k).cpt = cpt;

bnet.CPD{nodeidx} = ...

tabular_CPD(bnet,nodeidx,’CPT’,cpt);

end

end

3.4.2 Evidence building and inference
The values estimated in gene_cpd as well as
cpdStorage are stored for each and every run of the
holdout experiment. Also, the dimensions of the testing
data are stored.

% Function to store estimated

% parameters

Runs(runCnt).geneCpd = gene_cpd;

Runs(runCnt).cpdStorage = cpdStorage;

% Function to predict on test data

% using trained BN

[r, c] = size(dataForTesting);

Next, depending on the type of the evidence provided
in eviDence, inferences can be made. Below, a section
of code for the gene expression evidence, which gets
executed when the case “ge” matches with the param-
eter eviDence of the switch command, is explained.
The issue that was to be investigated was whether the
β-catenin-based TRCMPLX is always switched on (off )
or not when the Sample is cancerous (normal). In order
to analyze this biological issue from a computational
perspective, it would be necessary to observe the behav-
ior of the predicted states of both TRCMPLX as well as
Sample, given all the available evidence. For this purpose,
the variable tempTRCMPLXgivenAllge is defined as
a vector for each model separately, while the variable
tempSAMPLE is defined as a vector for biologically
inspired models, i.e.,MPBK+EI andMPBK separately. This
is due to the assumption that the state of TRCMPLX is the
same as the state of the test sample under consideration in
theMNB+MPBK (a modification of [3]).
In the section of the code below, for each of the

test dataset, an evidence variable of the format cell
is defined. The evidence is of the size equivalent
to the number of node N in the network. Only those
indices in the cell will be filled for which informa-
tion is available from the test data. Since the function
twoHoldOutExp started with “ge” as an argument for
the type of evidence, evidence will be constructed
from information available via gene expression from
the test data. Thus for the mth gene, if the gene expres-
sion in the test data (i.e., dataForTesting(m,k)) is
lower than the threshold generated using the median
of expressions for this gene in the training data (i.e.,
gene_cpd(m).vecmedian), then the evidence for
this gene is considered as inactive or repressed, i.e.,
evidence{bnet.names(uniqueGenes(m))} = 1,
else the evidence for this gene is considered as
active or expressed, i.e., evidence{bnet.names
(uniqueGenes(m))} = 2. Iterating through all the
genes, the evidence is initialized with the available
information for the kth test data.
Once the probability values have been initialized either

by computation or assumption, then for the kth test
data, a Bayesian network engine is generated and stored
in bnetEngine via the junction tree algorithm imple-
mented in function jtree_inf_engine that uses the
input argument as the newly initialized network stored
in bnet. The bnetEngine is then fed with the values
in evidence to generate a new engine that contains the
updated probability values for nodes for which there is no
evidence in the network. This is done using the function
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enter_evidence. According to BNT provided by [4], in
the case of the jtree engine, enter_evidence implements a
two-pass message-passing scheme. The first return argu-
ment (engine) contains the modified engine, which
incorporates the evidence. The second return argument
(loglik) contains the log-likelihood of the evidence. It
is the first returned argument or the modified engine that
will be of use further. It is important to note that for every
iteration that points to a new test data in the for loop, a
new Bayesian network engine is generated and stored in
bnetEngine. If this is not done, then the phenomena
of explaining away can occur on feeding new evidence
to an already modified engine which incorporated the
evidence from the previous test data. In explaining away,
the entering of new evidence might outweigh the effect of
an existing influencing factor or evidence thus making the
old evidence redundant. This simulation is not related to
such study of explaining away.
The belief that the TRCMPLX is switched on given

the gene expression evidence, i.e., Pr(TRCMPLX = 2|ge
as evidence) is computed by estimating the marginal
probability values using the function marginal_nodes
which takes the engine stored in engine and the name
of the node using bnet.names(’TRCMPLX’). The
marginal probabilities are stored in margTRCMPLX. The
final probability of TRCMPLX being switched on given
all gene expression evidences is stored in tempTRCMPLX
givenAllge using margTRCMPLX.T(2). Similarly, for
biologically inspired models the belief that the test Sam-
ple is cancerous given the gene expression evidence,
i.e., Pr(Sample = 2|ge as evidence) is computed
using function marginal_nodes that takes the engine
stored in engine and the name of the node using
bnet.names(’Sample’). The marginal probabilities
are stored in margSAMPLE. The final probability of Sam-
ple being cancerous given all gene expression evidences is
stored in tempSAMPLE using margSAMPLE.T(2).

switch eviDence

case ’ge’

disp([’Testing Example ’,...

num2str(runCnt), ’ - Based on all ge’]);

tempTRCMPLXgivenAllge = [];

if ~isempty(strfind(model, ’t’))

tempSAMPLE = [];

end

% Build evidence for inference

for k = 1:c

evidence = cell(1,N);

for m = 1:noGenes

if dataForTesting(m,k) <= ...

gene_cpd(m).vecmedian

evidence{bnet.names(uniqueGenes(m))}

= 1;

else

evidence{bnet.names(uniqueGenes(m))}

= 2;

end

end

% Build Bayesian engine

bnetEngine = jtree_inf_engine(bnet);

[engine, loglik] = ...

enter_evidence(bnetEngine,evidence);

% Pr(TRCMPLX = 2|ge as evidence)

margTRCMPLX = marginal_nodes(...

engine,bnet.names(’TRCMPLX’));

tempTRCMPLXgivenAllge = ...

[tempTRCMPLXgivenAllge,

margTRCMPLX.T(2)];

if ~isempty(strfind(model, ’t’))

% Pr(Sample = 2|ge as evidence)

margSAMPLE = marginal_nodes(...

engine,bnet.names(’Sample’));

tempSAMPLE = [tempSAMPLE,...

margSAMPLE.T(2)];

end

end

Finally, for a particular count of the run of the exper-
iment, tempTRCMPLXgivenAllge and tempSAMPLE
are stored in the structure Runs using different variables
associated with Runs. This iteration keeps happening
until the 2-holdout experiment is exhausted. The case
when eviDence is “me” or evidence for methylation will
be discussed later as a programming project.

% Function to store prediction values

Runs(runCnt).condPrTRCMPLXgivenAllge...

= tempTRCMPLXgivenAllge;

if ~isempty(strfind(model,’t’))

Runs(runCnt).condPrSAMPLE =...

tempSAMPLE;

end

Runs(runCnt)

.conditionalPrNODEgivenIndividualge...

