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Gene expression analysis supports tumor
threshold over 2.0 cm for T-category breast
cancer
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Abstract

Tumor size, as indicated by the T-category, is known as a strong prognostic indicator for breast cancer. It is
common practice to distinguish the T1 and T2 groups at a tumor size of 2.0 cm. We investigated the 2.0-cm rule
from a new point of view. Here, we try to find the optimal threshold based on the differences between the gene
expression profiles of the T1 and T2 groups (as defined by the threshold). We developed a numerical algorithm to
measure the overall differential gene expression between patients with smaller tumors and those with larger
tumors among multiple expression datasets from different studies. We confirmed the performance of the proposed
algorithm by a simulation study and then applied it to three different studies conducted at two Norwegian
hospitals. We found that the maximum difference in gene expression is obtained at a threshold of 2.2–2.4 cm, and
we confirmed that the optimum threshold was over 2.0 cm, as indicated by a validation study using five publicly
available expression datasets. Furthermore, we observed a significant differentiation between the two threshold
groups in terms of time to local recurrence for the Norwegian datasets. In addition, we performed an associated
network and canonical pathway analyses for the genes differentially expressed between tumors below and above
the given thresholds, 2.0 and 2.4 cm, using the Norwegian datasets. The associated network function illustrated a
cellular assembly of the genes for the 2.0-cm threshold: an energy production for the 2.4-cm threshold and an
enrichment in lipid metabolism based on the genes in the intersection for the 2.0- and 2.4-cm thresholds.

Keywords: Breast cancer, T-category, Differentially expressed, Microarray data, Two-group comparison statistical test,
Optimization algorithm
1 Introduction
Breast cancer is known as a complex biological system,
and tumors are complex organ systems shaped by gene
aberrations, cellular biological context, characteristics
specific to the person, and environmental factors.
Management of breast cancer relies on the availability
of robust clinical and pathological prognostic and predict-
ive factors to guide patient decision-making and the selec-
tion of treatment options [1]. Tumor size, indicated by the
T-category, is known as a strong prognostic indicator for
breast cancer and is one of the factors taken into account
when deciding how and whether to treat a patient,
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It is common practice to distinguish between T1
(0.1 cm < and < 2.0 cm) and T2 (2.0 cm < and < 5.0 cm)
groups by the 2-cm rule [1]. It is well known that the
T1-T2 distinction is reflected in prognosis: tumors
categorized into the T2 group are more aggressive
and might have already spread.
Gene expression profiling has in the last decade en-

tered the field of molecular classification. An array-
based approach to characterize T1 and T2 tumors was
recently attempted, based on microarray data that
present the expression level for each feature (gene or
probe) and revealed distinct molecular pathways charac-
terizing each stage [2]. The differential expression (DE)
for a feature is measured using two-group comparison,
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for which several statistical methods, such as t-statistics,
significant analysis of microarray (SAM), fold changes,
and B-statistics, have been proposed [3]. However, DE
measures are obviously dependent on the threshold
chosen to distinguish between T1 and T2 tumors. In
fact, the study by Riis et al. [2] suggested that using the
T-size expression signatures instead of tumor size leads
to a significant difference in risk for distant metastases
and that the molecular signature can be used to select
patients with tumor category T1 who may need more
aggressive treatment and patients with tumor category
T2 who may have less benefit from it. To stratify pa-
tients into two groups each requiring a different treat-
ment for breast cancer, ‘Cutoff Finder’ was developed by
[4]. The ‘Cutoff ’ point is determined by the distribution
of the marker under investigation and optimizing the
correlation of the dichotomization with regard to an out-
come or survival variable. The method was considered
for stratifications based on the expression of specific
genes, estrogen receptor, and progesterone receptor, nei-
ther whole genomic regions nor tumor size. In this art-
icle, we develop an algorithm to evaluate the traditional
2.0-cm threshold in the light of gene expression differ-
ences between breast cancer patients below and above
the threshold. We use two different measurements from
meta-analysis theory that are useful for handling mul-
tiple genetic studies; these apply different pre-processing
techniques, platforms, and lab environments. The choice
of which meta-analysis technique to use depends on the
type of response and objective. When the objective is to
identify the DE between two conditions, methods in-
clude vote counting, combining ranks, p values, and ef-
fect sizes [3]. Campain and Yang provided an intuitive
measure, called meta differential expression via distance
synthesis (mDEDS) [5], using DE via distance synthesis
(DEDS) [6] to aggregate multiple DE measurements.
The performance of mDEDS was compared with existing
meta-analysis methods, such as Fisher’s inverse chi-
square, GeneMeta, metaArray, RankProd, and Naïve
meta-methods, using a simulation study and two case
studies [3]. The results mostly showed better perform-
ance for mDEDS, while some cases favored the Fisher’s
inverse chi-square [7]. This method uses a simple pro-
cedure that combines the p values from independent
datasets. Therefore, we apply both the mDEDS and the
Fisher’s score in our proposed algorithm in order to
analyze different thresholds. To confirm the reliability of
the proposed algorithm, we performed a simulation
study. Then, we applied this algorithm to three different
expression datasets gathered at two Norwegian hospitals.
To validate the estimated optimum threshold for the
Norwegian datasets, we applied our algorithm to five
publicly available expression datasets. Based on the esti-
mated optimum threshold for the Norwegian datasets,
we investigated the prognostic status from the view-
points of local recurrence and the associated network
and canonical pathway.

2 Method
Given i = 1, ⋅ ⋅⋅, I genes from k = 1, ⋅ ⋅⋅, K datasets, the
measures are described below. We should use two mea-
sures of comparison.

