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Abstract

Background: Discovery and validation of protein biomarkers with high specificity is the main challenge of current
proteomics studies. Different mass spectrometry models are used as shotgun tools for the discovery of biomarkers.
Validation of a set of selected biomarkers from a list of candidates is an important stage in the biomarker identification
pipeline. Validation is typically done by triple quadrupole (QQQ) mass spectrometry (MS) running in selected reaction
monitoring (SRM) mode. Although the individual modules of this pipeline have been studied, there is little work on
integrating the components from a systematic point of view.

Results: This paper analyzes the SRM experiment pipeline in a systematic fashion, by modeling the main stages of
the biomarker validation process. The proposed models for SRM and protein mixture are then used to study the effect
of different parameters on the final performance of biomarker validation. Sample complexity, purification, peptide
ionization, and peptide specificity are among the parameters of the SRM experiment that are studied. We focus on the
sensitivity of the SRM pipeline to the working parameters, in order to identify the bottlenecks where time and energy
should be spent in designing the experiment.

Conclusions: The model presented in this paper can be utilized to observe the effect of different instrument
and experimental settings on biomarker validation by SRM. On the other hand, the model would be beneficial for
optimization of the work flow as well as identification of the bottlenecks of the pipeline. Also, it creates the required
infrastructure for predicting the performance of the SRM pipeline for a specific setting of the parameters.

Keywords: Proteomics; Biomarker validation; Mass spectrometry (MS); Selected reaction monitoring (SRM);
Triple quadrupole (QQQ) systems

Introduction
Proteomics andmass spectrometry
Proteomics deals with the study of gene and cellu-
lar function at the protein level. Microarrays, 2D gel
electrophoresis, and mass spectrometry (MS) are the
most widely used technologies for high-throughput pro-
teomics. Among these technologies, MS has increasingly
become the method of the choice for analysis of com-
plex protein samples [1]. Among its unique advantages are
unsurpassed molecular specificity and very high detec-
tion sensitivity [2]. MS analysis is composed of thee major
steps: 1) ionization: conversion of the analyte molecules
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or atoms into gas-phase ionic species, 2) mass analysis:
separation and mass analysis of ions on the basis of their
mass-to-charge (m/z) ratio, and 3) detection: detection
and measurement of the mass-separated ions.
Time of flight (TOF), linear quadrupole/3D-quadrupole

ion trap, Fourier transform ion cyclotron resonance
(FT-ICR), and orbitrap are some of the main mass ana-
lyzers used in MS instruments. Application of two or
more stages of mass analysis leads to tandem mass spec-
trometry (MS/MS) which enables us to examine selec-
tively the fragmentation of particular ions in a mixture
of ions [3]. Selected reaction monitoring (SRM) is a spe-
cific mode of tandem mass spectrometry, which is widely
used for quantitative measurement of analytes present
in complex mixture and for validation of low-abundance
biomarkers.
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Biomarker discovery and validation
The identification of biomarkers is a major goal of
biomedicine in this century [4], and proteomics using dif-
ferent mass spectrometry tools has played a key role in
this area. One well-known example of peptide biomarker
is prostate-specific antigen (PSA), which is a marker for
early diagnosis of prostate cancer in men. The PSA test
is an FDA-approved serum or plasma-based population
screening tool but has very low specificity, resulting in
$750 million annual cost for unnecessary medical follow-
up. The lack of biomarkers with high specificity shows
how challenging the problem of proteomic biomarker
identification is and the need for sensitive and accurate
instruments, powerful techniques, and careful analysis of
proteomics data.
One of the important challenges of biomarker discovery

is identification of low-abundance biomarkers. Abundant
biomarkers are easy to detect and quantify, but these have
already been identified for the most part. The current
emphasis is therefore on the discovery of low-abundance
biomarkers [4]. Figure 1 displays the biomarker identifica-
tion pipeline and the two main stages in this process, the
discovery and validation/qualification phases. The global
discovery phase is done on a small number of samples,
and then a larger number of samples is used for the val-
idation of potential biomarkers, before going to clinical
application [4].