= tempNODEgivenIndividualge;

Runs(runCnt).geneEvidence = geneEvidence;

case ’me’

% Project discussed later

end

end

end

3.5 Storing results, plotting graphs, and saving files
The final section of the code deals with the storing of the
results, plotting of graphs, and saving the results in the
files. Since the current explanation is for gene expression
evidence, the code pertaining to “ge” is explained. Readers
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might want to develop the code for evidence regarding
methylation as a programming project.
To store results as well as the conditional prob-

abilities for TRCMPLX and Sample given all the
gene expression evidence, a cell variable Results,
a counter cntResult, and vector variables
condPrTRCMPLXgivenAllge, condPrSAMPLE, and
labels are defined as well as initialized. Next, the
prediction values and original labels are stored while
iterating through the total number of runs of the
experiment. This is done using the for loop and the
variable runCnt. For the ith run, predicted conditional
probabilities of TRCMPLX and Sample from each run
are stored in condPrTRCMPLXgivenAllge(i,:)
and condPrSAMPLE(i,:), depending on the model
used. Finally, the ground truth labels of the test data
are stored in a matrix where the ith row is initialized
with labels(i,:) = [-1, +1];. Here, labels in a
matrix and −1 (+1) represent normal (cancerous) cases.
Next, the variables condPrTRCMPLXgivenAllge and
condPrSAMPLE are reshaped into vectors for further
processing.
The plotting of the ROC curves and the estimation

of their respective AUCs is achieved using function
perfcurve that takes labels and either of the vectors
condPrTRCMPLXgivenAllge or condPrSAMPLE
depending on the type of the model selected. The func-
tion churns out useful information in the form of the false
positive rate in X, the true positive rate in Y, and the esti-
mated AUC for ROC of condPrTRCMPLXgivenAllge
(condPrSAMPLE) in AUCTRCMPLXgivenAllge
(AUCSAMPLE). The plot function is used to draw the
graphs along with the depiction of legends using function
legend. Finally, the two-sample Kolmogorov-Smirnov test
between the predictions of states of TRCMPLX and Sam-
ple is performed using the kstest2 function. This function
takes the two vectors condPrTRCMPLXgivenAllge
and condPrSAMPLE as arguments, compares the dis-
tribution of the predictions, and returns the state of
significance between the two distributions in h01. If
the value of h01 is 1, then statistical significance exists
else it does not exist. Sinha [1] shows that the statistical
difference exists between predictions of TRCMPLX and
Sample when the nodes for the same are segregated in the
biologically inspired causal models, which is not the case
with the Naive Bayes model.
Lastly, the computed variables are stored in a .mat file

using the function save. Options for using the save func-
tion can be obtained from the help command inMATLAB.

if strcmp(eviDence, ’ge’)

% Store results

Results = {};

cntResult = 0;

% Estimation of performance levels

condPrTRCMPLXgivenAllge = [];

geneEvidence = {};

if ~isempty(strfind(model, ’t’))

condPrSAMPLE = [];

end

labels = [];

% Store prediction values and

% original labels

for i = 1:runCnt

condPrTRCMPLXgivenAllge(i,:) =...

Runs(i).condPrTRCMPLXgivenAllge;

geneEvidence{i} = Runs(i).geneEvidence;

if ~isempty(strfind(model,’t’))

condPrSAMPLE(i,:) = Runs(i).condPrSAMPLE;

end

labels(i,:) = [-1, +1];

end

% Reshape the vectors

[r,c] = size(labels);

labels = reshape(labels,r*c,1);

condPrTRCMPLXgivenAllge =...

reshape(condPrTRCMPLXgivenAllge, r*c,1);

if ~isempty(strfind(model,’t’))

condPrSAMPLE = reshape(condPrSAMPLE,r*c,1);

end

% Plot the ROC curve and compute AUC

[X,Y,T,AUCTRCMPLXgivenAllge] =...

perfcurve(labels,

condPrTRCMPLXgivenAllge,1);

plot(X,Y,’r’);

xlabel(’False positive rate’);

ylabel(’True positive rate’);

if ~isempty(strfind(model,’t’))

hold on;

[X,Y,T,AUCSAMPLE] =...

perfcurve(labels,condPrSAMPLE,1);

plot(X,Y,’b’);

legend(’TRCMPLX - On’,’SAMPLE - T’);

hold off;

% Perform ks-test the significance

% between models/evidences/predictions

[h01,p,ksstat] =...

kstest2(condPrTRCMPLXgivenAllge,...

condPrSAMPLE);

end

if ~isempty(strfind(model,’t1’))

save(’Results.mat’,’Runs’,...

’condPrTRCMPLXgivenAllge’,...
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’geneEvidence’,’condPrSAMPLE’,...

’AUCTRCMPLXgivenAllge’,’AUCSAMPLE’,

’h01’);

elseif ~isempty(strfind(model,’t2’))

save(’Results.mat’,’Runs’,...

’condPrTRCMPLXgivenAllge’,...

’geneEvidence’,’condPrSAMPLE’,...

’AUCTRCMPLXgivenAllge’,’AUCSAMPLE’,

’h01’);

elseif ~isempty(strfind(model, ’p1’))

save(’Results.mat’,’Runs’,...

’condPrTRCMPLXgivenAllge’,...

’geneEvidence’,...

’AUCTRCMPLXgivenAllge’);

end

else

end

The ROC graphs and their respective AUC values found
in the figures of [1] are plotted by making variation in the
assumed probability values of PrTRCMPLX in the function
generateGenecpd. The details of the generateGenecpd
are discussed in the next section.
The variation in the assumed probability values of the

TRCMPLX that affect the behavior of the gene nodes is
termed as ETGN in [1]. Since the entire code runs only
once, it has to be run for different instances of input
arguments, separately. Once the results have been saved
in Results.mat file, one can rename the file based on
the model and the evidence arguments used in function
twoHoldOutExp. Thus, if the code is run for model “t1”
and ETGN of 90 %, then the user needs to rename the
Results.mat that stores the results with an appropriate
file name like Results-T1-GE-pforTRCMPLX-90per.mat.
Once the results for all permutations of instances for a
vector of input arguments in twoHoldOutExp have been
obtained, the script geneTRCMPLXstats using the gener-
ated .mat result files can be executed to generate the tables
which shows how TRCMPLX behaves as the evidences of
genes vary in both normal and tumorous cases. Tables 5
and 6 in [1] are generated using this script. How inter-
pretations of the results are made can be studied in more
depth in the results section of [1]. However, succinctly, the
script geneTRCMPLXstats generates mean/average esti-
mates of the conditional probability that the transcription
complex will be switched on or off in normal or tumor
test samples, given the different gene evidences. By major-
ity, if a gene expression is found to be repressed (active)
in normal or tumor case, then the predicted belief rep-
resented by the probability of the transcription complex
conditional on repression (activation) is chosen as the
inferred biological phenomena. Figures 6 and 7 of [1]
depict the summarized pictorial representation of the
predicted inferences shown in Tables 5 and 6 of [1].

