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Abstract

Ever since the introduction of the Watson-Crick model, numerous efforts have been made to fully characterize the
digital information content of the DNA. However, it became increasingly evident that variations of DNA configuration
also provide an “analog” type of information related to the physicochemical properties of the DNA, such as
thermodynamic stability and supercoiling. Hence, the parallel investigation of the digital information contained in the
base sequence with associated analog parameters is very important for understanding the coding capacity of the
DNA. In this paper, we represented analog information by its thermodynamic stability and compare it with digital
information using Shannon and Gibbs entropy measures on the complete genome sequences of several bacteria,
including Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), Streptomyces coelicolor (S. coelicolor), and Salmonella
typhimurium (S. typhimurium). Furthermore, the link to the broader classes of functional gene groups (anabolic and
catabolic) is examined. Obtained results demonstrate the couplings between thermodynamic stability and digital
sequence organization in the bacterial genomes. In addition, our data suggest a determinative role of the
genome-wide distribution of DNA thermodynamic stability in the spatial organization of functional gene groups.
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1 Introduction
The double-helical DNA polymer is the carrier of the
genetic information required for the reproduction of any
organism. This information is inscribed by the sequence
of the four bases adenine (A), thymine (T), cytosine (C),
and guanine (G) paired in a complementary fashion (A
with T and G with C). The unique succession of the base
pairs (letters) in a gene dictating the production of RNA
molecules and proteins provides for digital type of infor-
mation. The digital nature of the genetic code can be also
seen in the correspondence of the “on-or-off” type digi-
tal logic with the feature that the genes can be expressed
or not [1]. However, there is another type of informa-
tion, dubbed “analog code”, that coexists with the digital
code and is related to physicochemical properties of the
DNA [1, 2]. This three-dimensional information emerges
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as a result of dynamic structural and topological variations
of the chromosomal DNA and is involved in facilitating
and regulating the gene expression, chromosome com-
paction, and replication [3–5]. The analog nature of this
information is obvious because it is the additive inter-
actions of successive base steps rather than individual
base pairs which determine the physicochemical prop-
erties of the polymer. These properties, including DNA
thermodynamic stability and supercoiling, are by defini-
tion the continuous properties that play a central role in
determining the strength of gene expression [3].
The two types of information are intrinsically cou-

pled by the primary DNA sequence. The physicochemi-
cal properties characterizing the analog information are
largely sequence dependent. Preferred direction for bend-
ing (anisotropy), stiffness, thermodynamic stability, and
supercoiling are among the properties that are essen-
tially dependent on the DNA sequence organization
[3, 6, 7]. Previous studies provided compelling arguments
concerning the peculiar relationship of interdependence
between the two types of DNA information [1–4, 8, 9].
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The average information content of the genome can be
measured using Shannon entropy [10]. So far, researchers
have extensively applied this information-theoretic
measure for studying a wide variety of topics in molec-
ular biology and bioinformatics, including DNA pattern
recognition, gene prediction, sequence alignment, and
comparative genomics [11–18]. Shannon entropy can
be applied to bacterial organisms for analyses of the
underlying digital coding device. However, because
of the existence of an equally important analog code,
we believe that solely looking at the base or codon
composition in DNA sequences will miss the complete
description of the underlying coding structure. For
this, it is vital to look jointly into both the digital and
analog information types encoded in the nucleotide
sequence.
It is asserted that the relative stability of the DNA duplex

structure relies on the identity of successive base steps
[19, 20]. Stacking between adjacent base pairs and pair-
ing between complementary bases determine the ther-
modynamic stability of the DNA [21, 22]. Since the
stability of the DNA appears as a decisive factor in most
of the biological processes, and due to the availability
of thermodynamic parameters to describe DNA stabil-
ity, such as Santalucia’s unified nearest-neighbor (NN)
thermodynamic stability parameters (free energies) of
Watson-Crick base pairs in 1 M NaCl [23], we assume
relative thermodynamic stability as a measure of analog
information.
We already made a first attempt in direction of integrat-