Selected reaction monitoring
For over 30 years, SRM has been the method of choice
for doing mass spectrometry on small molecules in order
to study drug metabolism. However, its application to
protein identification and quantification was limited by
the low mass range of the instruments used for metabo-
lite identification. The introduction of the quadrupole
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Figure 1 Twomain stages of biomarker development pipeline.
The discovery phase requires MS experiments with high resolution
and short duty cycles and typically involves small number of samples.
Selected biomarkers from the discovery step are validated in the next
stage before moving on to further analysis in clinical studies [4].

instrument with extended mass range removed this
restriction in the application of SRM for studying pro-
teins and peptides [4-6]. Although SRM can be done
on some of the other tandem MS instruments (e.g., EB-
and BE-magnetic sector tandem MS), it is preferably
implemented on triple-quadrupole, due to low cost, lin-
ear mass scale, operational simplicity, and straightforward
scan laws. The first and third quadrupoles in the triple
quadrupole (QQQ) systems act as mass filters to specifi-
cally select a predefined m/z values, controlled by direct
current (dc) and radio frequency (rf ) potentials. The sec-
ond quadrupole in SRM operates as rf-only quadrupole
passing all ions. In fact, this quadrupole acts as the
collision-induced dissociation (CID) unit. This is done in
two steps: collision activation and collisionally activated
dissociation and is performed in the high- and low-energy
regimes. The later is the mode that is preferably imple-
mented in quadrupole. One of the main disadvantages of
CID over other ion activation and dissociation methods
is that ion-dissociation efficiency gradually falls off as the
precursor ion’s weight increases.
Figure 2 displays the idealized schematics of SRM anal-

ysis on QQQ MS. The co-eluting analytes that enter the
first quadrupole are filtered based on predefinedm/z val-
ues and enter the second quadrupole for collision-induced
dissociation. The resulting fragment ions are then filtered
by the third quadrupole passing the preset m/z values for
the desired fragment ions. The two stages of mass filter-
ing in SRM and its targeted nature lead to an increased
sensitivity by one or two orders of magnitude compared
with usual full scan methods. It is worthy mentioning that
the term ‘multiple reaction monitoring’ (MRM) has been
used to describe parallel acquisition of SRM for measure-
ment of several target ions. However, to avoid ambiguity
between the number of transitions monitored and num-
ber of stages used in the mass spectrometry analysis
(MSn), its use is deprecated by IUPAC [7].
A prototypical SRM experiment consists of three major

steps. First, a list of candidate proteins is determined. The
list of proteins of interest is determined based on previ-
ous knowledge from discovery studies and the scientific
literature. The available information about the potentially
relevant proteins (e.g., Human Protein Atlas) can also be
employed in this step. In the next stage, for each candi-
date protein, a set of proteotypic peptides (PTPs) should
be identified and targeted to determine the presence of
the protein and to quantify it. PTPs of a specific protein
should be able to uniquely identify that protein or one of
its isoforms as well as have a good ionization efficiency.
Moreover, their mass-to-charge ratio should be in the
mass range of the MS instrument. Besides these general
characteristics, in a quantitative experimental workflow,
PTPs should be fully recovered in the sample prepara-
tion and also present good chromatographic behavior to
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Figure 2 Idealized schematics of QQQMS used in SRM analysis. The first quadruple (Q1) filters out most co-eluting ions from the
chromatographic system. However, interfering ions may pass Q1 and enter the second quadruple (Q2). Ions in Q2 are fragmented and form the
input of the third quadruple (Q3). Ideally, the specificm/z selection in Q3 passes only fragments of the desired ion and eliminates interfering ions.