Note that to generate the ROC graphs and their respec-
tive AUC values for different models with varying effect of
TRCMPLX on different genes (ETGN in [1]), the results
in variables X and Y (of twoHoldOutExp) are stored in
different variables and clumped together in a .mat file
titled aucANDpredictions_sample_TRCMPLX.mat. This
has to be done manually for each model and every setting
of ETGN. For example, using model t1 and ETGN of
60 %, the false positive rate in X is stored as xT1_60 and
the true positive rate in Y is stored as yT1_60, in the
abovementioned .mat file. Finally, the script in the m file
titled plotAUC is used to manipulate the aforementioned
transformed variables and generate the ROC curves in
Figure 5 of the results section of [1]. The Google drive
https://drive.google.com/folderview?id=0B7Kkv8wlhPU-
T05wTTNodWNydjA&usp=sharing contains the results
under the compressed directory with name Results-2013.
Inference interpretations of the results can be studied in
more depth from [1].
Finally, a full section is dedicated to the computation

of the probabilities for nodes with parents which has
been implemented in function generateGenecpd. The
computation of gene nodes happens within the holdout
experiment and before the new computation of CPTs con-
ditional on the provided evidence. Since the details of
computation of CPTs for gene nodes is dense, it has been
treated separately after the explanation of the code of
holdout experiment.

3.6 Generating probabilities for gene nodes with parents
Here, the code for the function generateGenecpd
is explained. As a recapitulation, the function gen-
erateGenecpd in the script generateGenecpd.m takes
the following input arguments: (1) vecTrain-
ing—gene expression from the training data, (2)
labelTraining—labels of the training data, (3) node-
Name—name of the gene involved, (4) parent—name
of parents of the child node or the gene under con-
sideration, (5) parent_cpd—parent cpd values, (6)
model—kind of the model and finally returns the output
as a structure gene_cpd containing cpd for the partic-
ular gene under consideration given its parents as well
as a threshold value in the form of median. In the code
below, the values of the following variables are used as
input arguments for the function generateGenecpd, in
order: (1) dataForTraining(l,:)—training data
for the lth unique gene, (2) labelForTraining—
labels for the training data, (3) uniqueGenes{l}, (4)
parent, (5) parent_cpd, (6) model. The output of
the function is stored in the structure variable x. The
threshold at which the probabilities were computed for
the lth gene is stored in gene_cpd(l).vecmedian
using x.vecmedian and the probabilities themselves
are stored in gene_cpd(l).T using x.T.

https://drive.google.com/folderview?id=0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing
https://drive.google.com/folderview?id=0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing


Sinha EURASIP Journal on Bioinformatics and Systems Biology  (2017) 2017:1 Page 19 of 30

The code begins with the storing of the dimension of a
gene expression vector in vecTraining in variables r
and c and recording the length of the vector containing
the labels of the training data (in labelTraining) in
variable lencond. Finally, themuch reported threshold is
estimated here using the median of the training data and
stored in vecmedian.

% Rows is the gene expression and...

% columns are conditions (normal or

% cancerous) [r, c] = size(vecTraining);

% lencond = length(labelTraining);

% Take median as the threshold vecmedian =

% median(vecTraining);

In [1], the effect of TRCMPLX on the gene expression
has been analyzed as it is not known to what degree the
TRCMPLX plays a role in the Wnt signaling pathway.
To investigate this, Sinha [1] incorporated a parameter p
that encodes the effect of TRCMPLX on the expression of
the gene which is influenced by it. Thus, while iterating
through the list of parents if one encounters TRCMPLX as
a parent, then p is initialized to a certain value. In [1], the
effect of TRCMPLX being active (1− p) is incremented in
steps of 0.1 from {0.5 to 0.9} and respective ROC graphs
are plotted using the same.

% Defining affect of TRCMPLX on

% gene expression

noParents = length(parent);

for i = 1:noParents

if ~isempty(strfind(model,’t’))

if strfind(parent{i},’TRCMPLX’)

p = 0.5;

end

end

end

It is important to note that the computation of gene
probabilities differ from model to model and a detailed
description of each computation is given for each gene
for all three models, before explaining the computation
for another gene. Also, from [1], theoretically, for a gene
gi ∀i genes, let there be ntr different instances of expres-
sion values from the sample training data. Let each of the
ntr gene expression values be discretized to 0 and 1 based
on their evaluation with respect to the median threshold.
The 1’s represent the total number of expression where the
gene is active and 0’s represent the total number of expres-
sion where the gene is inactive. In case of normal and
tumorous samples, the proportions of 1’s and 0’s may be
different. Themedian of the expression values is employed
as a threshold to decide the frequency of gi being active or
inactive given the state of the parent node(s). This median

is also used along with the labels of the training data to
decide the status of different parent factors affecting the
gene under consideration.
If one observes the network in Figs. 2 and 4, one finds

that there are nodes that have one, two, or three par-
ent nodes. Computation of conditional probability tables
for these child nodes which represent gene expression
for both tumor and normal samples in the different
models (i.e., “t1” for MPBK+EI, “t2” for MPBK, and “p1”
for MNB+MPBK) require intuitive analysis of the expres-
sion data. Estimation of the cpts for three gene nodes, i.e.,
DKK1, DKK2, and DACT3, each having different parents
depending on the type of the model has been explained
below. Nodes that have similar corresponding behavior
are enlisted but the estimation is not derived.

3.6.1 DKK1 inMPBK+EI (t1)
Since there are three parents forDKK1, namelyMeDKK1,
Sample, and TRCMPLX, the cpt values for the table
is segregated based on the status of methylation and
quality of samples. A 2 × 2 cross table for methyla-
tion and sample generates frequency estimates that can
help derive probability values. The entries of the cross
table depict the following cases: (a) methylated in nor-
mal (represented by vector mINn), (b) un-methylated
in normal (represented by vector umINn), (c) methy-
lated in tumorous (represented by vector mINt), and
(d) un-methylated in tumorous (represented by vector
umINt) cases. For every jth entry in the vecTraining,
if the label (labelTraining(j)) is normal (≤0) and
the DKK1 gene expression (vecTraining(j)) is less
than the estimated median (≤vecmedian), then the
value in vecTraining(j) is appended to mINn. Here,
expression level lower than median indicates probable
repression due to methylation in normal case. If the
label (labelTraining(j)) is normal (≤0) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian), then the
value in vecTraining(j) is appended to umINn. Here,
expression level greater than median indicates probable
activation due to un-methylation in normal case. If the
label (labelTraining(j)) is tumorous (≥0) and the
DKK1 gene expression (vecTraining(j)) is less than
the estimated median (≤vecmedian), then the value in
vecTraining(j) is appended to mINt. Here, expres-
sion level lower than median indicates probable repres-
sion due to methylation in tumorous case. And finally,
if the label (labelTraining(j)) is tumorous (≥0)
and the DKK1 gene expression (vecTraining(j)) is
greater than the estimated median (≥vecmedian), then
the value in vecTraining(j) is appended to umINt.
Here, expression level greater than median indicates
probable activation due to un-methylation in tumorous
case.
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% Segregate values based on status