2.1 Fisher’s inverse chi-square statistic
Let pik indicate the p value obtained by a DE statistic for
the ith gene and kth dataset. The Fisher summary statis-
tic Si [6] for each gene i is defined as

Si ¼ −2
XK

k¼1
log pikð Þ ð1Þ

This statistic tests the null hypothesis that gene i is
not the DE between the two groups given K datasets.
Under this null hypothesis, Si is chi-square distributed
with 2K degrees of freedom. In our case, the p value is
calculated by the Wilcoxon-Mann-Whitney (WMW) test
for each gene and each dataset.

2.2 Differential expression via distance synthesis (DEDS)
It is possible to calculate various statistics to describe
the differences in expression between the two groups,
including WMW test, t-statistics, and fold change (FC).
DEDS then integrates and summarizes these statistics
using a weighted distance approach [6] used for two-
group comparisons, and next, it measures the distance
between the aggregated point and the extreme origin
that is assumed to represent the largest measurement of
all. These procedures can be performed by the R pack-
age called ‘DEDS’ (http://www.bioconductor.org/). In the
procedure, t-, SAM, FC, B-, moderated t-, and moder-
ated F-statistics were selected as tj. Campain and Yang
expanded DEDS to a meta-analysis method, called
mDEDS [5]. The flow for the analysis by mDEDS pro-
ceeds as follows. (1) Apply J appropriate statistics tij to
each of i = 1, ⋅ ⋅⋅, I genes and J with 1 ≤ J ≤ 6. The ob-
served coordinate-wise extreme point over all genes is
defined by E0 = (maxi(ti1), ⋅ ⋅⋅, maxi(tiJ)). (2) For each per-
muted dataset b = 1, ⋅ ⋅⋅, B, obtain the permutation ex-
treme point Eb and evaluate the coordinate-wise
extreme point Ep by maximizing over all permutations
Ep = (maxb(Eb1), ⋅ ⋅⋅, maxb(EbJ)). (3) Obtain the overall
maximum E =max(E0, Ep). (4) Calculate the distance

di from each gene to E = (E1, ⋅ ⋅⋅, EJ), defined by di

¼
XJ

j¼1

tij−Ej
� �2
MAD tij

� �2 , where MAD is the median absolute

deviation from the median. (5) Do steps (1)–(4) for
all k = 1, ⋅ ⋅⋅, K studies and summarize the distances
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Fig. 1 Flow diagram of the analysis process
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coordinate-wise. The package outputs the list for esti-
mated statistics and the distance for each dataset. To
perform procedure (5), we summarize the obtained
distances for all datasets and order them according to
the genes.

2.3 An extension to DEDS
For mDEDS, the original study [5] did not touch on the
procedure for using the extreme origin to measure the
distance between the points by applying measurements
that may change across different cohorts. DEDS’s ori-
ginal procedure selects the larger one of the original data
or the permutated data as the extreme origin, obtained
without taking into account changes in the extreme ori-
gin. In fact, the extreme origin and the coordinate-wise
extreme origin changed if the dataset changed. When
mDEDS is calculated for the threshold shifting at 0.1 in-
tervals within a region from 1.5 to 3.5, the origin should

also change in this manner: E1:5 ¼ max E 1:5ð Þ
0 ;E 1:5ð Þ

p

� �

for q = 1.5,…, Eq ¼ max E qð Þ
0 ; E qð Þ

p

� �
for q,…, E3:5 ¼ max

E 3:5ð Þ
0 ; E 3:5ð Þ

p

� �
for q = 3.5, where Eq

0 and Eq
p indicate the

extreme point obtained by the original data and permuted
data, respectively. Therefore, we define the following
extreme point, named ‘totally extreme point (TEP)’:
Emax = max(E1.5, ⋅ ⋅⋅, Eq, ⋅ ⋅⋅, E3.5) if q ∈ (1.5, 3.5).
Then, the scaled distance for each gene across studies

K is di ¼
XK

k¼1

X6

j¼1

tikj−Emax
� �2
MAD tikj

� �2 .

2.4 Estimation of optimal threshold q between T1 and T2
Our intention is to identify the optimal threshold
used to divide the sample into two groups, such that
it best distinguishes the differential expression pattern
between these two groups. To identify this threshold,
we define the following optimization problem for an
optimal threshold q0 within a set Q of candidate
thresholds. Let Si(q) be the Fisher score (1) applied to
the two group comparison using a threshold at q, i.e.,

Si qð Þ ¼
XK

k¼1
pik qð Þ. Then

q0Fisher ¼ argmax
q∈Q

XI

i¼1
Si qð Þ for Fisher0s score ð2Þ

and similarly for

q0mDEDS
¼ argmin

q∈Q

XI

i¼1
di qð Þ for mDEDS ð3Þ

For the TEP introduced in 2.3, we take the summation
of the distance for all genes and estimate the threshold
that minimizes this value as
q0−TEP ¼ argmin
q∈Q

XI

i¼1
di ð4Þ

This is motivated by the idea that we are looking for the
threshold that best divides the two tumor groups from
each other based on the genome-wide expression profiles.
For possible thresholds q in Q, we evaluated the Fisher’s

score and mDEDS values. A flow chart of our proposed al-
gorithm covering the above procedures is illustrated in
Fig. 1. For the computational calculation, we used Matlab®
(The Mathworks, http://www.mathworks.com/products/
matlab) for (1)–(4) and R packages for DEDS.