reduce the chemical background [8]. Furthermore, post-
translational and chemically induced modifications of the
peptides should be taken into account. These types of
peptide modifications are described in more detail in the
next section, where they form a part of the model for the
SRM process. Along with experimental methods, com-
putational tools are also used to select MS-observable
peptides for proteins. In the third step, for each selected
peptide, the fragment ions that can unambiguously repre-
sent the targeted peptide from others should be identified.
Based upon the experiments on the QQQ instrument or
data from previously done shotgun experiments, two to
four fragment ions are selected for each PTP. For example,
being integrated with PeptideAtlas [9], TIQAM [10] can
be used in this step [11].
Determination of the pairs of m/z values for the first

and third quadrupoles is referred to as the selection of
a transition [12]. The selection of transitions are of high
importance for reaching high quantification accuracy and
different factors such as ionization and fragmentation
conditions should be taken into account. Fragmentation
conditions and specially the distribution of fragment ion
intensities depends on the type of instrument and the
operating parameters. In the QQQ system, singly charged
y-type ions are the predominant type of fragments gen-
erated by CID in a linear collision cell, as b-type ions
and doubly charged fragments are significantly less sta-
ble than their y-type N-terminal counterparts [12,13].
On the other hand, tryptic peptide ions are predomi-
nantly doubly or triply charged with one charge at each
terminus. Therefore, the single-charge fragments will gen-
erally have a larger m/z value than the precursor value.
On the other hand, single-charged chemical background
will produce fragments with smaller m/z than the pre-
cursor. Therefore, the selection of transitions for which
fragments have larger m/z than the precursor is essen-
tial for transition selectivity and high signal-to-noise
ratios [12].

In spite of the two narrow filtering stages in SRM,
the selected transitions may not be specific for the pep-
tide of interest in a complex sample. This lack of speci-
ficity can result in false quantification values for the
targeted peptide. Several methods are used to validate
selected transitions before using them in SRM. Spik-
ing heavy isotope-labeled peptides to the sample, which
match the sequence of the target peptide, can help in
distinguishing the effect of unspecific signals. However,
the cost of using heavy labeled peptides is high for
quantification of large number of proteins, and usually
other methods (e.g., SRM-triggeredMS/MS scanning) are
used, but those are unable to validate the transitions for
low-abundance proteins in the detection limit of SRM
[12]. Figure 3 summarizes the main steps in an SRM
experiment.

Methods
In spite of the widespread application of SRM in the pro-
tein biomarker validation process, there is little work on
the integration of the different modules in SRMworkflow,

A set of proteins of interest

Selection of transitions

Selection of Proteotypic 
peptides

Validation/optimization 
of transitions

Quantitative Analysis by SRM

Figure 3Workflow of an SRM experiment. First, a set of proteins of
interest are determined for a specific study. Then, for each protein,
some proteotypic peptides are found. In the next step, for each PTP,
those fragments that are able to discriminate the peptide from others
are found. The transitions (pairs ofm/z values for precursor/fragment
ions) are then validated to decrease the effect of unspecific signals.
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and their systematic study to assess the impact of different
parameters on the overall biomarker validation pipeline.
Amodel-based approach toward the SRM experiment will
help us to have a better understanding of the characteris-
tics of the different modules of the SRM-based biomarker
validation process. Here, the SRM pipeline is modeled as
a noisy channel affecting the underlying protein abun-
dance signal; a model for the noise channel is proposed
and used to analyze the effect of different parameters
and experimental settings on the final performance of the
SRM-based biomarker validation pipeline and the abil-
ity of SRM to detect true biomarkers among a set of
candidate ones. Although the aim of the SRM model pro-
posed here is not to determine the exact value of each
parameter, it will be useful in providing a systematic view
towards studying the individual components of the SRM
experiment.

Protein mixture model
The first major component of the model is the pro-
tein mixture model. This part models the abundance
of the proteins in the actual SRM experiment. Marker
and non-marker proteins, as well as low-abundance and
high-abundance proteins, are modeled in this part. The
list of candidate biomarkers in the biomarker valida-
tion stage enters the SRM pipeline as described in the
previous section. As mentioned previously, there are
different sources of error in the SRM workflow that
result in false quantification values for the protein abun-
dance. The situation is exacerbated when dealing with
low-abundance protein biomarkers. Background high-
abundance proteins, inefficiency of peptide ionization,
chemically induced modification, and transition noise
are the most widely quoted sources of error in SRM
experiments [4,8,12].
In a typical experiment, the total set of samples are

divided into two sample classes (e.g., control vs. treat-
ment). There are a total number of Npr

a proteins in the
mixture, among which there are Npr

c candidate proteins
going through the validation stage

(
Npr
a > Npr

c
)
. Based on

the observations reported in [14], the protein concentra-
tion in the pooled sample can be modeled by a Gamma
distribution [15].