% of methylation and samples

mINn = [];

umINn = [];

mINt = [];

umINt = [];

for j = 1:lencond

if labelTraining(j) < 0 && ...

vecTraining(j) < vecmedian

mINn = [mINn, vecTraining(j)];

elseif labelTraining(j) < 0 && ...

vecTraining(j) >= vecmedian

umINn = [umINn, vecTraining(j)];

elseif labelTraining(j) > 0 && ...

vecTraining(j) < vecmedian

mINt = [mINt, vecTraining(j)];

else

umINt = [umINt, vecTraining(j)];

end

end

Also, since the actual probability values for the acti-
vation of the TRCMPLX is not known, the conditional
probabilities are multiplied with a probability value of p
when the TRCMPLX is off and with a probability value
1 − p when the TRCMPLX is on. Before estimating the
values for cpt of DKK1, it is important to see how (1) the
probability table would look like and (2) the probability
table is stored in BNT [4]. Table 10 represents the con-
ditions of sample as well as the methylation along with
transcription complex and the probable beliefs of events
(DKK1 being on/off ). With three parents and binary state,
the total number of conditions is 23. To estimate the
values of the probable beliefs of an event, the follow-
ing computation is done. (Case - TRCMPLX is Off ) The
Pr(DKK1 - On|Sample - Normal, Me - UM) being low
is the fraction of number of 1’s in the normal sample

Table 10 Conditional probability table for DKK1 inMPBK+EI

(model - t1)

CPT for DKK1 inMPBK+EI (model - t1)

Sample Methylation TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)

Normal No Off h (1) l (9)

Tumor No Off h/l (2) l/h (10)

Normal Yes Off h (3) l (11)

Tumor Yes Off h (4) l (12)

Normal No On h (5) l (13)

Tumor No On h/l (6) l/h (14)

Normal Yes On h (7) l (15)

Tumor Yes On h (8) l (16)

h - probability of event being high; l - probability of event being low. Serial numbers
in brackets represent the ordering of numbers in vectorial format

(a×p) and the sum of total number of normal samples
and number of 1’s in the tumorous samples, i.e., the non-
methylated gene expression values in tumorous samples
(A). Similarly, Pr(DKK1 - On|Sample - Tumor, Me - UM)
being low is the fraction of number of 1’s in the tumorous
sample (b×p) and the sum of total number of tumor-
ous samples and number of 1’s in the normal samples,
i.e., the non-methylated gene expression values in nor-
mal samples (B). Again, Pr(DKK1 - Off|Sample - Normal,
Me - M) being high is the fraction of number of 0’s in the
normal sample (c×p) and the sum of total number of nor-
mal samples and number of 0’s in the tumorous samples,
i.e., the methylated gene expression values in tumorous
samples (C). Finally, Pr(DKK1 - Off|Sample - Tumor, Me
- M) being high is the fraction of number of 0’s in the
tumorous sample (d×p) and the sum of total number of
tumorous samples and number of 0’s in the normal sam-
ples, i.e the methylated gene expression values in normal
samples (D).
(Case - TRCMPLX is On) Next, the Pr(DKK1 -

On|Sample - Normal, Me - UM) being low is the fraction
of number of 1’s in the normal sample (a×(1 − p)) and
the sum of total number of normal samples and number
of 1’s in the tumorous samples, i.e., the non-methylated
gene expression values in tumorous samples (A). Simi-
larly, Pr(DKK1 - On|Sample - Tumor,Me - UM) being low
is the fraction of number of 1’s in the tumorous sample
(b×(1 − p)) and the sum of total number of tumorous
samples and number of 1’s in the normal samples, i.e., the
non-methylated gene expression values in normal sam-
ples (B). Again, Pr(DKK1 - Off|Sample - Normal,Me - M)
being high is the fraction of number of 0’s in the normal
sample (c×(1−p)) and the sum of total number of normal
samples and number of 0’s in the tumorous samples, i.e.,
the methylated gene expression values in tumorous sam-
ples (C). Finally, Pr(DKK1 - Off|Sample - Tumor,Me - M)
being high is the fraction of number of 0’s in the tumor-
ous sample (d×(1 − p)) and the sum of total number of
tumorous samples and number of 0’s in the normal sam-
ples, i.e., the methylated gene expression values in normal
samples (D). Complementary conditional probability val-
ues for DKK1 being inactive can easily be computed from
the above estimated values.

% Generate frequencies for conditional

% probability values

% pr(DKK1 - On|Sample - Normal,Me - UM)

% # of On’s in Normal

a = length(umINn);

% total # of On’s in Normal and

% Unmethylation

A = length(umINn) + length(mINn)...

+ length(umINt);
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% pr(DKK1 - On|Sample - Tumor,Me - UM)

% # of On’s in Tumor

b = length(umINt);

% total # of On’s in Normal and

% Unmethylation

B = length(umINt) + length(umINn)...

+ length(mINt);

% pr(DKK1 - Off|Sample - Normal,Me - M)

% # of Off’s in Normal

c = length(mINn);

% total # of Off’s in Normal and...

% Methylation

C = length(mINn) + length(umINn)...

+ length(mINt);

% pr(DKK1 - Off|Sample - Tumor,Me - M)

% # of Off’s in Normal

d = length(mINt);

% total # of Off’s in Normal and

% Methylation

D = length(mINt) + length(umINt)...

+ length(mINn);

These values are stored in variable T and the estimation
is shown in the following section of the code. After the
values in T have been established, a constant 1 is added as
pseudo-count to convert the distribution to a probability
distribution via Dirichlet process. This is done to remove
any deterministic 0/1 values appearing in the probability

tables. If 0/1 appears in the probability tables then one
has deterministic evidence regarding an event and the
building of the Bayesian engine collapses. These counts
also represent the unobserved that might not have been
recorded due to small sample size. The Dirichlet process
is a generalization of the Dirichlet distribution which is
parameterized by a vector of positive reals. The pseudo-
counts here form the positive values. What this basically
means is that the probability density function returns the
belief that the probabilities of some rival events given
that each event has been observed non-negative num-
ber of times. These distributions are often used as prior
distributions in Bayesian statistics.
Finally, the frequencies/probabilities in T are normal-

ized in order to obtain the final conditional probability
values for DKK1. Estimation of cpts for genes SFRP1,
WIF1 andDKK4 which have methylation, TRCMPLX and
Sample as parents require same computations as above.
Figure 5 shows the pictorial representation of one of the
cpt inMPBK+EI.