ing the digital and analog codes [24]. In this study, we base
our analysis and observations on four selected bacterial
genomes, namely Escherichia coli K12 MG1655 (acces-
sion NC_000913), Bacillus subtilis subsp. subtilis str. 168
(accession NC_000964), Salmonella enterica subsp. enter-
ica serovar Typhimurium DT104 (accession NC_022569),
and Streptomyces coelicolor A3(2) (accession NC_003888).
The general goal is to understand the interrelationship
between the sequence organization and thermodynamic
property of the genomic sequence in the genomes of the
four selected bacteria. Sequence data and the correspond-
ing annotations were taken fromGenBank genomes (ftp://
ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/). Shan-
non’s block entropy is used here to measure the digital
information, whereas Gibbs’ entropy is employed to mea-
sure the analog information. Boltzmann probability distri-
bution is used to convert the DNA stacking energies into
probabilities for Gibbs entropy computations. To further
relate the two forms of information to gene function, we
also incorporated in our analyses the spatial distributions
of the anabolic and catabolic classes genes. By doing so,
we hoped to reveal the connections between analog and
digital information types, as well as its possible functional
meaning.

2 Methods
First, in our study, the genome sequence is rearranged to
start at the origin (OriC) of replication. Then, the entropy
of chunks of the DNA sequence is computed by scanning
the complete genome with a sliding window. To examine
the effect of the window size, results are shown for win-
dow sizes of 100, 250, and 500 kb. Within a window, all
possible words of the given block size (N) are counted.
To account for all adjacent base interactions, neighbor-
ing base pairs are considered. That is, if the nucleotide
sequence is “AGCTAG” and the block size is 3 base pairs
(bp), AGC, GCT, CTA, and TAG are counted. In this
section, the methodology is presented for a block size of
three (N = 3), other block sizes are handled likewise.
The Shannon entropy quantifies the average information
content of the sequence from the distribution of symbols
(words) of the source [25]. It is mathematically given as

HN = −
∑
i
P(N)
s (i) logP(N)

s (i) , (1)

where P(N)
s (i) is the probability (relative frequency) to

observe the ith word of the block sizeN inside the window
and the summation is over all possible nucleotide words
of length N. Essentially, if we take a block size of 3 bp (i.e.,
codons), the sum will range up to 64. We count the fre-
quency of every codon in the window and normalize it to
the total number of codons. The Shannon entropy is max-
imal when all words occur at equal probabilities, and it is
zero when one of the symbols occurs with probability one.
Boltzmann’s statistical explanation of the physical (ther-

modynamic) entropy relates it to the number of possible
arrangements of molecules (microstates) belonging to a
macrostate [26].

SB = kB ln� . (2)

kB is the Boltzmann constant which gives this entropy
a thermodynamic unit of measure, kB = 1.38 ×
10−23J/K , and � is the number of accessible microstates.
Boltzmann’s entropy is defined for a system based on
a microcanonical ensemble in which the macrostate is
of a fixed number of particles, volume, and energy. All
states are accessed equally likely with the same energy
[27]. Gibbs devised a generic entropy definition over the
more general probability distribution of the possible states
(canonical ensemble). The Gibbs entropy is defined as

SG = −kB
∑
i
PG(i) lnPG(i) , (3)

where the sum is over all microstates and PG(i) is the
probability that themolecule is in the ith state. It can easily
be seen that for a uniform distribution of states, the Gibbs
entropy reduces to the Boltzmann entropy.
Gibbs’ entropy has a similar form as Shannon’s entropy

except for the Boltzmann constant. Nevertheless, unlike
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the Shannon case where the probability P(N)
s is defined

according to the frequency of occurrence, we associated
the probability distribution with thermodynamic stability
quantified by the nearest-neighbor free energy parame-
ters. We used Sanatluca’s unified free energy parameters
for di-nucleotide steps at 37 °C as in [23], presented here
in Table 1. For block sizes greater than two, the energies
are computed by adding the involved di-nucleotides. For
instance, if the block size is three and the sequence is
AGC, the energies of AG and GC will be added. This way,
we have a list of codons with their corresponding energies,
providing 64 energy states denoted by E(i). Assuming a
random process behind the construction of the DNA, with
a certain probability, one would obtain molecules with
certain energies. If there are ni codons in the ith energy
state, we assumed that the probability for having a certain
energy state follows the Boltzmann distribution given by

PG(i) = nie
− E(i)

kBT∑
j
nje

− E(j)
kBT

. (4)

T is the temperature in Kelvin. Although we are aware
that the Boltzmann distribution gives the most probable
distribution of energy (the one pertaining to the equi-
librium state) for states having a random distribution of
energies (e.g., ideal gas), which is not the case here, we just
used it to have a representation of stability (energy) in an
entropy-like expression.