ηi ∼ Gamma(t, θ), i ∈ {
1, 2, . . . ,Npr

a
}

(1)

where t and θ are shape and scale parameters, and as
an example, t = 2 and θ = 1, 000 present a realistic
model with dynamic range of approximately 4 orders of
magnitude.
As mentioned in the ‘Introduction’ section, many of the

high-abundance protein bio-markers are already found
by shotgun experiments and the focus of the SRM

experiment is on validation of low-abundance candi-
date biomarkers. In order to model the concept of low-
abundance and high-abundance proteins, we use two
different Gamma distributed concentration models. For
all the Npr

a proteins, and i ∈ {
1, 2, . . . ,Npr

a
}
,

ηi ∼
{
Gamma(tc, θc), i ∈{

1, 2, . . . ,Npr
c

}
Gamma(ta, θa), i ∈{

(Npr
c +1), (Npr

c +2), . . . ,Npr
a

}
(2)

where tc, θc, ta, and θa are the shape and scale parameters
for the candidate list and background proteins, respec-
tively. This reflects the nature of a real SRM experiment
where the goal is to validate a set of low-abundance
biomarkers among a complex set of high-abundance ones.
We denote the number of true biomarkers in the set ofNpr

c
candidate list and Npr

a all proteins in the list by Nm
c and

Nm
a , respectively. The values of tc, θc, ta, and θa are given

in Table 1.
Biomarkers are proteins in the sample for which the

expression level in the treatment and control sample differ
significantly. The difference between markers and non-
markers in the expression level can be modeled by fold
change [15]:

fi =
⎧⎨
⎩
ai, if protein i is over-expressed
1
ai , if protein i is under-expressed
1, otherwise

(3)

where the fold change parameter, ai, is uniformly dis-
tributed in [1, h], h > 1. This results in a distribu-
tion that is approximately log-normal for the fold change
itself [16,17]. The value of h used in the simulations is
specified in Table 1.
The sample variation of proteins in the mixture is mod-

eled by a Gaussian distribution as proposed in [18], where
a block model is used for the covariance matrix. The

Table 1 Parameter settings in simulation of biomarker
validationmodel

Parameter Defaults value

Number of classes 2

Sample size n = 80

Block size b = 5

Block correlation ρ = 0.8

Fold change h = 2, ai ∼ Unif (1, 2)

Modification noise αpm = 0.03,βpm = 3.6

Peptide efficiency factor αpe = 0.5, ei ∼ U(0.5, 1)

Gamma parameters tc = 2, θc = 100, ta = 5, θa = 10e6

Purification βγ = 10e − 6

Protein mixture Npr
a = 250,Npr

c = 40

Ranking power d = 2, r = 0.01
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following multivariate Gaussian is used to model the con-
centration of the protein i ∈ {

1, 2, . . . ,Npr
a

}
in class j ∈

{0, 1} and the interaction among all the proteins in the
sample:

Cpr
ij ∼

⎧⎨
⎩
N

([
η1, η2, . . . , ηNpr

a

]
,�

)
, j ∈ class 0

N
([

f1η1, f2η2, . . . , fNpr
a

ηNpr
a

]
,�

)
, j ∈ class 1

(4)

The covariancematrix� has a block structure, such that

� =
[
σ 2
ij

]
Npr
a ×Npr

a
σ 2
ij = σiiσjjλij

σii = φi × ηi

(5)

where the constant φ is the coefficient of variation and the
correlation matrix � is defined as follows:

� =[λij]=

⎡
⎢⎢⎢⎣
Rρ 0 · · · 0
0 Rρ · · · 0
...

...
. . .