3 Simulation study
To confirm the accuracy of our proposed algorithm, we
performed a simulation study. We considered three sets
of artificial 10,000-array data, named ‘simdat1,’ ‘simdat2,’
and ‘simdat3.’ We first generated artificial data to repre-
sent tumor size. For the range of sizes, we generated
random numbers by a uniform distribution between 1.0
and 2.9 and between 3.0 and 5.0, and thus the border
size between small and large was set at 3.0. Simdat1
contains 55 small-sized samples and 45 large-sized
samples, simdat2 contains 35 small-sized samples and
45 large-sized samples, and simdat3 contains 120
small-sized samples and 80 large-sized samples. Next,
we generated artificial array data using random vari-
ables that follow different probability distribution func-
tions to obtain higher and lower expression levels of
the real data. Those higher and lower expressions are
for the larger-size samples. Simdat1 was generated by a
normal distribution with mean 10 and standard
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deviation 10 (described as N(10, 10)) as higher expres-
sion levels of 3500 arrays and N(−2, 10) as lower ex-
pression levels of 3500 arrays for 45 samples. The
remaining array data within the expression levels other
than those classified as higher or lower were generated
by N(3, 1) for all samples. For simdat2, the higher ex-
pression levels with 2000 arrays were generated by a
gamma distribution with shape 5 and scale 10 (de-
scribed as Γ(5, 10)) and the lower expression levels with
4500 arrays were generated by Γ(3, 6) in 45 samples.
The remaining array data were generated by N(0.5, 10).
For simdat3, the higher expression levels with 2500 ar-
rays were generated by a Poisson distribution with a
parameter 10 (described as Pois(10)) and the lower ex-
pression levels with 3500 arrays were generated by
Pois(8) in 80 samples. The remaining array data in 120
and 80 samples were generated by N(0.1, 20). These three
datasets are illustrated in Additional file 1: Figure S1.
Using a grid with difference equal to 0.1 within the range
from 1.5 to 3.5, we estimated the optimal q0 satisfying
Eqs. (1) and (2). Fisher’s scores for the range are
illustrated in Fig. 2. The left panel indicates that the
maximum point was at 3.0. The right panel shows the
plots of the scores for 0.01 intervals between 2.9 and
3.1. Taken together, these results suggest that searching
by Fisher’s score found the optimal threshold to be
3.0, with the greatest difference in expression level.
Then mDEDS was applied, using all six t-, SAM, FC,
B-, moderated t-, and moderated F-statistics. Figure 3
shows the plots for DEDS score according to the
range and the minimum point indicating the optimal
threshold 3.0.
To test how robust the proposed method is if a small

portion of the features are DE, we also generated simula-
tion data assuming the same statistical distributions but
involving 5, 20, 40, 60, and 80 % DE genes. The upper
Fig. 2 Plots for Fisher’s score and maximum point indicating the optimal t
regions around 3.0
and lower plots in Fig. 4 present the plots of the sum for
S and mDEDS, respectively, with the different DE ratios.
In the case of smaller difference in expression (5 %), the
curves are flatter; however, the maximum for S showed
an optimal threshold of 3.0 for each percentage of DE
genes. The results for mDEDS appeared more unstable
than those for S. When TEP was applied, the thresholds
are summarized as 3.4 for 5 %, 3.1 for 20 %, 2.8 for
40 %, and 2.9 for the others. This suggests that TEP
could show a more robust threshold for data at a higher
DE percentage. In our breast cancer dataset, the percent-
age of DE genes is about 25 % in the largest case.
Summarizing these simulation studies, both Fisher’s

and mDEDS scores found the optimal threshold 3.0,
which was the boundary set for generating random small
and large values. Thereby, we could demonstrate the val-
idity of our proposed algorithm.

4 Materials
4.1 Norwegian datasets
Three datasets were gathered at two Norwegian hospi-
tals. The two datasets consist of one-colored expression
data (mdata1) (27 samples and 43,376 probes) and two-
colored expression data (mdata2) (46 samples and
41,674 probes), which were collected at Akershus Uni-
versity Hospital, Lørenskog, Norway. The third dataset is
40,995 probes with one-colored mRNA expression for
102 tumor samples (mdata3), taken from patients with
early-stage breast cancer [8] managed by Oslo University
Hospital Radiumhospitalet in Norway. All datasets were
processed on the Agilent platform, and the pre-processing
of all datasets was performed by the methods provided by
Bioconductor (http://www.bioconductor.org/help/work-
flows/oligo-arrays/). We applied quantile normalization
to one-color data and the lowest normalization to two-
color data. No background correction was performed for
hreshold 3.0 (left). Right panel indicates plots of scores for more precise
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Fig. 3 Plots for DEDS and minimum point indicating the optimal
threshold 3
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these data. The probes were matched across datasets.
Consequently, 40,995 probes were used for the analysis.
Given the relatively large full range of tumor sizes of 0.1–
5.0 cm, however, the number of samples for less than
1.0 cm and over 4.0 cm were very few depending on the
Fig. 4 Plots for Fisher’s score (upper) and DEDS (lower) (black small
square 5 %, O 20 %, multiplication sign 40 %, triangle 60 %, and
asterisk 80 %)
dataset. Therefore, we fixed 1.0–3.0 cm as the range we
should search to find the optimum size.