% Multiply probability of TRCMPLX in

% on/off state to add the 3rd

% dimension in deciding the conditional

% probability tables.

% Conditional probability table for

% DKK1 given its parents

T = [A-a*p, a*p;...

B-b*p, b*p;...

c*p, C-c*p;...

d*p, D-d*p;...

Fig. 5 Conditional probability table for node DKK1 inMPBK+EI
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A-a*(1-p), a*(1-p);...

B-b*(1-p), b*(1-p);...

c*(1-p), C-c*(1-p);...

d*(1-p), D-d*(1-p)];

[r,c] = size(T);

% Convert the table to probability

% distribution via Dirichlet process

T = T + 1;

for i = 1:r

T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.2 DKK1 inMPBK (t2)
There are two parents for DKK1, namely TRCMPLX and
Sample. The conditional probability value for a gene being
active or inactive is estimated based on the state of the
Sample. Again, since the actual probability values for the
activation of the TRCMPLX is not known the conditional
probabilities are multiplied with a probability value of p
when the TRCMPLX is off and with probability value 1−p
when the TRCMPLX is on.
The analysis of quality of sample generates fre-

quency estimates that can help derive probability values.
These frequencies depict the following cases: (a) gene
repressed in normal (represented by vector offINn),
(b) gene expressed in normal (represented by vec-
tor onINn), (c) gene repressed in tumorous (repre-
sented by vector offINt), and (d) gene expressed in
tumorous (represented by vector onINt) cases. For
every jth entry in the vecTraining, if the label
(labelTraining(j)) is normal (≤0) and the DKK1
gene expression (vecTraining(j)) is less than the
estimated median (≤vecmedian), then the value in
vecTraining(j) is appended to offINn. Here,
expression level lower than median indicates proba-
ble gene repression in the normal case. If the label
(labelTraining(j)) is normal (≤0) and the DKK1
gene expression (vecTraining(j)) is greater than
the estimated median (≥vecmedian), then the value
in vecTraining(j) is appended to onINn. Here,
expression level greater than median indicates prob-
able gene activation in normal case. If the label
(labelTraining(j)) is tumorous (≥0) and the DKK1
gene expression (vecTraining(j)) is less than the
estimated median (≤vecmedian), then the value in
vecTraining(j) is appended to offINt. Here,
expression level lower than median indicates proba-
ble gene repression in tumor case. And finally, If the
label (labelTraining(j)) is tumorous (≥0) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian), then the
value in vecTraining(j) is appended to onINt. Here,
expression level greater than median indicates probable
gene activation in tumorous case.

% Segregate values based on

% status of TRCMPLX

onINn = [];

offINn = [];

onINt = [];

offINt = [];

for j = 1:lencond

if labelTraining(j) < 0 &&...

vecTraining(j) < vecmedian

offINn = [offINn, vecTraining(j)];

elseif labelTraining(j) < 0 &&...

vecTraining(j) >= vecmedian

onINn = [onINn, vecTraining(j)];

elseif labelTraining(j) > 0 &&...

vecTraining(j) < vecmedian

offINt = [offINt, vecTraining(j)];

else

onINt = [onINt, vecTraining(j)];

end

end

Again, before estimating the values for cpt of DKK1, it
is important to see how (1) the probability table would
look like and (2) the probability table is stored in BNT
[4]. Table 11 represents the conditions of Sample as well
as TRCMPLX and the probable beliefs of events (DKK1
being on/off ). With two parents and binary state, the
total number of conditions is 22. To estimate the values
of the probable beliefs of an event, the following compu-
tation is done. The probability of gene expression being
active given Sample is normal and TRCMPLX is off, i.e.,
Pr(DKK1 = Active |Sample = Normal, TRCMPLX = Off),
is the fraction of number of 1’s in the normal sample
(a×p) and the sum of total number of normal samples
(A). Similarly, the probability of gene expression being
active given Sample is tumorous and TRCMPLX is off,
i.e., Pr(DKK1 = active |Sample = tumorous, TRCMPLX =
Off), is the fraction of number of 1’s in the tumorous
sample (b×p) and the sum of total number of tumor-
ous samples (B). Again, the probability of gene expression
being inactive given Sample is normal and TRCMPLX is

Table 11 Conditional probability table for DKK1 inMPBK

(model - t2)

CPT for DKK1 inMPBK (model - t2)

Sample TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)

Normal Off h (1) l (5)

Tumorous Off l (2) h (6)

Normal On h (3) l (7)

Tumorous On l (4) h (8)

h - probability of event being high; l - probability of event being low. Serial numbers
in brackets represent the ordering of numbers in vectorial format
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on, i.e., Pr(DKK1 = inactive |Sample = normal, TRCMPLX
= On), is the fraction of number of 0’s in the normal sam-
ple (A-a×(1− p)) and the sum of total number of normal
samples (A). Lastly, the probability of gene expression
being inactive given Sample is tumorous and TRCM-
PLX is on, i.e., Pr(DKK1 = inactive |Sample = tumorous,
TRCMPLX = On), is the fraction of number of 0’s in the
tumorous sample (B-b×(1−p)) and the sum of total num-
ber of tumorous samples (b). Complementary conditional
probability values for DKK1 being inactive can easily be
computed from the above estimated values.

% Generate frequencies for conditional

% probability values

% pr(DKK1 - On|Sample - N,TRCMPLX - Off)

% # of On’s when Sample is N

a = length(onINn);

% total # of TRCMPLX is Off

A = length(onINn) + length(offINn);

% pr(DKK1 - On|Sample - T,TRCMPLX - Off)

% # of On’s when Sample is T

b = length(onINt);

% total # of TRCMPLX is On

B = length(onINn) + length(offINt);

% Conditional probability table

% for DKK1 given its parents

T = [A-a*p, a*p;...

B-b*p, b*p;...

A-a*(1-p), a*(1-p);...