...
0 0 · · · Rρ

⎤
⎥⎥⎥⎦ , (6)

where Rρ is a b × b matrix with 1’s on the diagonal and
ρ’s elsewhere. The block-based structure of the covariance
matrix represents the real interaction among the proteins.
The proteins in each block (e.g., proteins within a path-
way) are correlated, while there is no interaction among
the proteins of different blocks [18]. The correlation ρ and
block size b control the level of interaction among the pro-
teins and their corresponding value used in simulations
are specified in Table 1.

Sample complexity and purification
Many of the biomarkers with high abundance have
already been found, and the main interest in SRM-based
biomarker validation process is in the quantification of
low-abundance proteins. In biological samples, there is
a wide dynamic range in protein abundance (> 1010),
which is much larger than the dynamic range of many
MS instruments. For example, while interleukin has very
low abundance, albumin makes up more than 50% (about
60%) of human plasma protein (30 to 50 g/L for albumin
compared to below 100 pg/L for interleukin) [19].
Presence of high-abundance proteins interfering with

the low-abundance ones biases the detection and quan-
tification of biomarkers in complex samples. For exam-
ple, due to the suppression of their ionization by
high-abundance proteins, low-abundance proteins escape
detection. This makes purification and removal of high
abundant proteins an important stage of biomarker vali-
dation workflow. Purification removes background noise
in the data, i.e., the nonspecific contributions of proteins
not being evaluated as candidate markers [2,20]. There are
different commercial and noncommercial options for the

enrichment of samples for low-abundance proteins, and
the amount of energy that is put in this step greatly affects
the overall performance of biomarker identification in the
SRM process. For example, albumin precipitation, size
exclusion, and immuno-depletion are strategies that have
been developed to eliminate some of the most abun-
dant proteins from blood serum. As an specific example,
Seppro® IgY12 (Sigma-Aldrich, St. Louis, Missouri 63103,
USA) removes 12 high-abundance proteins from human
biological fluids such as serum, plasma, and cerebral
spinal fluid (CSF) [21].
In this paper, we model purification by removing a set of

high-abundance proteins from the protein mixture model.
The parameter pp controls the purification in the model
by indicating the percentage of high-abundance proteins
that are successfully removed. Denoting the set of proteins
selected for purification by Gp, we have the following:

Ĉpr
ij =

{
γiC

pr
ij , if protein i ∈ Gp

Cpr
ij , otherwise

(7)

where γi ∼ U(0,βγ ). The value used for βγ (0< βγ << 1)
in the simulations is given in Table 1.

Peptide mixture model
As mentioned in the ‘Introduction’ section, for each pro-
tein in the list of candidate biomarkers, a set of PTPs is
identified and targeted to determine the presence of the
protein and to quantify it. PTPs should uniquely iden-
tify the proteins, have good ionization efficiency, be fully
recovered during sample preparation, and also present
good chromatographic behavior to reduce the chemical
background [8].
The molar concentration of Cpp

i of peptide i in each
sample, in class j, is given by

Cpp
ij =

∑
k∈i

Ĉpr
kj , i ∈ {

1, 2, . . . ,Npp
c

}
, j ∈ {0, 1} (8)

where i is the set of all proteins sharing peptide species
i and Npp

c is the number of peptides. In an usual SRM
experiment, for each protein, 1 to 2 PTPs are used. Denot-
ing the number of peptides per protein by Npp, then Npp

c
is equal toNpp ×Npr

a . In the results reported in this paper,
we set Npp = 2. In the ideal case, the cardinality of the
set i is 1, that is C

pp
i , the concentration of peptide i, is

related to only one protein. Equation (8) can be rewritten
as following:

Cpp
ij =

Npr
a∑

k=1
ξikĈ

pr
kj , i ∈ {

1, 2, . . . ,Npp
c

}
, j ∈ {0, 1} (9)
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where for i ∈ {
1, 2, . . . ,Npp

c
}
and k ∈ {

1, 2, . . . ,Npr
a

}
, ξik is

as follows:

ξik =
{
1, protein k has peptide j
0, otherwise . (10)