4.2 Validation datasets
To validate the optimum threshold estimated by the above
datasets, we used the five different expression datasets,
collectively called the Affy947 expression dataset [9]. The
dataset is a collection of six published datasets containing
microarray data of breast cancer samples. These datasets
are all measured on Human Genome HG U133A Affyme-
trix arrays and normalized using the same protocol. Since
one dataset (Pawitan et al. dataset [10]) did not involve
the tumor sizes data, we excluded it from further analysis.
They were assessable from NCBI’s Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) with
the following identifies, GSE6532 for the Loi et al. dataset
[11], GSE3494 [12] for Miller dataset, GSE7390 for the
Desmedt et al. dataset [13], and GSE5327 for the Minn
et al. dataset [14]. The Chin et al. [15] dataset is avail-
able from ArrayExpress (http://www.ebi.ac.uk/, identi-
fier E-TABM-158). This pooled dataset was pre-
processed and normalized as described in Zhao et al.
[16]. Microarray quality-control assessment was carried
out using the R AffyPLM package from the Bioconduc-
tor web site (http://www.bioconductor.org, [17]). The
relative log expression (RLE) test and the Normalized
Unscaled Standard Errors (NUSE) test were applied.
Chip pseudo-images were produced to assess artifacts
on arrays that did not pass the preceding quality-
control tests. Selected arrays were normalized accord-
ing to three-step procedures using the robust multi-
array average (RMA) expression measure algorithm
(http://www.bioconductor.org; [18]): RMA background
correction convolution, median centering of each gene
across arrays separately for each dataset and quantile
normalization of all arrays. Gene mean centering has been
shown to effectively remove many dataset-specific biases
allowing effective integration of multiple datasets [19].

5 Results and discussion
5.1 Optimal tumor size
Our proposed algorithm summarized in Fig. 1 was ap-
plied to the data across three different cohorts, and the
plots for Fisher’s score and mDEDS are shown in Fig. 5.
For mDEDS, we took all possible statistics, according to
[6]: t-, SAM, FC, B-, moderated t-, and moderated F-sta-
tistics. Fisher’s scores estimated 2.5 cm as the optimal
threshold, larger than the classical 2.0 cm. mDEDS de-
termined 2.2 cm as the optimal threshold. For TEP, we
summarize q0 −TEP in Fig. 6. The minimum value for Eq.
(4) was 2.4 cm, which was clearer than the result shown
in Fig. 5 and closer to 2.5 cm obtained by Fisher’s score.
This result suggests that TEP-based q0 −TEP gives us a
more robust threshold size. Given the results by Fisher’s
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Fig. 5 Fisher’s score (upper) found 2.5 cm and mDEDS (lower) found
2.2 cm as the optimal threshold
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score, it would not seem feasible to detect whether 2.2
or 2.4 cm is the best size. However, our proposed ana-
lysis can consider the possibility that a size larger than
2.0 cm is appropriate to indicate where the expression
patterns show the greatest difference.
It is important to notice that the optimal value of q,

obtained by optimizing the objective functions (3) and
(4), cannot be equipped with a confidence interval
Fig. 6 Plots obtained by TEP
obtained by bootstrap. This is similar to other situations
in statistics, where certain parameters are obtained by
optimization, for example, the smoothing parameter in
non-parametric regression or the penalty in lasso regres-
sion, obtained by optimizing some cross validation cri-
teria. To explain this, let us follow the bootstrapping
paradigm. Let us fix a value q1. Then we can compute
the p values pi(q1) and the Fisher score S*(q1). We can
bootstrap the data and obtain bootstrap distributions for
all p values and compute the corresponding bootstrap
distribution for S(q1), which has a mean equal to S*(q1).
We now repeat for various q in Q and obtain score S*(q)
and the bootstrap distributions for score S(q) for all q in
Q. What we do in this article is to minimize over q the
score S*(q), which can be interpreted as the bootstrap
mean. But we cannot minimize the sum of the boot-
strapped distributions of S(q) for all q in Q. We need to
summarize these distributions by a point estimate, and
our method uses the mean. For example, we could use
the bootstrap medians instead. In any case, the obtained
optimal q cannot carry any bootstrap-based uncertainty.
On the other hand, we can repeat the threshold se-
lection separately on each of the three datasets. For
mDEDS, this gave the optimal values of 2.1, 2.2, and
2.2 cm; for Fisher’s score, we obtained 1.7 (slightly
preferable to 2.5 cm), 2.4, and 2.5 cm. Three values
do not allow an estimate of variability, but they ap-
pear consistent.

5.2 Validation study
To validate our proposed algorithm, additional five dif-
ferent expression data were analyzed using the same ap-
proaches. For mDEDS, we took six statistics, t-, SAM,
FC, B-, moderated t-, and moderated F-statistics. The
plots for Fisher’s score, mDEDS and TEP are shown in
Fig. 7. Some studies involve few samples for smaller size
than 1.5 cm or larger than 3.5 cm. Therefore, the plots
should be shown within the range between 1.5 and
3.5 cm. The optimum sizes were 2.1 cm by Fisher’s
scores, 2.5 cm by mDEDS, and 2.6 cm by TEP, which
were all larger than 2.0 cm. If the first local maximum of
2.0 cm is ignored for the Fisher’s score, the second peak
indicated 2.6 cm. These results suggest that the five
datasets validate the possibility of a optimum threshold
which is larger than 2.0 cm. On the other hand, the
cases for mDEDS and TEP indicated 2.0 and 2.1 cm as
the second peak. This confirmed that the 2.0-cm rule
works for distinguishing different characteristics of the
tumor in the expression data. Furthermore, we can say
that the 2.0-cm rule is robust also with respect to the
gene expression analysis, since it appears to be conserva-
tive in recommending a stronger treatment a couple of
millimeter before a threshold based on the gene expres-
sion would indicate [2].



