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Abstract

Study of signaling networks is important for a better understanding of cell behaviors e.g., growth, differentiation,
metabolism, proptosis, and gaining deeper insights into the molecular mechanisms of complex diseases. While there
have been many successes in developing computational approaches for identifying potential genes and proteins
involved in cell signaling, new methods are needed for identifying network structures that depict underlying signal
cascading mechanisms. In this paper, we propose a new computational approach for inferring signaling network
structures from overlapping gene sets related to the networks. In the proposed approach, a signaling network is
represented as a directed graph and is viewed as a union of many active paths representing linear and overlapping
chains of signal cascading activities in the network. Gene sets represent the sets of genes participating in active paths
without prior knowledge of the order in which genes occur within each path. From a compendium of unordered
gene sets, the proposed algorithm reconstructs the underlying network structure through evolution of synergistic
active paths. In our context, the extent of edge overlapping among active paths is used to define the synergy present
in a network. We evaluated the performance of the proposed algorithm in terms of its convergence and recovering
true active paths by utilizing four gene set compendiums derived from the KEGG database. Evaluation of results
demonstrate the ability of the algorithm in reconstructing the underlying networks with high accuracy and precision.

1 Introduction
Inference of signaling networks is critical for deciphering
regulatory relationships in living cells and gaining deeper
insights into the molecular mechanisms of complex dis-
eases. A signaling network comprises of a complex web of
signaling cascades triggered by the binding of external lig-
ands to the transmembrane receptors. Signaling cascades
involve a sequential activation of signaling molecules
within the cell to lead to a biological end-point function
[1]. Computational systems biology approaches serve as
a primary mean to understand such complicated wiring
of biomolecular interaction and regulation mechanisms.
Several approaches have been proposed in the past for
inferring these mechanisms including Bayesian networks
[2, 3], Boolean or probabilistic Boolean networks [4–6],
mutual information networks [7–9], Gaussian graphical
models [10, 11] and others [12–16].

One of the earliest network discovery approaches was
the so-called relevance networks reconstructed based on
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pairwise gene expression similarities [17–19]. Commonly
used similarity metrics include correlation coefficient
[18, 19], partial correlation [10, 17], and mutual infor-
mation [7, 20]. These approaches permit reconstructing
large-scale networks. However, they focus on discovery of
local network structures in a pairwise manner, ignoring
global, and many-to-many dependencies among genes.
Gaussian graphical models and other approaches attempt
to infer a global network structure by calculating a full-
order partial correlation, i.e., a pairwise feature correlation
excluding all other features [10, 11]. However, this
approach only discovers one-to-one gene relationships,
and the performance is significantly limited for high
dimensional data, where the number of genes is larger
than the number of samples.

Compared with pairwise similarity based network dis-
covery methods, Bayesian network approaches are more
powerful since they consider many-to-one gene depen-
dencies [2, 3, 21]. Numerous strategies for network
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scoring and searching have been proposed, such as
Bayesian Dirichlet (BD) [22], K2 [23] and MCMC [24].
These approaches have stimulated network discoveries
across many scientific disciplines. Nevertheless, an impor-
tant caveat is that the Bayesian networks infer a sta-
tistical causal network of genes and not necessarily the
physical network structures per se. For high dimensional
data (e.g., biological signaling networks with hundreds
of genes), network structure discovery using Bayesian
network approaches present a computationally daunting
task. In order to keep the computation tractable, the size
of the parent gene set is often limited to three. There-
fore, the reconstructed networks can fail to reveal the
genuine many-to-one regulatory relationships. Network
reconstruction from gene sets has emerged as an attrac-
tive alternative by accommodating many-to-many gene
relationships. Note that the number of gene sets is usu-
ally much lower than that of the genes due to the overlaps
among gene sets. In addition, using gene sets automat-
ically accounts for the many-to-many gene dependency.
Recent publications have demonstrated the promising
potential of gene set based approaches (e.g., [25–27]).
These network discovery approaches take gene sets as the
direct structural information emitted from the underly-
ing network, and infer the structure using computational
approaches.