Table 1 Unified nearest-neighbor free energy parameters

Sequence �G(Kcal/mol)

AA −1.00

TT −1.00

AT −0.88

TA −0.58

CA −1.45

TG −1.45

GT −1.44

AC −1.44

CT −1.28

AG −1.28

GA −1.30

TC −1.30

CG −2.17

GC −2.24

GG −1.84

CC −1.84

The thermodynamic stability parameters of Watson-Crick base pairs in 1 M NaCl at
37 °C [23]

To see how the Gibbs entropy captures the stability, we
generated a random nucleotide sequence of length 100 kb
with a specific GC content. By changing the GC content
from 0 to 100 %, the Shannon and Gibbs entropies are cal-
culated from the frequency distribution of the codons in
the generated sequence. The result is shown in Fig. 1. The
Shannon entropy function is symmetric with the maxi-
mum at 50 %. It tells us how random the sequence is.
By comparing it with the maximum value, we can tell
how diverse the sequence is, but it does not distinguish
between AT and GC. However, except for larger GC con-
tent values (in region III), the Gibbs entropy curve is
uniformly related to the GC content. If we are operating
in regions I and II (the GC content of organisms typi-
cally cannot be greater than 80 %), the higher the Gibbs
entropy, the higher the GC content, and hence, it mea-
sures stability. One has to be careful about the maximum
point of the Gibbs entropy. The indicated maximum point
in Fig. 1 is only valid for this randomly generated sam-
ple. For other realistic genome sequences, the maximum
might move to elsewhere.
The functional gene groups were taken from the

Gene Ontology (GO) tree provided by the RegulonDB
database. Anabolic genes: biosynthesis of macromolecules
(GID000000120); catabolic genes: degradation of macro-
molecules (GID000000057). To have a possibility of com-
parison between the bacteria, the orthologues of anabolic
and catabolic genes were considered. The corresponding
functional groups where counted in 500-kb sliding win-
dows using a 4-kb shift. The window size was chosen so as
to have a significant number of genes and obtain a smooth
curve.
To support our qualitative statements of compar-

isons, localized Pearson correlation coefficients are
incorporated in the figures. The local cross-correlation
coefficients are calculated by taking 100 points to the left
and right of the corresponding position. Pearson’s correla-
tion coefficient between two vectors x and y is calculated
as

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

, (5)

where x̄ and ȳ are the sample means of x and y, respec-
tively.

3 Results and discussion
3.1 Shannon vs. Gibbs entropy on complete genomes
Our first aim was to compare the analog information,
quantifying relative stability and measured with the Gibbs
entropy (applying Boltzmann statistics to convert the
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Fig. 1 Shannon and Gibbs entropies as a function of GC content

stacking ormelting energies to probabilities), with the dig-
ital Shannon information. To do so, the block size is set to
3 bp and a sliding window is shifted 4 kb at a time along
the complete genome starting from the OriC as the cen-
ter of the first window. The Shannon entropy is calculated
using overlapping codons (i.e., with a shift of 1 bp).
The Shannon and Gibbs entropies in the E. coli genome