In an ideal SRM experiment, each peptide is specific to
one protein and then the peptide-protein relation matrix
� = [ξik]Npp

c ×Npr
a

has only one element equal to 1 in each
row. In real SRM experiments, the complexity of the sam-
ple increases the possibility of having target peptides as a
part of other proteins. To model this fact, we define si, the
specificity of the ith PTP, as

si = 1 − P
(∣∣�1

i
∣∣ �= 1

)
(11)

where |S| shows the cardinality (the number of elements)
of the set S and�1

i is the set of nonzero elements of the ith
row of PTP-protein relation matrix �. A peptide among
the list of PTPs is called specific if its share in the sample is
created by only its parent target protein. The specificity si
of a specific PTP is then equal to 1. However, in real SRM
experiments, this idealized situation does not occur and
for some of the proteotypic peptides, the specificity will
be less than 1.
There are many factors that should be considered in

choosing the PTPs for each protein. For example, for each
PTP, MS properties, uniqueness, and chemical behavior
should be taken into account [12]. Increasing the num-
ber of proteins exacerbates the problem of finding PTPs
that are specific to the target proteins and comply with
other PTP selection criteria. On the other hand, we are
not interested in the exact specificity value of each PTP
but rather want to observe the general effect of PTP
specificity on the overall performance of biomarker val-
idation process by SRM experiment. We thus define s
as the average specificity over all peptides and study
its effect on the identification of low-abundance protein
biomarkers.

Peptide ionization efficiency
The abundance of a peptide is represented by the ion
abundance in MS data. The abundance of a peptide i in
class j is modeled by

μij = κ ei C
pp
ij , (12)

where ei is the peptide efficiency factor, similar to [22],
and κ represents the instrument response factor, being
the ratio between the ion current signal and the original
analyte concentration.
The efficiency of different peptides in passing through

the liquid chromatography column is mainly controlled
by their hydrophobicity [2], followed by ionization effi-
ciency, which is affected by sample complexity, peptide

concentration, and characteristics such as polarity of side
chains, molecular bulkiness, and so on [15,23]. Efficiency
is also affected by the destabilizing effect of some amino
acids at the N-terminal end of peptides. Some methods
have been proposed for the prediction of ei for differ-
ent peptides. However, these methods fail to address the
complexity issue and dependence of the efficiency on not
only the underlying peptide but also on the other peptides
present [15].
This makes the prediction of ei for all the peptides prob-

lematic. Here, instead of the exact value of ei, we are more
interested in its effect on the overall performance of the
SRM experiment. In the ideal case, ei is 1 for all peptides.
A model based on the uniform distribution U(αpe, 1)
models the variation of the peptide efficiency. The param-
eter αpe controls the dispersion of the ionization efficiency
and in the ‘Results and discussion’ section, we analyze
the model over a wide range to observe the effect of this
parameter on the performance of the biomarker validation
process.

Transition
In a complex sample, a particular precursor/fragment
combination may not be specific to a targeted peptide,
and other peptides with precursor/fragment ion pairs of
similar masses might create unspecific signals. In the case
that SRM is used to target low-abundant peptides, such
unspecific signals, might still be well above the detec-
tion limit and might be easily mistaken as being derived
from the targeted peptide and thus lead to misquan-
tifications [12]. Validation methods are used to ensure
that the origin of the quantified signal is the targeted
peptide. SRM-triggered MS/MS scanning is the method
of choice in different studies. However, this method is
challenging when used for the most low-abundance pep-
tides [24]. Spiking heavy-isotope-labeled peptides into the
sample is an alternative for the use of SRM-triggered
MS/MS. But the costs of such method can be very
high for projects targeting a large number of proteins.
In addition, the application of stable isotopes is limited
by the resolution of the quadrupole as isotope label-
ing should introduce a sufficiently large mass difference
between precursor and fragment ions [12]. Using smaller
mass differences in isotope-labeling requires a higher
resolution for the quadrupole, which in turn decreases
the sensitivity. Low resolution has been reported in
many papers as a source of error for SRM experiments
using triple quadrupole mass spectrometers in complex
samples [4].
The effect of transitions from background high-

abundance peptides is considered as a significant source
of error in quantification of the low-abundant peptides.
Unspecific signals are created from other peptides with
ion pairs of similar masses with the targeted peptide.
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By increasing the measured abundance of the targeted
peptide, the unspecific signals create misquantification.
Therefore, the noise is always positive. The exponential
distribution is a simple and adequate choice to model this
kind of unipolar additive noise