There are two major aspects related to a reliable infer-
ence of signaling network topologies. First is the identifi-
cation of the group of molecules involved in a signaling
network, and the second aspect is associated with the
inference of the network among the molecules involved
in signal cascading activities. While there have been many
successes in developing computational approaches for
identifying potential genes and proteins involved in cell
signaling [28, 29], new methods are needed for iden-
tifying network structures that depict underlying signal
cascading mechanisms. Besides few exceptions [25, 26,
30, 31] most of the existing network inference approaches
center around statistical causal interactions and pairwise
similarities without explicit consideration of signal cas-
cading activities within their frameworks. Although many
annotated signaling pathways and tools for their analysis
have become available in recent years [32–37], our cur-
rent knowledge about signaling mechanisms is still very
limited. Existing networks may not necessarily present
a complete picture of the the underlying signal cascad-
ing activities. Moreover, pathway structures available in
public domains are often generic, while scientists may par-
ticularly be interested in understanding context-specific
signaling networks. Clearly, there is a need for new com-
putational approaches for inferring signaling network
structures.

We attempt to address the issues raised above by
proposing a new genetic algorithm (GA) [38–40] based

approach for inferring signaling network structures from
overlapping gene sets related to the networks. The novelty
of the proposed approach lies in inferring the underlying
signaling network structure through evolution of syner-
gistic subnetworks. We begin with analyzing the structure
of a signaling network. A signaling network can be rep-
resented as a directed graph and can be viewed as a
union of several directed and overlapping chains of sig-
naling cascades, which we refer to as active paths. Indeed,
active subnetworks have been defined as connected sets
of genes with very high differential expression levels [41].
Under the above hypothesis, the true signaling network
can be constructed by assembling the active paths into
one unit. In other words, active paths can be treated as
the basic building blocks of the underlying network. The
extent of edge overlapping among active paths facilitates
the network construction and can be viewed as synergy
present among the paths. We propose to infer the underly-
ing active paths and the signaling network from observed
gene sets corresponding to active paths. More specifi-
cally, gene sets represent the sets of genes participating in
active paths without prior knowledge of the order in which
genes occur within each path. Thus, an active path and
the corresponding gene set carry the same set of genes,
however, the directionality information or the arrange-
ment of genes within active paths is unavailable in the
case of gene sets. From a compendium of unordered gene
sets, GA reconstructs the underlying network structure
through evolution of synergistic active paths. In the pro-
posed approach, synergy among active paths is quantified
by treating gene sets as random samples from a first order
Markov chain model.

The primary motivation for developing a genetic algo-
rithm approach is twofold. First, the exhaustive enumera-
tion of all candidate network structures to locate the true
network may be computationally challenging. Indeed, a
total of

∏m
i=1 L! network structures can be constructed

from m gene sets of lengths L, which may be a very large
candidate pool even when the values of m and L are not
high. And second, genetic algorithm may be more advan-
tageous compared to previously proposed sampling or
search strategies [25, 26] in terms of its ability to avoid
being trapped in local solution since it works with a pop-
ulation of solutions at each generation instead of a single
solution. As a result, we translate our goal of signaling net-
work inference into a maximization problem and devise a
genetic algorithm based search scheme to locate the struc-
ture with the maximum synergy among active paths (the
true network).

GA is a population based search strategy that utilizes
“survival of the fittest mechanism” [38–40]. In the present
context, the search space for GA or feasible set is defined
as the set of all signaling network structures possessing the
same degree distribution as the true network, where the
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true network has the maximum ‘fitness’ (synergy among
active paths) in the feasible set. The algorithm starts with
an initial population of signaling network structures from
the feasible set. In GA, members of the feasible set (candi-
date signaling networks) are encoded as strings of symbols
of equal lengths and are called chromosomes. We encode
a candidate signaling network by assigning labels to the
underlying active paths. GA proceeds iteratively, where
a new population is created from the current population
through formation of Mating Pool, which involves selec-
tion of parent chromosomes for creating next generation
using a tournament scheme, and operations referred to
as cross-over, where active paths are exchanged between
two candidate networks, and mutation which involves
gene ordering permutation within active paths. At each
generation, GA aims to create a population with average
fitness value which is higher than the one for the previ-
ous population. With evolution of better populations of
signaling networks, the proposed GA aims to recover the
true network possessing the maximum synergy among
subnetworks or maximum fitness score.