B-b*(1-p), b*(1-p)];

[r,c] = size(T);

After the values in T have been established, a constant
1 is added as pseudo-count to convert the distribution
to a probability distribution via Dirichlet process. Finally,
the frequencies in T are normalized in order to obtain
the final conditional probability values for DKK1. Estima-
tion of cpts for genes SFRP1, CCND1, CD44,WIF1,MYC,
and DKK4 which has TRCMPLX and Sample as parents

requires the same computations as above. Figure 6 shows
the pictorial representation of one of the cpt inM PBK.
% Convert the table to probability

% distribution via Dirichlet

process T = T + 1;

for i = 1:r

T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.3 DKK1 inMNB+MPBK (p1)
Following the naive Bayes model presented by [3] and
making slight modifications to it, Sinha [1] generated
MNB+MPBK. In this, all genes have a single parent, namely
TRCMPLX, and it is assumed that the predicted state of
TRCMPLX is exactly the same as the quality of the test
sample. Thus, the initial probability values for TRCM-
PLX are assumed to be fixed and no variation is made
on it. The conditional probability value for a gene being
active or inactive is estimated based on the state of the
TRCMPLX.
The segregation of the probability values depends on

the following conditions: (a) gene is active and TRCM-
PLX is on (represented by vector onINTrOn), (b) gene
is inactive and TRCMPLX is off (represented by vec-
tor offINTrOn), (c) gene is active and TRCMPLX is
off (represented by vector onINTrOff), and (d) gene
is inactive (represented by vector offINTrOff). For
every jth entry in the vecTraining, if the label
(labelTraining(j)) is ≤0 (TRCMPLX is off ) and the
DKK1 gene expression (vecTraining(j)) is less than
the estimated median (≤vecmedian), then the value
in vecTraining(j) is appended to offINTrOff. If
the label (labelTraining(j)) is ≤0 (TRCMPLX is
off ) and the DKK1 gene expression (vecTraining(j))
is greater than the estimated median (≥vecmedian),
then the value in vecTraining(j) is appended to
onINTrOff. If the label (labelTraining(j)) is
≥0 (TRCMPLX is on) and the DKK1 gene expression
(vecTraining(j)) is less than the estimated median

Fig. 6 Conditional probability table for node DKK1 inMPBK
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(≤vecmedian), then the value in vecTraining(j)
is appended to offINTrOn. And finally, if the label
(labelTraining(j)) is ≥0 (TRCMPLX is on) and the
DKK1 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian), then the
value in vecTraining(j) is appended to onINTrOn.

% Segregate values based on

% status of TRCMPLX

onINTrOn = [];

offINTrOn = [];

onINTrOff = [];

offINTrOff = [];

for j = 1:lencond

if labelTraining(j) < 0 &&...

vecTraining(j) < vecmedian

offINTrOff = [offINTrOff,...

vecTraining(j)];

elseif labelTraining(j) < 0 &&...

vecTraining(j) >= vecmedian

onINTrOff = [onINTrOff,...

vecTraining(j)];

elseif labelTraining(j) > 0 &&...

vecTraining(j) < vecmedian

offINTrOn = [offINTrOn,...

vecTraining(j)];

else

onINTrOn = [onINTrOn,...

vecTraining(j)];

end

Lets again see how (1) the probability table would look
like and (2) the probability table is stored in BNT [4]
before estimating the values for cpt of DKK1. Table 12
represents the conditions of TRCMPLX and the proba-
ble beliefs of events (DKK1 being on/off ). With a single
parent and binary state, the total number of conditions
is 21. To estimate the values of the probable beliefs of an
event, the following computation is done. The probabil-
ity of gene expression being active given TRCMPLX is off,
i.e., Pr(DKK1 = Active |TRCMPLX = Off), is the fraction
of number of 1’s in the normal sample (a) and the sum of
total number of normal samples (A). Similarly, the proba-
bility of gene expression being inactive given TRCMPLX

Table 12 Conditional probability table for DKK1 inMNB+MPBK

(model - p1)

CPT for DKK1 inMNB+PBK (model - p1)

TRCMPLX Pr(DKK1=Off) Pr(DKK1=On)

Off h (1) l (3)

On h (2) l (4)

h - probability of event being high; l - probability of event being low. Serial numbers
in brackets represent the ordering of numbers in vectorial format

is off, i.e., Pr(DKK1 = active |TRCMPLX = On), is the
fraction of number of 1’s in the tumorous sample (b) and
the sum of total number of tumorous samples (B). Com-
plementary conditional probability values forDKK1 being
inactive can easily be computed from the above estimated
values. Figure 6 shows the pictorial representation of one
of the cpt inMPBK.

% Generate frequencies for

% conditional probability values

% pr(DKK1 - On | TRCMPLX - Off)

% # of On’s when TRCMPLX is Off

a = length(onINTrOff);

% total # of TRCMPLX is Off

A = length(onINTrOff) + length(offINTrOff);

% pr(DKK1 - On | TRCMPLX - On)

% # of On’s when TRCMPLX is On

b = length(onINTrOn);

% total # of TRCMPLX is On

B = length(onINTrOn) + length(offINTrOn);

% Conditional probability table

% for DKK1 given its parents

T = [A-a, a;...

B-b, b];

[r,c] = size(T);

After the values in T have been established, a constant 1
is added as pseudo count to convert the distribution to a
probability distribution via the Dirichlet process. Finally,
the frequencies in T are normalized in order to obtain
the final conditional probability values forDKK1. Figure 7
shows the pictorial representation of one of the cpt in
MNB+MPBK.

% Convert the table to probability

% distribution via Dirichlet process

% T = T + 1; for i = 1:r

T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.4 DKK2 inMPBK+EI (t1)
The Sample is the single parent of DKK2. The conditional
probability value for a gene being active or inactive is esti-
mated based on the state of the Sample. The analysis of
quality of sample generates frequency estimates that can
help derive probability values. These frequencies depict
the following cases: (a) gene repressed in normal (repre-
sented by vector offINn), (b) gene expressed in normal
(represented by vector onINn), (c) gene repressed in
tumorous (represented by vector offINt), and (d) gene
expressed in tumorous (represented by vector onINt)
cases. For every jth entry in the vecTraining, if
the label (labelTraining(j)) is normal (≤0) and
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Fig. 7 Conditional probability table for node DKK1 inMNB+MPBK

the DKK2 gene expression (vecTraining(j)) is less
than the estimated median (≤vecmedian), then the
value in vecTraining(j) is appended to offINn.
Here, expression level lower than median indicates
probable gene repression in the normal case. If the
label (labelTraining(j)) is normal (≤0) and the
DKK2 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian), then the
value in vecTraining(j) is appended to onINn.
Here, expression level greater than median indicates
probable gene activation in the normal case. If the
label (labelTraining(j)) is tumorous (≥0) and the
DKK2 gene expression (vecTraining(j)) is less than
the estimated median (≤vecmedian), then the value
in vecTraining(j) is appended to offINt. Here,
expression level lower than median indicates probable
gene repression in the tumor case. And finally, If the
label (labelTraining(j)) is tumorous (≥0) and the
DKK2 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian), then the
value in vecTraining(j) is appended to onINt. Here,
expression level greater than median indicates probable
gene activation in the tumorous case.