are plotted together for window sizes of 100, 250, 400 and
500 kb in Fig. 2. Since the nucleotide sequence is rear-
ranged to start at the origin, the terminus region (Ter)
will be exactly in the middle. This is also evidently visi-
ble from the shape of Gibbs entropy curve in which the
lowest point is around the terminus, attributed to the AT-
richness. Smaller windows lead to high fluctuations and
are not easy to compare. Likewise, a very large window
will hinder the visibility of the differences as a result of
the smoothing effect it creates. Results for block sizes 2,
3, 4 and 5 bp and a window size of 250 kb are shown
in Fig. 3. For 2 bp, the entropies are anti-correlated in
all regions. The change to 3 bp has caused three regions
to have a positive correlation, and these regions remain
correlated in this way for higher block sizes. In addi-
tion, the vicinity of the terminus region has shown an
extremely high anti-correlation. Similarly, there is no sig-
nificant change when moving to 4 or 5-bp blocks. It is
very significant that the overall shape of the curves as
well as the positions of the troughs and crests remained
unaffected by changes in both the block and window
sizes.
The changes in entropy along the genome might

seem very small. For example, in Fig. 3b, the Shannon
entropy in the E. coli genome (250-kb window) ranges
from 5.9327 and 5.9494, which is a change of only

0.0167. To assess how significant the observed changes
(�SEobserved) are compared with the changes in entropy
(�SE) in a random sequences, we have calculated the Z-
score. However, the random model has to be selected
in such a way that it preserves the biological sequence
complexity as much as possible. Otherwise, any order
present in the real genome will be lost and the resulting
Shannon entropies will just be the maximum. We have
fragmented the genome into genes and intergenic regions
and produced 1000 random “genomes” by shuffling the
positions of the fragments. For each random genome,
the �SE is calculated and the distribution of shuffled
�SEs is obtained. Finally, the Z-score of �SEobserved is
obtained as (�SEobserved − mean(�SE)/Std(�SE)). For
�SEobserved = 0.0167 (Fig. 3b), the Z-score is 3.74
and none of the randomized genomes have exceeded the
�SEobserved. This shows that the observed changes in
entropies, even though very small, are highly significant
and can safely be used to show differences in certain parts
of the genome.
The two entropies are mostly anti-correlated in E. coli,

with a stronger magnitude around the terminus. The ter-
minus region is characterized by high Shannon entropy
and low Gibbs entropy, that is, the sequence is more
random and less stable. This means that the codon com-
position of the sequence has become slightly more bal-
anced, which is due to an increase in AT-rich codons.
Similarly, there are also positions where the Shannon
entropy is relatively low and the Gibbs entropy is higher
(e.g., in Fig. 2 around position 0.8 Mbp) which means
a codon bias towards being more GC-rich. In general,
our interpretation for a block size of 3 bp is that when-
ever both entropies increase, this means that both the
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Fig. 2 Shannon and Gibbs entropy profiles of E. coli for variable block sizes. Overlapping base pairs are considered. Block sizes are 2, 3, 4, and 5 bp in
a, b, c, and d, respectively. The sliding windows (250 kb) are shifted 4 kb along the complete genome. The start and end positions are the origin of
replication (OriC) whereas the terminus (Ter) is in the middle

GC content and the randomness have increased, and
the sequence is more stable due to the usage of more
GC-rich codons. However, if there is a decrease in the
Gibbs entropy while the Shannon entropy is higher, the
sequence has become less stable (AT-rich) and more
random as a result of an increase in usage of AT-rich
codons.
The Shannon and Gibbs entropy profiles for B. sub-

tilis and S. typhimurium for a window size of 500 kb are
shown in Fig. 4. Since S. typhimurium and E. coli are close
relatives in phylogeny, the Gibbs and Shannon entropy
profiles in S. typhimurium show a behavior very similar to
that in E. coli being mostly anti-correlated. In contrast, in
the evolutionarily more distant gram-positive bacterium
B. subtilis, the two entropies are highly correlated.
The relationship between the two entropies mostly

depends on the GC content of the organism. This can be
seen from Fig. 1. If the GC content is less than 50 %, there
will be a direct relationship between the two. An increase
in the number of AT-rich codons will reduce the Gibbs