We evaluated the performance of GA using four gene set
compendiums sampled from four signaling network struc-
tures available from the KEGG database [42]. The eval-
uations were performed in terms of convergence trends,
subnetwork evolution, and the ability of genetic algorithm
in recovering the underlying active paths and networks.
We also compared the performance of genetic algorithm
with previously proposed simulated annealing approach
[25] due to the similarities in the underlying assumptions
in the two approaches. Genetic algorithm demonstrated
higher precision and F-score values compared to simu-
lated annealing for the same number of generations or
samples used in the two approaches.

2 Inference of signaling networks as a
maximization problem

We formulate the problem of inferring a signaling net-
work structure from gene sets related to the network as
a maximization problem. A gene set is defined as a set of
genes participating in a specific active path in the under-
lying signaling network. We assume a linear arrangement
of genes within an active path, whereas the ordering infor-
mation is assumed to be unavailable in the case of gene
sets. Throughout, we denote a gene set by Xi and an
active path by (Xi, �i), where �i represents an instantia-
tion of gene orderings in Xi, i = 1, . . . , m. The length of
Xi is defined as the number of genes present in Xi and
is denoted by Li. The notations X and (X, �) are used to
represent the given gene set compendium and the under-
lying signaling network structure, respectively, where
X = (X1, . . . , Xm) and � = (�1, . . . , �m). A signaling net-
work (X, �) is constructed by assembling the underlying
active paths (Xi, �i), i = 1, . . . , m.

Since Li! different gene orderings are possible for the
gene set Xi, a total of

∏m
i=1 Li! different network struc-

tures can be constructed from the gene set compendium
X. It may be computationally challenging to exhaustively
enumerate all

∏m
i=1 Li! structures and identify the true

structure even when the values of Li and m are not large.
To address this challenge, we formulate the inference
of signaling networks from gene sets as a maximization
problem and utilize a search strategy to locate the true
structure in the search space, where the true structure
receives the highest score among all candidate structures.
The maximization problem is formulated as:

max
(X,�)∈FX

f (X, �) (1)

where f represents the score of a candidate network
(X, �) and FX stands for the set of feasible networks.
In the next section, we define the search space as well
as the scoring function and propose a genetic algo-
rithm (GA) based approach to locate the true network
structure.

3 A genetic algorithm based search strategy
3.1 The search space for GA
To avoid random networks from consideration, we define
the search space or the feasible set for GA using net-
work structures which possess the degree distribution of
the underlying network. Since we treat active paths as the
basic building blocks of the underlying network, the feasi-
ble set can be defined by the networks which are obtained
by fixing the pair of terminal genes and permuting the
order of intermediate genes in the true active paths. This is
because, the incoming and outgoing degrees of the inter-
mediate genes in each active path is 1 which does not get
affected even when these nodes are randomly permuted.
This results in a feasible setFX of size

∏m
i=1(Li−2)! for GA

where all network structure share the same degree distri-
bution as the true network [25]. Throughout, we refer to
the members of a feasible set as “feasible networks”. Bio-
logically, in a signal transduction cascade, terminal genes
are easier to determine and are usually available as bio-
logical prior knowledge. For instance, the starting node
is usually a transmembrane protein, which triggers and
transmits signaling cascades. The ending node is usually a
transcription factor, which is to turn on/off transcription.
Both terminal genes can be recognized by their func-
tional annotations, and use of this prior knowledge can
greatly increase the chance of arriving at a global optimal
signaling network.