Table 1 p values obtained by the log-rank test for survival time
(months) and time to local recurrence (in months)

Thresholds [cm] Overall survival BC specific Local recurrence

2.0 0.021 0.027 0.13

2.2 0.18 0.047 0.045

2.4 0.30 0.083 0.089

Fig. 8 Survival curves in the case of local recurrence for each
threshold 2.0 cm (top), 2.2 cm (middle), and 2.4 cm (bottom)

Fig. 7 Optimum thresholds by Fisher’s score (top), mDEDS (middle),
and TEP (bottom) in the case of validation datasets
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5.3 Survival analysis using optimum threshold
Usually, the goal for tumor staging based on tumor size
and other factors is to guide the choice of treatment for
patients and predict their outcomes. Therefore, we
evaluate our threshold also with respect to clinical out-
comes, namely the survival time and time to local recur-
rence. We have the monthly survival time (time to
death) and time to local recurrence for only mdata3. We
divided these patients into two classes according to the
thresholds 2.0, 2.2, and 2.4 cm. The survival functions of
the corresponding classes were compared by Kaplan-
Meier analysis and the log-rank test. The survival was
defined either as overall survival (death by any reasons
used as the observed time and alive used as the censored
time) or as breast cancer (BC)-specific survival (death by
only BC used as the observed time and others used as
the censored time). Table 1 summarizes the obtained p
values for the log-rank test of each survival time and
each threshold. The 2.0-cm threshold distinguishes best
in terms of overall survival. Interestingly, the 2.0- and
the 2.2-cm thresholds appear to be preferred in terms of
BC-specific survival. The threshold 2.2 cm appears to
provide the best classification for local recurrence. The
survival curves of the two groups shown in Fig. 8 are



Table 2 Estimated number of significant probes (genes) by
SAM

Size used for response 2.4 cm 2.0 cm

Statistics for SAM # probes FDR (%) # probes FDR (%)

Data mdata1 12 15.03 44 6.03

mdata2 11,740 5.02 8036 4.81

mdata3 93 20.29 9 10.42
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more different for all thresholds larger than 2.0 cm. This
result suggests that the optimum threshold, which maxi-
mizes the total differential expression also, is confirmed
by the larger difference in time to local recurrence. Local
recurrence is known to be better predicted by expression
compared to overall survival. In summary, despite the
limitations of our data, there is some indication that a
slightly larger threshold between 2.0 and 2.2 cm, which
maximizes differential expression, also leads to improved
distinctions in survival curves for time to local recur-
rence, compared to the traditional 2.0-cm rule.

5.4 Associated network and canonical pathway analyses
based on the gene lists of expression differences
between T1 and T2 groups based on the 2.4- and 2.0-cm
thresholds
We are interested in the specific biological features of
the genes discriminating between tumors below and
above the given 2.0- and 2.4-cm thresholds. First, we ap-
plied SAM [20] to obtain the significant probes in terms
of gene expression differences for both thresholds.
Table 2 summarizes the number of significant probes
and the corresponding FDR [21].
As shown in the table, since the two-color dataset

(mdata2) keeps the 5 % FDR level, we focus on this data-
set for the associate network and canonical pathway ana-
lysis. For the probes obtained by SAM, we counted
unique significant probes for each threshold as well as
the number of overlapping probes (see Additional file 2:
Table S1). Figure 9 summarizes the numbers of unique
probes—2.4 cm unique (part A), 2.0 cm unique (part B),
and overlapped (part C)—in the Venn diagram. In order
Fig. 9 Summary of unique probes for 2.4 and 2.0 cm and overlapped prob
to investigate the biological functional interaction for
the gene lists, we used a tool called IPA (Ingenuity Path-
way Analysis) [22], which delivers a rapid assessment of
the signaling and metabolic pathways, molecular net-
works, and biological processes that are most signifi-
cantly perturbed in the dataset of interest. IPA has many
options to find insights on the relationships, mecha-
nisms, functions, and pathway of relevance. We selected
an option for associated network functions and canon-
ical pathway, and the outputs for the pathway analyses
and biological functions (diseases and disorders, molecu-
lar and cellular functions) are summarized in Table 3.
The p value associated with a biological process or path-
way annotation is a measure of its statistical significance
with respect to the Functions/Pathways/Lists Eligible
molecules for the dataset and a reference set of mole-
cules (which define the molecules that could possibly be
Functions/Pathways/Lists Eligible). The p value is calcu-
lated with Benjamini and Hochberg FDR [21]. The ratio
of the canonical pathways is defined as the number of
molecules in a given pathway that meet the cutoff cri-
teria divided by the total number of molecules that make
up that pathway. Networks are scored based on the
number of network-eligible molecules they contain. In
Table 3, a score above 10 is recognized as a meaningfully
higher score. The network score is based on the hyper-
geometric distribution (source: IPA online manual).
Associated network functions explain the tendencies of

cellular assembly in tumor interaction for the early stage
of tumors and energy production for the progressive stage
of tumors. Part C represents a transitional stage from early
to progressive, which involves associated network func-
tions including lipid metabolism and cell signaling, nucleic
acid metabolism, and small molecule biochemistry.
For the common genes shown in part C, besides

known genes in breast cancer, such as AKT, ERBB2, and
PTEN, we found also MTDH. When it was introduced,
the gene Metadherin (MTDH) was shown to affect the
expression of many genes of relevance to the metastatic
and chemo-resistance phenotypes [23]. MTDH may also
represent a novel mediator of malignant breast cancer
es



Table 3 Summary of pathway analyses

(Part A) Biological functions enriched in 5618 unique probes separating
tumors below and above size 2.4 cm

Associated network functions Score

Cellular assembly and organization,
cellular compromise, protein synthesis

26

Cell signaling, nucleic acid metabolism,
small molecule biochemistry

24

Energy production, nucleic acid
metabolism, small molecule biochemistry

24

Hair and skin development and function,
dermatological diseases and conditions,
developmental disorder