% Segregate values based on

% different types of samples

onINn = [];

offINn = [];

onINt = [];

offINt = [];

for j = 1:lencond

if labelTraining(j) < 0 &&...

vecTraining(j) < vecmedian

offINn = [offINn, vecTraining(j)];

elseif labelTraining(j) < 0 &&...

vecTraining(j) >= vecmedian

onINn = [onINn, vecTraining(j)];

elseif labelTraining(j) > 0 &&...

vecTraining(j) < vecmedian

offINt = [offINt, vecTraining(j)];

else

onINt = [onINt, vecTraining(j)];

end

end

Lets again see how (1) the probability table would look
like and (2) the probability table is stored in BNT [4]
before estimating the values for cpt of DKK2. Table 13
represents the conditions of Sample and the probable
beliefs of events (DKK2 being on/off ). With a single
parent and binary state, the total number of conditions
is 21. To estimate the values of the probable beliefs of an
event, the following computation is done. The probability
of gene expression being active given Sample is normal,
i.e., Pr(DKK2 = Active |Sample = Normal), is the frac-
tion of number of 1’s in the normal sample (a) and the
sum of total number of normal samples (A). Similarly, the
probability of gene expression being active given Sample
is tumorous, i.e., Pr(DKK2 = active |Sample = Tumorous),
is the fraction of number of 1’s in the tumorous sample
(b) and the sum of total number of tumorous samples (B).
Complementary conditional probability values for DKK2
being inactive can easily be computed from the above
estimated values.

% Generate frequencies for

% conditional probability values

% pr(DKK2 - On | Sample - Normal)

% # of On’s in Normal

a = length(onINn);

% total # of samples in Normal

Table 13 Conditional probability table for DKK2 inMNB+MPBK

(model - t1)

CPT for DKK2 inMNB+PBK (model - t1)

Sample Pr(DKK2=Off) Pr(DKK2=On)

Normal l/h (1) h/l (3)

Tumor h/l (2) l/h (4)

h - probability of event being high; l - probability of event being low. Serial numbers
in brackets represent the ordering of numbers in vectorial format
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A = length(onINn) + length(offINn);

% pr(DKK2 - On | Sample - Tumor)

% # of On’s in Normal

b = length(onINt);

% total # of samples in Tumor

B = length(onINt) + length(offINt);

After the values in T have been established, a constant
1 is added as pseudo-count to convert the distribution
to a probability distribution via Dirichlet process. Finally,
the frequencies in T are normalized in order to obtain
the final conditional probability values for DKK2. Esti-
mation of cpts for genes DKK3 − 1, DKK3 − 2, SFRP3,
and LEF1 which have Sample as parent requires the same
computations as above.

% Conditional probability table for

% DKK2 given its parents

T = [A-a, a;...

B-b, b];

[r,c] = size(T);

% Convert the table to probability

% distribution via Dirichlet process

% T = T + 1;

for i = 1:r

T(i,:) = T(i,:)./sum(T(i,:));

end

3.6.5 DKK2 inMPBK+EI (t2)
When epigenetic factors are removed from MPBK+EI and
the model transformed intoMPBK, i.e., model = “t2”, then
the estimation of cpt values for DKK2 remain the same as
in model = “t1.” The same computations apply for genes
DKK3−1,DKK3−2, SFRP2, SFRP3, SFRP4, SFRP5, LEF1,
DACT1, DACT2, and DACT3, in model = “t2.”
Figure 8 shows the pictorial representation of one of the

cpt inMPBK+EI andMPBK.

3.6.6 DACT3 inMPBK+EI (t1)
The conditional probability value for a gene being
active or inactive is estimated from generated frequency

estimates that can help derive probability values. These
frequencies depict the following cases: (a) gene repressed
in normal (represented by vector offINn), (b) gene
expressed in normal (represented by vector onINn),
(c) gene repressed in tumorous (represented by vector
offINt), and (d) gene expressed in tumorous (repre-
sented by vector onINt) cases. For every jth entry in
the vecTraining, if the label (labelTraining(j))
is normal (≤0) and the DACT3 gene expression
(vecTraining(j)) is less than the estimated median
(≤vecmedian), then the value in vecTraining(j) is
appended to offINn. Here, expression level lower than
median indicates probable gene repression in the normal
case. If the label (labelTraining(j)) is normal (≤0)
and the DACT3 gene expression (vecTraining(j))
is greater than the estimated median (≥vecmedian),
then the value in vecTraining(j) is appended to
onINn. Here, expression level greater than median indi-
cates probable gene activation in the normal case. If the
label (labelTraining(j)) is tumorous (≥0) and the
DACT3 gene expression (vecTraining(j)) is less than
the estimated median (≤vecmedian), then the value
in vecTraining(j) is appended to offINt. Here,
expression level lower than median indicates probable
gene repression in the tumor case. And finally, if the
label (labelTraining(j)) is tumorous (≥0) and the
DACT3 gene expression (vecTraining(j)) is greater
than the estimated median (≥vecmedian), then the
value in vecTraining(j) is appended to onINt. Here,
expression level greater than median indicates probable
gene activation in the tumorous case.

% Segregate values based on status

% of histone repressive and active

% marks

onINn = [];

offINn = [];

onINt = [];

offINt = [];

for j = 1:lencond

Fig. 8 Conditional probability table for node DKK2 inMPBK+EI andMPBK
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if labelTraining(j) < 0 &&...

vecTraining(j) < vecmedian

offINn = [offINn, vecTraining(j)];

elseif labelTraining(j) < 0 &&...

vecTraining(j) >= vecmedian

onINn = [onINn, vecTraining(j)];

elseif labelTraining(j) > 0 &&...

vecTraining(j) < vecmedian

onINt = [onINt, vecTraining(j)];

else

offINt = [offINt, vecTraining(j)];

end

end

Lets again see how (1) the probability table would look
like and (2) the probability table is stored in BNT [4],
before estimating the values for cpt of DACT3. Table 14
represents the conditions of Sample, H3K4me3, and
H3K4me3 the probable beliefs of events (DACT3 being
on/off ). Finally, from biological data presented in [2],
the conditional probability values for the DACT3 gene
being active based on the histone modification and the
available samples suggest that DACT3 expression is high
in normal samples when the histone repressive mark
H3K27me3 is reduced and the activating mark H3K4me3
is present in high abundance. Thus, the probability, i.e.,
Pr(DACT3 = active|HK327me3 = low,H3K4me3 =
high, Sample = normal) is the fraction of the number
of 1’s in the normal samples (a) and the total number of
normal samples (A). For all other conditions ofH3K27me3
and H3K4me3 when the Sample is normal, the prob-
ability of DACT3 being active is (A-a), i.e., flip or
complementary of Pr(DACT3 = active|HK327me3 =
low,H3K4me3 = high, Sample = normal). This is
because in all other conditions of the histone marks,
the probability of DACT3 being active will be reverse of
what it is when H3K27me3 is reduced and H3K4me3