3.2 The representation scheme
We encode each candidate structure in FX as a chro-
mosome. The encoding is performed in three steps: (1)
enumerating the possible orderings associated with each
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gene set Xi, i = 1, . . . , m individually, (2) assigning a label
to each ordering (active paths), and (3) concatenating the
labels of the active paths which define the given signaling
network.

Algorithm 1 GA for Inferring Active Paths and Signaling
Networks from Gene Sets

1: Input: Gene sets Xi, i = 1, . . . , m, population size
s, cross-over proportion pC , number of active paths
exchanged during cross-over cN , mutation probability
pM, elitism proportion pE , number of generations J.

2: Output: Reconstructed active paths and signaling
network.

3: Initialization: At k = 0, randomly select a popula-
tion P(0) of size s from FX . If (X, �(0)

) is the structure
with the maximum fitness in P(0), let BestNetwork =
(X, �(0)

) and BestFit = f (X, �(0)
).

4: for k = 1, . . . , J do
5: Let P(k) = {}.
6: if pE > 0 then
7: Place a total of nE chromosomes from P(k−1)

with the first nE highest fitness values into P(k),
where nE = �pE ∗ s�. Let C(k−1) be the set of the
remaining chromosomes in P(k−1).

8: else
9: C(k−1) = P(k−1).

10: end if
11: Form a mating pool M(k−1) from C(k−1) using a

tournament scheme.
12: Apply cross-over on pC/2 chromosome pairs in

M(k−1) by exchanging cN active paths. Update
M(k−1).

13: Apply mutation on the chromosomes in M(k−1)

with probability pm. Update M(k−1).
14: Include the chromosomes of M(k−1) into P(k).
15: if (X, �(k)

) is the structure with the maximum
fitness in P(k) and BestFit< f (X, �(k)

) then
16: BestNetwork = (X, �(k)

).
17: BestFit = f (X, �(k)

).
18: end if
19: end for
20: Return BestNetwork and BestFit.

3.3 Capturing the synergy among subnetworks
Since we consider a signaling network as a union of active
paths, it is necessary to capture the synergy among the
active paths in the candidate networks to facilitate the
search for the true structure. To achieve this goal, we treat
gene sets as random samples from a first order Markov
chain model and estimate the two model parameters, ini-
tial probability vector p0 and transition probability matrix
�, as p0 = ( c1

m , . . . , cn
m ) and � =[ pjk]n×n, where m is

the number of active paths, n is the number of distinct

genes among the active paths, ci is the number of times
ith gene appears as the first node among m active paths,
i = 1, . . . , n, pjk = cjk/

∑n
k=1 cjk , j, k = 1, . . . , n, and cjk is

the number of times jth gene transits to kth gene among m
active paths. The matrix � captures the edge overlapping
information in the given network which defines the syn-
ergy among the active paths. The above parameters have
also been used in the gene set based approaches proposed
in [25, 26].

3.4 Scoring the fitness of a signaling network or the
synergy among subnetworks

We utilize the following scoring function to measure the
fitness of a candidate signaling network (X, �):

f (X, �) = log(L(X, �)) = log
( m∏

i=1
�(Xi, �i)

)

=
m∑

i=1
log �(Xi, �i), (2)

where �(Xi, �i) and L(X, �) represent the likelihood of
the active path (Xi, �i) and the signaling network (X, �),
respectively, and L(X, �) = ∏m

i=1 �(Xi, �i). The like-
lihood �(Xi, �i) is calculated using the Markov chain
parameters defined above. For instance, the likelihood of
an active path a → b → c → d is calculated as p0(a) ×
pab × pbc × pcd. From Eq. 2, the problem of searching
for the network with the maximum fitness score becomes
equivalent to the problem of finding the network with the
maximum likelihood in the search space.

3.5 Mating pool
From a given population P(k) of chromosomes, we create
a mating pool M(k) by utilizing a tournament scheme. The
pool is generated by randomly selecting a pair of chro-
mosomes and placing the chromosome with better fitness
value into the pool. If the size of the population is s, the
tournament is repeated s times.