22

Post-translational modification, gene
expression, infectious disease

22

Top canonical pathways −log (FDR-corrected
p value)

Neuropathic pain signaling in dorsal
horn neurons

1.13

Role of NNFAT in cardiac hypertrophy 1.13

Melatonin signaling 6.94 × 10−1

Molecular mechanisms of cancer 6.94 × 10−1

Calcium-induced T lymphocyte apoptosis 6.94 × 10−1

Diseases and disorders FDR-corrected p value

Cancer 3.95 × 10−1–5.44 × 10−1

Hematological disease 3.95 × 10−1–5.44 × 10−1

Immunological disease 5.13 × 10−1–5.44 × 10−1

Hypersensitivity response 5.44 × 10−1–5.44 × 10−1

Inflammatory response 5.44 × 10−1–5.44 × 10−1

Molecular and cellular functions FDR-corrected p value

Gene expression 2.03 × 10−1–5.44 × 10−1

Cellular growth and proliferation 2.03 × 10−1–5.44 × 10−1

Energy production 2.03 × 10−1–5.44 × 10−1

Amino acid metabolism 2.03 × 10−1–5.44 × 10−1

Small molecule biochemistry 2.03 × 10−1–5.44 × 10−1

(Part B) Biological functions enriched in 1914 unique probes separating
tumors below and above size 2.0 cm

Associated network functions Score

Antigen presentation, cellular movement,
hematological system development and
function

29

Cell assembly, and organization, cellular
function and maintenance, protein
synthesis

29

Gene expression, infectious disease,
small molecule biochemistry

29

Cellular assembly and organization, cell
signaling, gene expression

29

Post-translational modification, protein
folding, cell death

24

Table 3 Summary of pathway analyses (Continued)

Top canonical pathways −log (FDR-corrected
p value)

Tight junction signaling 9.13 × 10−1

Germ cell-Sertoli cell junction signaling 8.69 × 10−1

Cfc42 signaling 1.26 × 10−1

Fatty acid biosynthesis 8.69 × 10−1

Integrin signaling 8.69 × 10−1

Diseases and disorders FDR-corrected p value

Dermatological diseases and conditions 6.58 × 10−3–2.73 × 10−1

Genetic disorder 6.58 × 10−3–2.73 × 10−1

Infectious disease 1.14 × 10−2–2.73 × 10−1

Inflammatory disease 3.38 × 10−2–2.73 × 10−1

Inflammatory response 3.38 × 10−2–2.73 × 10−1

Molecular and cellular functions FDR-corrected p value

Antigen presentation 3.38 × 10−2–2.73 × 10−1

Cell-to-cell signaling and interaction 3.38 × 10−2–2.73 × 10−1

Cellular compromise 3.38 × 10−2–2.73 × 10−1

Cellular function and maintenance 3.38 × 10−2–2.73 × 10−1

Cellular movement 7.14 × 10−2–2.73 × 10−1

(Part C) Biological functions enriched in 6112 overlapping probes
separating tumors below and above size 2.4 cm and 2.0 cm

Associated network functions Score

Protein synthesis, post-translational
modification, cancer

26

Cell signaling, nucleic acid metabolism,
small molecule biochemistry

24

Lipid metabolism, small molecule
biochemistry, vitamin, and mineral
metabolism

24

Connective tissue development and
function, embryonic development, skeletal
and muscular system development and
function

24

Cancer, dematological diseases and
conditions, tumor morphology

22

Top canonical pathways −log (FDR-corrected
p value)

Cytotoxic T lymphocyte-mediated
apoptosis of target cells

3.65

Allograft rejection signaling 2.77

Nur77 signaling in T lymphocytes 2.77

Antigen presentation pathway 2.77

T helper cell differentiation 1.75

Diseases and disorders FDR-corrected p value

Dermatological diseases and conditions 1.98 × 10−7–1.89 × 10−1

Respiratory disease 7.98 × 10−5–1.89 × 10−1

Cancer 4.49 × 10−4–1.89 × 10−1

Genetic disorder 4.49 × 10−4–1.71 × 10−1

Inflammatory response 4.49 × 10−4–1.89 × 10−1
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Table 3 Summary of pathway analyses (Continued)

Molecular and cellular functions FDR-corrected p value

Cell-to-cell signaling and interaction 2.68 × 10−4–1.89 × 10−1

Cellular movement 8.02 × 10−4–1.89 × 10−1

Cellular growth and proliferation 1.29 × 10−3–1.89 × 10−1

Cellular development 2.99 × 10−3–1.89 × 10−1

Cell death 4.1 × 10−3–1.89 × 10−1

Solvang et al. EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:6 Page 10 of 11
progression. Furthermore, we found interesting genes in
part A such as MYC, which is known as an oncogene fre-
quently deregulated in breast cancer; TP53, which is asso-
ciated with high risk for various cancers; RAD50, which is
known to moderately increase breast cancer risk; and
BRCA2, whose mutation is associated with a significantly
elevated risk for breast and ovarian cancers [24].