entropy (stability) and at the same time the Shannon
entropy will decrease because of the skewed codon dis-
tribution. If Shannon entropy increases as a result of
having more GC-rich codons, the Gibbs entropy will also
increase. For organisms having a slightly more than 50 %
average GC content, the entropies will have opposite
behaviors. Most of the sequence will be slightly GC-rich
and a further increase in GC content would mean an
increase of Gibbs entropy. At the same time, the Shannon
entropy will decrease as a result of the decrease in the vari-
ability of the sequence. E. coli and S. typhimurium have an
average GC content of 51 and 53 %, respectively. Hence,
for most regions, anti-correlation is observed. However,
since the GC contents are in the vicinity of 50 % and
locally it can be less than 50 %, the entropies may become
positively correlated in some regions. For B. subtilis, how-
ever, the average GC content is 43.5 % and as a result
the two entropies are entirely correlated with a global
correlation coefficient of 0.9. In the region from the max-
imum point of Gibbs entropy to 100 % GC (region III in
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Fig. 3 Shannon and Gibbs entropy profiles of E. coli for variable block sizes. Overlapping base pairs are considered. Block sizes are 2, 3, 4, and 5 bp in
a, b, c and d, respectively. The sliding windows (250 kb) are shifted 4 kb along the complete genome. The start and end positions are the origin of
replication (OriC) whereas the terminus (Ter) is in the middle

Fig. 1), as the stability (GC content) increases, the Gibbs
entropy decreases. Therefore, the Gibbs entropy will not
be in the same direction as the thermodynamic stability.
The plot in Fig. 1 is done considering the codon distribu-
tion of a randomly generated sample sequence. However,

for sequences containing mixtures of AT and GC, the
maximum can be anywhere on the right-hand side. There-
fore, when applying the Gibbs entropy measure on highly
GC-rich genomes, one can end up in the last operating
region where the Shannon and Gibbs entropies follow the
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Fig. 4 Shannon and Gibbs entropy profiles of S. typhimurium (a) and B. subtilis (b). The window size is 500- with 4-kb slide in both plots



Nigatu et al. EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:4 Page 7 of 13

same directions. This effect can be seen in Fig. 5 where
the Shannon entropy profile of S. coelicolor, a highly GC-
rich linear genome (average GC content is 72.12 %), is
plotted with both the Gibbs entropy and the local GC
profiles. The origin is located in the middle of the lin-
ear S. coelicolor but to be consistent with the plots of the
other bacteria, the data is rearranged to have an orienta-
tion of OriC-Ter-OriC, although the actual genome is not
arranged as a ring. The increase in the GC content makes
the sequence more stable. Accordingly, both the Shannon
and Gibbs entropies will decrease. Hence, one should mir-
ror the Gibbs entropy to use it as a stability measure. The
Shannon entropy is perfectly anti-correlated with the GC
content and therefore the stability (see Fig. 5b).
The Gibbs entropy also shows the spatial DNA sequence

organization in the bacterial genomes. There is a gradi-
ent from the origin of replication to the terminus on both
replichores with the most stable DNA near the origin and
the least stable at the replication terminus. This pattern
is consistent with the conserved gradient of DNA melt-
ing energy along the Ori-Ter axis in both replichores with
a high average melting energy in the Ori-proximal region
and a low average melting energy in the Ter-proximal
region observed in γ -Protebacterial genomes [3, 8]. A
similar pattern was found for the distribution of DNA
binding sites for DNA gyrase, an enzyme introducing neg-
ative supercoils into the DNA [28–30]. It is assumed that
the high concentration of gyrase binding sites in the Ori-
proximal region creates a gradient of average negative
superhelicity from high around OriC to low around Ter
in both replichores. Another highly conserved pattern in
α- and γ -Proteobacterial genomes is the gene order along
the Ori-Ter axis [3, 4, 30]. The anabolic genes that are
highly expressed during exponential growth are located in
the vicinity of the origin of replication, whereas catabolic
genes are predominantly located close to the terminus.
These gradients of analog and digital information (DNA

physicochemical properties and gene functions, respec-
tively) have been related to the Ori→Ter directionality of
DNA replication [4, 8], suggesting that the spatial organi-
zation of genomic DNA sequence is largely determined by
the process of replication.