3.6 Cross-over
In cross-over, we randomly select certain pairs of par-
ent chromosomes from the mating pool and exchange
a pre-specified number of active paths between them.
It is ensured that the active paths which are exchanged
between the parents correspond to the same gene sets in
the two chromosomes.

3.7 Mutation
The mutation operation is performed by considering each
chromosome in M(k) and randomly permuting the order-
ing of intermediate genes in each of the m active paths
with a very small probability by keeping the terminal genes
fixed.
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3.8 Elitism
The mating pool M(k) obtained after applying cross-over
and mutation operations represents the new population
or generation P(k+1). However, we can further restrict a
pre-specified proportion of chromosomes with the high-
est fitness values in the current population to transfer to
the next population without going through cross-over or
mutation. We refer to this scheme as elitism.

GA iteratively repeats the above steps until a specified
number of generations is reached. This approach has been
presented in Algorithm 1.

4 Results
4.1 Datasets
We evaluated the performance of GA in inferring the
true active paths and networks by utilizing four gene set
compendiums derived from four different signaling path-
way structures in the KEGG database [42]. The KEGG
pathways used in our study are Wnt signaling pathway
(hsa04310), axon guidance pathway (hsa04360), leuko-
cyte transendothelial migration pathway (hsa04670), and
dilated cardiomyopathy pathway (hsa05414). We utilized
the path sampling algorithm proposed in [25] for sampling
true active paths from each of the four network struc-
tures individually. For deriving gene sets corresponding
to the active paths, we randomly permuted the ordering
of genes within each active path by keeping the pair of
end nodes fixed. This resulted in four gene set compendi-
ums comprising of different numbers and lengths of gene
sets which served as input for evaluating the performance
of the proposed algorithm. Within each compendium, we
only considered gene sets comprising of a minimum of
four genes since the gene sets of lengths two or three rep-
resent true active paths. We applied GA on each of the
four compendiums to infer the true active paths corre-
sponding to the gene sets. The active paths inferred by
GA were assembled to reconstruct the underlying subnet-
work and network structures. The true subnetworks and
networks were constructed by assembling the true active
paths. A description of the above datasets is presented in
Table 1.

4.2 Performance evaluation
4.2.1 Fitness of the true signaling networks vs. other

feasible networks
We performed an evaluation to show that the true signal-
ing networks have the highest fitness score in the feasible
set of network structures by utilizing an empirical sta-
tistical test. For each of the four networks, we randomly
selected 1000 feasible structures and computed an empir-
ical P value M/1000, where M represents the number of
networks with fitness score higher than that of the true
structure. We observed that the empirical P values corre-
sponding to the true network structures were always zero.

Table 1 Description of the datasets

KEGG Pathway Number of Number Path
sampled paths of genes lengths

Network 1 hsa04310 108 55 min = 4

max = 7

mean = 5

Network 2 hsa04360 56 52 min = 4

max = 7

mean = 5

Network 3 hsa04670 127 66 min = 4

max = 8

mean = 5

Network 4 hsa05414 85 38 min = 4

max = 7

mean = 5

We also repeated the above test on four randomly selected
feasible networks, one from each of the four search spaces.
In this case, the empirical P values varied between 0 and 1.
This experiment justified the choice of the fitness function
used within the proposed algorithm (See Table 2).

4.2.2 Convergence performance of GA
Using each of the four datasets, we examined the conver-
gence performance of GA in recovering the true network
structures. As the current population of chromosomes
evolves into a better population within the framework of
GA, we expected to observe an increasing trend in the fit-
ness score of the best inferred structure at each generation
as well as an increasing trend in the average fitness score of
the structures in a population with increasing number of
generations. Throughout, we evaluated the performance
of GA by fixing the algorithm parameters at s = 50,
pC = 0.25, pM = 0.01, pE = 0.25, cN = 1, and J = 1000.
The parameter values were chosen based on the obser-
vations from different experiments. For instance, a small
population size may not lead to a satisfactory solution