6 Conclusions
We study various tumor size thresholds that can be used
to create two groups of patients. We proposed a numer-
ical algorithm involving Fisher’s score and mDEDS using
gene expressions. Both measurements found that the dif-
ference in gene expression between smaller and larger
tumors appears to be slightly larger than 2.0 cm. The
over 2.0-cm optimum thresholds were supported by a
validation using the five published expression datasets.
We also found that the thresholds over 2.0 cm lead to
the most distinct Kaplan-Meier curves of time to local
recurrence. From the associated network and canonical
pathway analyses for Norwegian datasets, the lists of DE
genes for the 2.4-cm threshold also included some genes
related to the metastasis of breast cancer. The same ap-
proach can be extended to also controlling other factors
such as tumor grades and estrogen receptor (ER) status,
which are also important prognostic indicators for breast
cancer. It could also apply to other cancer considering
tumor size as a prognostic indicator. A further extension
of our approach would be to determine more than two
groups of patients, on the base of two (or more) thresh-
olds. This would indicate that tumor dimension has a
similar role with tumor grades. We decided to remain
within the consolidated clinical practice with just the
T1/T2 distinction. In summary, our analysis based on
gene expressions indicates that the 2.0-cm rule applied
to determine patients who will benefit from more ag-
gressive therapy appears to be justified. However, we find
indications that a slightly larger threshold, of 2.2 cm
could instead be applied, thus reducing therapy for some
borderline patients. This could spare negative effects
of strong therapies to patients that possibly do not
need them. We interpret our results as a call for a
critical revision of the 2.0-cm rule in the light of in-
dividual genomic data.
7 Additional files
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Abbreviations
BC: breast cancer; DE: differential expression; DEDS: differential expression via
distance synthesis; FC: fold change; GEO: Gene Expression Omnibus;
MAD: median absolute deviation from the median; mDEDS: meta differential
expression via distance synthesis; NCBI: National Center for Biotechnology
Information; NUSE: normalized unscaled standard errors; RLE: relative log
expression; RMA: robust multi-array average; SAM: significant analysis of
microarray; TEP: totally extreme point; WMW: Wilcoxon-Mann-Whitney.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HKS, AF, and BKA designed and developed the numerical algorithm, and
HKS, BKA, and FK were involved in the data analysis. MLHR and VNK
provided the molecular biological motivation and contributed for the design
of this study. FK and TL performed normalization of the microarray data for
the in-house three cohorts. VNK financed and conducted the data acquisi-
tion, and MLHR and IRKB corrected samples in Akershus University Hospital.
All authors have read and approved the final manuscript.

Acknowledgements
This work was supported by grants 193387/V50 Understanding breast cancer
genomics to ALBD/VNK from the Norwegian Research Council (NFR) and by
grants from the South-Eastern Norway Regional Health Authority (Helse
Sør-Øst) 2789119 and the Akershus University Hospital 2679030 and 2699015
to VNK. Furthermore, we thank, for the valuable suggestion and help for
the validation data, Dr. Xi Zhao, Stanford Center for Cancer System Biology,
Stanford University.

Author details
1Department of Marine Mammals, Institute of Marine Research, C. Sundts
Gate 64, Bergen 5004, Norway. 2Department of Biostatistics, Institute of Basic
Medical Science, University of Oslo, Norway and Statistics for
Innovation—(sfi)2, Oslo, Norway. 3Medical Genetics Department, Oslo
University Hospital (Ullevål), Oslo, Norway. 4Department of Surgery, Akershus
University Hospital, Lørenskog, Norway. 5Department of Molecular Biology
and Laboratory Sciences (EpiGen), Institute of Clinical Medicine, Akershus
University Hospital, Lørenskog, Norway. 6Institute of Clinical Medicine,
University of Oslo, Norwegian Center of HPH Network, Oslo, Norway.
7Department of Genetics, Institute for Cancer Research, Oslo University
Hospital Radiumhospitalet, Oslo, Norway. 8Cancer Registry of Norway
Institute for Population-based Research, Oslo, Norway.

Received: 3 October 2014 Accepted: 23 December 2015

References
1. EA Rakha, JS Reis-Filho, F Baehner, DJ Dabbs, T Decker, V Eusebi, EB Fox, S

Ichihara, J Jacquemier, SR Lakhani, J Palacios, AL Richardson, SJ Schnitt, FC
Schmitt, PH Tan, CM Tse, S Badve, IO Ellis, Breast cancer prognostic
classification in the molecular era: the role of histological grade. Breast
Cancer Research 12, 207 (2010)

2. M.L. Riis, X. Zhao, F. Kaveh, H.S. Vollan, A.J. Nesbakken, H.K. Solvang, T.
Lüders, I.R. Bukholm, and V.N. Kristensen, Gene expression profile analysis of
T1 and T2 breast cancer reveals different activation pathways, ISRN Oncol.
(2013). doi:10.1155/2013/924971.

3. A Ramasamy, A Mondry, CC Holmes, DG Altman, Key issues in
conducting a meta-analysis of gene expression microarray datasets.
PLoS Medicine 5(9), e184 (2008)

4. J Budczies, F Klauschen, BV Sinn, B Gyӧrffy, WD Schmitt, S Darb-
Esfahani, C Denkert, F Cutoff, A comprehensive and straightforward

dx.doi.org/10.1186/s13637-015-0034-5
dx.doi.org/10.1186/s13637-015-0034-5
http://dx.doi.org/10.1155/2013/924971


web application enabling rapid biomarker cutoff optimization. PLoS
ONE 7(12), e51862 (2012)

5. A Campain, YH Yang, Comparison study of microarray meta-analysis
methods. BMC Bioinformatics 11, 408 (2010)

6. YH Yang, Y Xiao, MR Segal, Identifying differentially expressed genes
from microarray experiments via statistic synthesis. Bioinformatics
21(7), 1084–1093 (2004)

7. RA Fisher, Statistical Methods for Research Workers (Fisher Oliver & Boyd,
Edinburgh, 1950), p. 11

8. B Naume, X Zhao, M Synnestvedt, E Borgen, HG Russness, OC Lingjærde, M
Strømberg, G Wiedswang, G Kvalheim, R Kåresen, JM Nesland, AL Børresen-
Dale, T Sørlie, Presence of bone marrow micrometastasis is associated with
different recurrence risk within molecular subtypes of breast cancer.
Molecular Oncology 1, 160–171 (2007)