3.2 Using Gibbs entropy for identification of coding and
non-coding regions

The Gibbs entropy profiles can further be used as a tool
for detecting non-coding and coding regions. Generally,
because of the AT-richness of the promoters as well as
the 5′ and 3′ gene flanking regions, the coding sequences
are GC-rich compared to the corresponding non-coding
sequences [8, 31]. Since the Boltzman probability dis-
tribution gives more weight to AT-rich sequences (see
Eq. 4), the Gibbs entropy will have smaller values at the
non-coding regions. We have used a smaller sliding win-
dow (400 bp) with a 50-bp shift on the region of the
E. coli genome containing 12 genes. Figure 6 shows the
result. The minimum low stability points clearly empha-
size the non-coding sequence (the gaps between genes in
the annotation at the top). Stability and melting tempera-
ture profiles have been previously used for identification
of various genomic regions (e.g., see [32] and [33]). How-
ever, our method produces a significant variation in Gibbs
entropy more clearly pointing out the differences in cod-
ing and non-coding regions of the genome.

3.3 Shannon entropy in the protein coding sequences
So far, the Shannon entropy is computed considering
overlapping triplets in the complete genomes. We now
only take the protein coding sequences (CDS) of the four
genomes and compute the Shannon entropy using both
the distribution of the non-overlapping triplets (codons)
and the corresponding translated amino acid distribu-
tion. In a given window, the protein coding genes in both
strands are collected and the frequencies of the codons are
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counted. The base sequences of genes in the complemen-
tary strand are complemented and reversed before the
counting so that the computed Shannon entropies reflect
the actual codon and amino acid composition encoded in
the region.
The codon-to-amino-acid translation is carried out

using the standard genetic code. The results are shown
in Fig. 7. Almost for all bacteria, the entropy profiles per
codon and per amino acid positively correlate. However,
there are regions where the two are negatively correlated
(e.g., Fig. 7b, d around positions 2.4 and 6 Mbp, respec-
tively). The positive correlation can trivially be explained
as a direct linear mapping between codons and amino
acids. There is a certain level of expected positive cor-
relation between the two profiles. However, since the
number of codons encoding a similar amino acid (syn-
onymous codons) varies (ranging from 1 to 6), a change
in the frequency distribution of codons may not neces-
sarily affect the amino acid distribution. In E. coli and S.
typhimurium, a high Shannon entropy in the Ter-proximal
region reflects the relatively more random nature of the
codon and amino acid composition. Except for S. coeli-
color, the terminus region has the highest amino acid
entropy which means that the amino acid distribution in
Ter region is more balanced.
The regulatory sequence organization requirement of

having an AT-rich terminus region and GC-rich origin
is achieved by the selective usage of either synonymous
codons or amino acids [9]. For example, the amino acid
serine is encoded by AGT, TCA, TCT, AGC, TCC, and
TCG. The first three codons are AT-rich whereas the last
three are GC-rich. Similarly, the amino acids could also
be classified as AT- and GC-rich. Amino acids such as

proline, encoded by CCT, CCC, CCA, and CCG, can be
regarded as a GC-rich amino acid. Likewise, lysine which
is encoded by AAA and AAG could be regarded as an
AT-rich amino acid. A less stable sequence around the ter-
minus can be attained by using more AT-rich amino acids,
which will in turn affect the distribution of amino acids (it
will be biased towards the AT-rich ones) or the AT-rich
codons among the synonymous ones without affecting the
amino acid composition. In E. coli and S. typhimurium,
the high Shannon entropy of codons and amino acids at
the terminus (Fig. 7) indicates the more uniform codon as
well as amino acid distributions. Thus, it appears that the
less stable nature of the DNA in this region can be toler-
ated by allowing the synonymous codon usage. To reveal
this selective codon usage, we counted the frequencies of
the synonymous codons within two 500-kb windows, one
located at the origin and another at the terminus. Here,
only the non-overlapping triplets (codons) in the coding
sequence are considered. Figure 8a, b shows the synony-
mous codon usage in E. coli for amino acids serine and
leucine. Note that in the Ter region, the frequency of the
AT-rich codons has increased whereas that of the GT-
rich ones have decreased. Although leucine is most often
encoded by CTG, since it is a GC-rich triplet, its frequency
has decreased considerably. This observation is pertinent
also to the other amino acids. The terminus region of B.
subtilis is also less stable and has the highest Shannon
entropy of amino acids. Although the Shannon entropy of
codons in the Ter region is not higher than around the ori-
gin, the selective usage of codons still occurs. As shown in
Fig. 8, compared to the origin of replication, the frequency
of AT-rich codons have increased in the terminus region.
It is noteworthy that the low GC content of the organism
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by itself favors the use of AT-rich codons. For encoding
serine and leucine, B. subtilis uses almost twice as many
AT-rich codons as GC-rich ones (see Fig. 8c, d). This jus-
tifies the observed low Shannon entropy of codons at the
terminus region shown in Fig. 7b.