Table 2 Empirical P values of the true signaling networks and
other feasible networks

Empirical P value

True network 1 0

True network 2 0

True network 3 0

True network 4 0

Feasible network 1 0.29

Feasible network 2 0.16

Feasible network 3 0.82

Feasible network 4 0.55
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Fig. 1 Convergence trend of genetic algorithm for Networks 1 − 4. Here, the black curve represents the fitness score of the best network discovered
at the corresponding generation index, whereas the red curve represents the average fitness score of the population at the corresponding
generation index

while a large population size may increase the computa-
tional time. The population size 50 was chosen to achieve
a balance between the two factors. The performance of
the algorithm was measured in five independent runs. We
present the average performance of the algorithm in the
figures. In Fig. 1, we present the fitness scores of the best
inferred network and the average fitness score of the pop-
ulation at each generation index for the four networks. In
each case, we clearly observe an increasing trend in the
scores with increase in the number of generations.

We further evaluated the performance of GA in recover-
ing the true active paths with the chosen set of parameters.
Figure 2 demonstrates this performance in terms of the
proportion of the true active paths in the best inferred
network at a given generation index for the four datasets.
We observed that > 79 % of the true active paths are suc-
cessfully recovered by the algorithm at the end of 1000
generations for each network, whereas the proportions
are ≥ 90 % in case of Networks 2 and 3.

Fig. 2 Performance of genetic algorithm in recovering true active
paths. Here, each curve corresponds to a specific network and
represents the proportion of true active paths inferred by GA at a
given generation index. For Networks 1–4, the proportions of true
active paths successfully recovered at the end of 1000 generations
are 84 , 90 , 94 , and 79 %, respectively
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Fig. 3 Fitness scores of the structures corresponding to 1, 5, 10, 15, and 20 gene sets (Subplots 1–5) as well as all gene sets corresponding to
Network 1 (Subplot 6) over 1000 generations. The best network available at each generation index was used in calculating the fitness scores

4.2.3 Synergy among the subnetworks
It is important to note that the proposed algorithm infers
the true network structure by considering active paths
as the basic building blocks of the network. For recover-
ing the true underlying structure, the ordering of genes
within the gene sets in the given compendium is updated
over generations through formation of mating pool and

operations such as cross-over and mutation. At any given
generation, the fitness of a network structure relies on the
synergy (overlapping) among the underlying active paths
inferred at that stage. With the creation of a new genera-
tion, it is possible that certain active paths become more
synergistic to each other and result in an overall better
network with better fitness value, however, the likelihood

Fig. 4 Evolution of a subnetwork corresponding to a randomly selected gene set in the case of Leukocyte transendothelial migration pathway. Solid
edges with solid arrows represent true positives and dashed edges with solid arrows correspond to false positives
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Fig. 5 Evolution of a subnetwork corresponding to five gene sets in the case of Leukocyte transendothelial migration pathway. Solid edges with solid
arrows represent true positives and dashed edges with solid arrows correspond to false positives

scores of some of the underlying active paths and subnet-
works formed by these active paths are either increased
or decreased. In other words, the likelihood score of a
randomly selected subset of active paths, which corre-
sponds to a subnetwork, does not necessarily demonstrate
an increasing trend with increasing number of genera-
tions as in the case of networks in Fig. 1. As the algorithm
approaches towards convergence, the synergy among the
active paths increases and in the case of global con-
vergence, the synergy among the active paths is highest
in the inferred network, i.e., the fitness of the active
paths and hence the subnetworks formed by the active
paths is the highest among all generations. In the con-
text of genetic selection for animals resistant to certain
diseases, if we treat each of the true active paths as a
disease resistant trait and if the selection is performed
for animals with these traits, it is not necessary that
the selection will lead to perfect population in the next
generation.