9. MH van Vliet, F Reyal, HM Horlings, MJ van de Vijver, MJT Reinders, LFA
Wessels, Pooling breast cancer datasets has a synergetic effect on
classification performance and improves signature stability. BMC
Genomics 9, 375 (2008)

10. Y Pawitan, J Bjöhle, L Amler, AL Borg, S Egyhazi, P Hall, X Han, L Holmberg, F
Huang, S Klaar, ET Liu, L Miller, H Nordgren, A Ploner, K Sandelin, PM Shaw,
J Smeds, L Skoog, S Wedrén, J Bergh, Gene expression profiling spares early
breast cancer patients from adjuvant therapy: derived and validated in two
population-based cohorts. Breast Cancer Research 7, R953–R964 (2005)

11. S Loi, B Haibe-Kains, C Desmedt, F Lallemand, AM Tutt, C Gillet, P Ellis, A
Harris, J Bergh, JA Foekens, JG Klijn, D Larsimont, M Buyse, G Botempi, M
Delorenzi, MJ Piccart, C Sotiriou, Definition of clinically distinct molecular
subtypes in estrogen receptor-positive breast carcinomas through genomic
grade. J. Clini Oncol. 25(10), 1239–1246 (2007)

12. LD Miller, J Smeds, J George, VB Vega, L Vergara, A Ploner, Y Pawitan, P Hall,
S Klaar, ET Liu, J Bergh, An expression signature for p53 status in human
breast cancer predicts mutation status, transcriptional effects, and patient
survival. PNAS 102(38), 13550–13555 (2005)

13. C Desmedt, F Piette, S Loi, Y Wang, F Lallemand, B Haibe-Kains, M Delorenzi,
MS D’Assignies, J Bergh, R Lidereau, P Ellis, AL Harris, JG Klijn, JA Foekens, F
Cardoso, MJ Piccart, M Buyse, C Sotiriou, TRANSBIG Consortium, Strong time
dependence of the 76-gene prognostic signature for node-negative breast
cancer patients in the TRANSBIG multicenter independent validation series.
Clinical Cancer Research 13(11), 3207–3214 (2007)

14. AJ Minn, GP Gupta, PM Siegel, PD Bos, W Shu, DD Giri, A Viale, AB Olshen,
WL Gerald, J Massaqué, Genes that mediate breast cancer metastasis to
lung. Nature 436, 518–524 (2005)

15. K Chin, S DeVries, J Fridlyand, PT Spellman, R Roydasgupta, WL Kuo, A
Lapuk, RM Neve, Z Qian, T Ryder, F Chen, H Feiler, T Tokuyasu, C Kingsley, S
Dairkee, Z Meng, K Chew, D Pinkel, A Jain, BM Ljung, L Esseman, DG
Albertson, FM Waldman, JW Gray, Genomic and transcriptional aberrations
linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006)

16. X Zhao, EA Rødland, T Sørlie, HKM Vollan, HG Russnes, VN Kristensen, OC
Lingjærde, AL Børresen-Dale, Systematic assessment of prognstic gene
signatures for breast cancer shows distinct influence of time and ER status.
BMC Cancer 14, 211 (2014)

17. BM Bolstad, F Collin, J Brettschneider, K Simpson, L Cope, RA Irizarry, TP
Speed, Quality Assessment of Affymetrix GeneChip Data. Bioinformatics and
Computational Biology Solutions Using R and Bioconductor Statistics for
Biology and Health (Springer, New York, 2005), pp. 33–47

18. RA Irizarry, BM Bolstad, F Collin, LM Cope, B Hobbs, TP Speed, Summaries of
Affymetrix GeneChip probe level data. Nucleic Acids Research 31(4), e15 (2003)

19. AH Sims, GJ Smethurst, Y Hey, MJ Okoniewski, SD Pepper, A Howell, CJ
Miller, RB Clarke, The removal of multiplicative, systematic bias allows
integration of breast cancer gene expression datasets—improving meta-
analysis and prediction of prognosis. BMC Medical Genomics 1, 42 (2008)

20. VG Tusher, R Tibshirani, G Chu, Significance analysis of microarrays applied
to the ionizing radiation response. PNAS 98(9), 5116–5121 (2001)

21. Y Benjamini, Y Hochberg, Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. Royal Stat. Soc. Series B
57(1), 289–300 (1995)

22. Ingenuity systems, http://www.ingenuity.com.
23. MA Blanco, Y Kang, Signaling pathways in breast cancer

metastasis—novel insights from functional genomics. Breast Cancer
Research 13, 206 (2011) (2011)

24. E.Y.H.P. Lee and W.J. Muller, ‘Ongogenes and tumor suppressor genes’,
Cold Spring Harbor Persp. Biol. (2010). doi:10.1101/cshperspect.a003236.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Solvang et al. EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:6 Page 11 of 11

http://www.ingenuity.com/
http://dx.doi.org/10.1101/cshperspect.a003236

	Abstract
	Introduction
	Method
	Fisher’s inverse chi-square statistic
	Differential expression via distance synthesis (DEDS)
	An extension to DEDS
	Estimation of optimal threshold q between T1 and T2

	Simulation study
	Materials
	Norwegian datasets
	Validation datasets

	Results and discussion
	Optimal tumor size
	Validation study
	Survival analysis using optimum threshold
	Associated network and canonical pathway analyses based on the gene lists of expression differences between T1 and T2 groups based on the 2.4- and 2.0-cm thresholds

	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