3.4 Relation to functional classes of genes
We have shown that the sequence organization is mainly
dependent on the physicochemical property requirements
to serve certain functions. For example, the less sta-
ble and hence AT-rich terminus region is assumed to
absorb the positive superhelicity generated by the con-
vergence of the two replisomes during replication [4].
We have also analyzed the spatial sequence organiza-
tion in relation to other functional requirements. We
chose two functional classes of genes—anabolic and
catabolic genes—connected to energy and resource supply
of the cell. Anabolic enzymes need energy to synthesize
macromolecules. In contrast, catabolic enzymes degrade
complex molecules in stages of energy and resource
shortage.

The distribution of anabolic and catabolic genes of E.
coli are plotted along with Gibbs entropy (thermody-
namic stability) in Fig. 9. We used a 500 kb window and
counted the number of genes of the corresponding func-
tional group and normalized it to the total number of
genes in the window. The gene frequencies are further
normalized to 0 and 1 to plot them on a similar scale.
Interestingly, the distribution of anabolic and catabolic
genes are strongly related to the Gibbs entropy. Anabolic
genes and Gibbs entropy are highly correlated (note the
similarity in the profiles and also the magnitude of the
correlation coefficient in Fig. 9). It seems that anabolic
genes prefer sequences of high thermodynamic stability
whereas catabolic genes prefer DNA encoding with low
thermodynamic stability. Thermodynamically stable DNA
sequences can only be used efficiently with the help of an
extra energy input (e.g., to open up the DNA strands for
transcription) and indeed, the anabolic genes are activated
during the fast growth in rich medium. In this way, energy
availability and an energy consuming functions are cou-
pled [3]. In addition, anabolic and catabolic genes show
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an opposite chromosomal distribution pattern reflecting
their antagonistic role in bacterial metabolism. There are
two symmetric regions flanking the origin of replication
(0.55 and 4.2) that show a deviation from the general
pattern of a decreasing trend of anabolic genes concen-
tration towards the terminus. These regions are known to
harbor highly transcribed stable RNA (ribosomal RNA)
genes. The transcription dynamics of stable RNA operons
form large DNA structures called transcription foci [34],
which may interfere with optimal thermodynamic coding
for anabolic genes. The region at 4.1 Mbp appears even
relatively enriched for catabolic genes, although themutu-
ally exclusive genomic distribution of the anabolic and
catabolic functions also holds in this region.
Similarly, we have looked into the distribution of the

orthologues of anabolic and catabolic genes in B. subtilis
and S. typhimurium. The results are presented in Fig. 10.
In B. subtilis, at the terminus region, both anabolic and
catabolic genes anti-correlate with the Gibbs as well as
the Shannon entropies. The right replichore shows a very
high correlation between the entropies and the functional
classes of genes. At the terminus, although the sequence
is less stable, a high number of both functional groups are
observed, which is at variance with the results obtained in
E. coli. However, since B. subtilis and E. coli have different
lifestyles (e.g., occurrence of the process of septation in the
former) and diverged about one billion years ago, substan-
tial differences in genome organization are to be expected.
The high correlation of Gibbs entropy and anabolic genes
in E. coli supports the view that the genomic sequence
organization is largely determined by the process of repli-
cation [4]. However, B. subtilis is known for its property
of sporulation, which imposes constraints on the orga-
nization of the genome and chromosome segregation
[35]. Also, it uses different replication factories and pos-
sesses different and much more numerous sigma factors