Table 14 Conditional probability table for DACT3 inMPBK

(model - t1)

CPT for DACT3 inMPBK+EI (model - t1)

H3K27me3 H3K4me3 Sample Pr(DACT3=Off) Pr(DACT3=On)

1 1 Normal h (1) l (9)

2 1 Normal h (2) l (10)

1 2 Normal l (3) h (11)

2 2 Normal h (4) l (12)

1 1 Tumor h (5) l (13)

2 1 Tumor h (6) l (14)

1 2 Tumor l (7) h (15)

2 2 Tumor h (8) l (16)

h - probability of event being high; l - probability of event being low. 1 - low; 2 - high.
Serial numbers in brackets represent the ordering of numbers in vectorial format

is present in abundance. Similarly, in case of tumorous
samples, the probability of DACT3 being active will occur
when H3K27me3 is reduced and H3K4me3 is high abun-
dance (a rare phenomena). Thus, the probability, i.e.,
Pr(DACT3 = active|HK327me3 = low,H3K4me3 =
high, Sample = tumorous) is the fraction of the number
of 1’s in the tumorous sample (b) and the total num-
ber of tumorous samples (B). For all other conditions of
H3K27me3 and H3K4me3 when the Sample is tumorous,
the probability of DACT3 being active is (B-b), i.e., flip
or complementary of Pr(DACT3 = active|HK327me3 =
low,H3K4me3 = high, Sample = tumorous). The reason
for flip is the same as described above.

% Generate frequencies for

% conditional probability values

% pr(DACT3 - On | H3K27me3 - 1,

% H3K4me3 - 2, Sample - Normal)

% # of On’s in Normal

a = length(onINn);

% total # of On’s in Normal

A = length(offINn) + length(onINn);

% pr(DACT3 - On | H3K27me3 - 1,

% H3K4me3 - 2, Sample - Tumor)

% # of On’s in Tumor

b = length(onINt);

% total # of On’s in Tumor

B = length(offINt) + length(onINt);

% In rest of the cases where

% (H3K27me3 - 1 and H3K4me3 - 2) is not

% present, the probabilities reverse.

After the values in T have been established, a constant 1
is added as pseudo-count to convert the distribution to a
probability distribution via Dirichlet process. Finally, the
frequencies in T are normalized in order to obtain the
final conditional probability values for DACT3. Figure 9
shows the pictorial representation of one of the cpt in
MPBK+EI.

% Conditional probability table

% for DACT3 given its parents

T = [a, A-a;...

a, A-a;...

A-a, a;...

a, A-a;...

b, B-b;...

b, B-b;...

B-b, b;...

b, B-b];

[r,c] = size(T);

% Convert the table to probability
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Fig. 9 Conditional probability table for node DACT3 inMPBK+EI

% distribution via Dirichlet process

T = T + 1;

for i = 1:r

T(i,:) = T(i,:)./sum(T(i,:));

end

Finally, for every gene, after the computation of the
probability values in their respective cpt, the function
generateGenecpd returns the following arguments as
output.

gene_cpd = struct();

gene_cpd.vecmedian = vecmedian;

gene_cpd.T = T;

Tables 8 and 9 from [1] show the assumed and computed
estimates for all the nodes that represent non-genetic and
genetic factors in the modeled pathway driven by the
dataset. It might be that the probability values deviate
from the mathematics formulations as these formulations
do not capture all the intricacies of the biological phe-
nomena. For example, the cross talk that happens between
the histone modifiers varies the expression of DACT3.
But these time-varying dynamics cannot be captured in
the model as the model represents a static time snap-
shot of the phenomena. More detailed explanation of this
phenomena is available in [2]. The cpd for DACT3 in
Table 9 states that when H3K27me3 is low and H3K4me3
is high, irrespective of the state of the sample, the belief
represented by the conditional probability that DACT3 is

repressed or off is high (and vice versa). Figure 9 shows the
mathematical representation of the same. Similar inter-
pretations can found for other cases.

4 A programming project for practice
To get a feel of the project, interested readers might
want to implement the following steps when the evidence
eviDence is “me.” The code needs to be embedded as
a case in the switch part of the twoHoldOutExp func-
tion. The idea is to perturb the methylation nodes with
binary values and find if one can converge to the correct
prediction of state of TRCMPLX as well as the Sample.
These binary values are stored in a vector and represents
a permutation of the methylation states of the methyla-
tion node inMPBK+EI. Varying the values of the vector can
help study how perturbations affect the predictions from
the network. The steps are given below:

1. Define variables for storing predictions of TRCMPLX
(tempTRCMPLX) and Sample (tempSample).

2. Find the total number of methylation cases in
MPBK+EI and store the number in a variable
noMethylation.

3. Generate binary values for noMethylation nodes.
Define a cell (binaryStatesOfMethylation)
that can store vectors of binary values where every
permutation represents a set of methylation states.
The total number of permutations should be
2noMethylation (stored in noMethylationConfig).
One might want to use quantizer and num2bin
functions from MATLAB.
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4. Next, generate methylation evidences. Define a 2D
matrix variable methylationEvidence that
stores the methylation evidences. One might want to
use the MATLAB function str2num. Finally, add a
value of 1 to methylationEvidence as the BNT takes
in “1” and “2” as states representing binary values.

5. Build evidence for inference for every test example.
The following steps might be necessary

• For every methylation configuration and for
every methylation node, build evidence.

• Build a new Bayesian network in bnetEngine
using jtree_inf_engine and store the
modified engine (in engine) using the function
enter_evidence.

• Finally, compute the Pr(TRCMPLX = 2|ge as
evidence) and Pr(Sample = 2|ge as evidence)
using the functionmarginal_nodes.

6. Store predicted results on observed methylation in
structure Runs indexed with runCnt.

After the section of new code is filled in, run the code and
check the results.

5 Conclusions
A pedagogical walkthrough of a computational model-
ing and simulation project is presented using parts of
programming code interleaved with theory. The pur-
pose behind this endeavor is to acclimatize and ease the
understanding of beginner students and researchers in
transition, who intend to work on computational signal-
ing biology projects. To this end, static Bayesian net-
work models for the Wnt signaling pathway have been
selected for elucidation. Due to the paucity of avail-
able manuscripts that explain the computational experi-
ments from a tutorial perspective because of unwanted
restrictive policies, this endeavor is a small step in this
direction.
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