We illustrate the above characteristic of GA in Fig. 3.
From each of the four datasets, we randomly selected a
gene set and tracked the fitness score of the active path
formed by the genes in the gene set in the best network
available at Generation Index 1, . . . , 1000. For Networks
1 − 4, we denote the underlying true active paths by

Subnetworks i1, where i = 1, 2, 3, 4. We further included
four randomly selected gene sets from each of the datasets
in our experiments and tracked the fitness scores of the
subnetworks formed by combining five active paths in the
best networks discovered at Generation Index 1, . . . , 1000.
In this case, the underlying true subnetworks are denoted
by Subnetwork i2, where i = 1, 2, 3, 4. We repeated
the above procedure to track the fitness of subnetworks
formed by 10, 15, and 20 active paths, which we denote
by Subnetwork ij, where j = 3, 4, 5, and i = 1, 2, 3, 4.
Figure 3, represent the likelihood scores of the above sub-
networks of Network 1 over 1000 generations. It is evident
from the plots that the discovery of Subnetworks ij, for
i = 1, . . . , 4, j = 1, . . . , 5, does not necessarily follow
the smooth increasing trend in the fitness score (Subplots
1–5) as in the case of Networks 1 (Subplot 6). Different
subnetwork structures are explored at each generation to
discover the network with an overall better synergy among
the active paths.

In Figs. 4, 5, and 6, we present the evolution of subnet-
work structures in Network 3 (Leukocyte transendothelial
migration pathway) formed by considering 1, 5, and 10
gene sets, respectively, at different generation indices.
Figure 7 represents the true network structure and the
structure predicted by GA.

Fig. 6 Evolution of a subnetwork corresponding to ten gene sets in the case of Leukocyte transendothelial migration pathway. Solid edges with solid
arrows represent true positives and dashed edges with solid arrows correspond to false positives
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Fig. 7 The signaling network structure predicted by GA (upper) and the true underlying structure (lower) in the case of Leukocyte transendothelial
migration pathway. Solid edges with solid arrows represent true positives and dashed edges with solid arrows correspond to false positives

4.2.4 Comparison of GA with simulated annealing approach
We compared the performance of GA with the simu-
lated annealing (SA) approach proposed in [25] due to
the similarities in the underlying assumptions in the two
approaches. The performances were compared in terms of
the Precision, which is defined as the proportion of true
positives among all predicted edges, and F-score, which
is defined as 2pr/(p + r), where p and r represent preci-
sion and recall, respectively. The best networks inferred
at the end of 1000 generations/samplings were used in
the comparison. In the case of SA, the cooling schedule

constant was fixed at 10 [25]. Results from these compar-
isons are presented in Fig. 8. For each of the four networks,
we observed a higher F-score and Precision in the case
of GA. Note that GA requires more computational time
than SA at each iteration since it performs multiple oper-
ations to create a new population. On the other hand, SA
is based on drawing a random sample and accepting or
rejecting it with certain probability which is much faster to
perform. However, the results reported here, for an inde-
pendent run of GA, were obtained in less than 30 min
using a standard desktop machine.
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Fig. 8 Performance comparison of GA and SA in terms of Precision (left) and F-score (right)

5 Conclusions
In this paper, we proposed a new genetic algorithm
(GA) based approach to reconstruct signaling network
structures from gene set compendiums related to the
networks. We represented a signaling network struc-
ture as a union of overlapping active paths and utilized
GA to infer the underlying structure from unordered
gene sets corresponding to the paths. The novelty of the
proposed approach lies in the inference of the under-
lying structure through evolution of synergistic subnet-
works. In the proposed approach, gene sets were treated
as random samples from a first order Markov chain
model which allowed us to quantify the synergy among
the subnetworks in the evolutionary process. Perfor-
mance of GA in terms of convergence and recovering
the true active paths as well as the network structures
was evaluated using four gene set compendiums derived
from the KEGG database. Our evaluations demonstrate
that GA can predict the underlying network structures
with high precision and F-score values. In future stud-
ies, the proposed method can be integrated with the
approaches for discovering pathways from big molecu-
lar profiling datasets to derive novel signaling network
topologies and constructing context-specific signaling
networks.
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