[36]. Thus, we assume that the observed anti-correlation
(Fig. 10a) is due, at least in part, to these differences. The
profiles of anabolic and catabolic genes of S. typhimurium,
shown in Fig. 10b, are also mostly anti-correlated with
the Gibbs entropy. However, around the terminus region,
catabolic genes are anti-correlated with the Gibbs entropy
in all of the analyzed bacteria and although there is no
ubiquitous relationship that explains how the functional
groups are spatially organized, the obtained plots yield
qualitative relations between digital and analog properties
of the DNA sequence at specific sites in the chromosome.

4 Conclusions
In addition to the digital type of linear genetic code
encoding the proteins, DNA contains a continuous analog
type of information resulting from the physicochemical
properties of the DNA polymer. The analog information
depends on the additive interactions of consecutive base
steps rather than the individual bases. Hence, integrated
analysis of the analog and digital DNA information types
not only provides an additional angle to interpreting and
understanding the genome sequence organization but also
provides a way to integrate and consolidate the structural
and functional data. In this study, we analyzed the rela-
tionships between the digital and analog properties of the
DNA sequence with respect to the spatial organization of
large functional classes (anabolic and catabolic) of genes
in four bacterial species.
In E. coli, Shannon and Gibbs entropies are mostly anti-

correlated. Especially, the two entropies are almost exactly
opposite around the terminus. The results show that the
global patterns of the entropies are more or less preserved
independent of changing the window and block sizes. The
observed gradient of Gibbs entropy from the origin to
the terminus in both replichores is partly due to the GC
content based selective usage of synonymous codons. The
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gradient of thermodynamic stability has been previously
related to the process of replication and the demand to
utilize the anabolic and catabolic genes at different stages
of the growth cycle, facilitated by their location on the
opposite chromosomal ends [1, 3, 4, 9]. Another core find-
ing is the relation between the genomic distribution of
anabolic and catabolic genes and the Gibbs entropy. In E.
coli, anabolic genes are highly correlated with the Gibbs
entropy whereas around the terminus region, catabolic
genes are anti-correlated with Gibbs entropy in all ana-
lyzed bacteria. The observed patterns are very similar,
implying a clear connection between functional gene
types and DNA thermodynamic stability and, due to the
correlation between entropies, also to statistical proper-
ties, i.e., the information content. We have also demon-
strated the application of Gibbs entropy for the distinction
of coding and non-coding regions based on the differ-
ences in DNA thermodynamic stability.While we propose
this here, we think that verification of this proposal mer-
its a separate study. The gram-negative enterobacterium
S. typhimurium is closely related to E. coli, and therefore,
it shows profiles very similar to E. coli. However, the AT-
rich genome of the gram-positive soil bacterium B. subtilis
exhibits different properties of organization. In B. subtilis,
the Shannon and Gibbs entropy profiles are highly cor-
related. The distributions of the orthologues of anabolic
and catabolic genes are also anti-correlated with the Gibbs
entropy. S. coelicolor is a gram-positive bacterium with a
lifestyle resembling fungi and containing two large plas-
mids in addition to the linear genome. The peculiarity of
S. coelicolor is that the distribution of different types of
genes reveals a central core comprising half of the chro-
mosome and containing all the essential genes, whereas
genes encoding apparently non-essential functions lie in
the arms [37]. Notably, this biphasic structure of the chro-
mosome does not align with the position of OriC. These
peculiarities may affect the relationship between the ana-
log and digital DNA information in organizing the genetic
function in the highly GC-rich genome of S. coelicolor.
Nevertheless, we observed that also in S. coelicolor, the
Shannon entropy is perfectly anti-correlated with the GC
content (Fig. 5b). Taken together, our data strongly sup-
port the notion that the organization of the genetic code
in the genome is dictated by thermodynamic properties
of the genomic sequence. Digital and analog DNA infor-
mation types are tightly intertwined parameters, which on
evolutionary timescale, can adopt different relationships
depending on the type and lifestyle of a bacterium.
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