ζij = μij + εtij , (13)

where

εtij ∼ exp(μtranμij) . (14)

Peptide modification
Standard sources of error, including variation in exper-
imental conditions, instrument variance, and thermal
noise, can affect the accuracy of quantitative MS experi-
ments. Besides these general factors, peptide modification
is reported as one of the important causes of misquantifi-
cation in SRM experiments [12].
Some peptides contain amino acids with high propen-

sity to chemical modifications and can bias the quan-
tification. Cysteine alkylation, methionine oxidation,
asparagine deamidation, and N-terminal cyclization of
glutamic are some of the chemically induced modifica-
tion of peptides [8]. Oxidation, for example, is reported
to inversely affect the performance of MS experiments
for quantification of peptides [25]. Since a part of the
targeted peptide is converted into the modified form
during the process, chemically induced modification is
reported to be a potential source of error in quantitative
MS experiments [8,12].
The Gaussian distribution is the standard model for

the cumulative effect of independent additive distur-
bances (distinct noise sources). In [26], a Gaussian noise
model with quadratic dependence of the variance on the
expected abundance of peptide is used to model the over-
all effect of different noise sources affecting the actual
abundance of a peptide in LC-MS. Likewise, we propose
to use the Gaussian noise to model the effect of peptide
modification as well as the other sources of error with sig-
nificant impact on modifying the actual abundance of the
peptide in SRM (LC-MS-MS). We have

νij = ζij + εmij , (15)

where

εmij ∼ N
(
0,αpmν2ij + βpmνij

)
. (16)

The two parameters αpm and βpm control the severity
of the noise. In [26], a replication analysis is proposed to
estimate the values of these two parameters. The values of
αpm and βpm used in simulations are specified in Table 1.
Having fixed βpm, we will investigate the effect of αpm on
the performance of the biomarker validation in the next
section.

Results and discussion
The previous modeling strategy is used to analyze the per-
formance of biomarker validation workflow using SRM
experiments, using different model parameter settings.
Figure 4 displays the simulation process. The list of candi-
date biomarkers generated based on the protein mixture
model is the input of the SRM pipeline. In different stages
of this process, the protein mixture data is affected by
different noise sources depending on the experiment set-
ting. Then, the output of the SRM process enters the
validation block. Ranking power [27] and percentage of
true biomarkers are used as the metrics to assess the
performance of the biomarker identification process. The
model parameters are changed during the simulation
and for each parameter setting the average performance
is found. The ranking power is described in the next
section.

Experimental setup
We perform a total of 5,000 Monte Carlo runs in this
experimental study, using the parameter settings given in
Table 1, and compute average performance metrics over
all the runs.
The performance metrics used to evaluate SRM perfor-

mance are the percentage of peptides correctly identified
and the ranking power [27]. The former is computed by
applying the t-test as a feature selection method to find
the best discriminant set of features, and computing the
ratio of true biomarkers detected in that list. The latter
defines a measure of goodness based on how close the
estimate-based feature sets are to optimality. Let Abest be
the best feature set relative to the feature-label distribu-
tion, ε0 be the true error of the classifier forAbest designed
on the sample, and A(1),A(2), . . . ,A(m) be a list of fea-
ture sets ordered by the classification errors ε1, ε2, . . . , εm,

Param n

Param 2

Param 1

SRM Process 
Model

Protein Mixture 
Model

Biomarker 
Identification
Performance

.  
.  

.

Figure 4 The entire simulation process. The protein abundance
mixture data enters the SRM process and is affected by different noise
sources in different levels of the process. The noisy data enters the
biomarker validation block, where the ranking power and true
positive rate are used to measure the performance of the overall
biomarker validation process.
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sorted from lowest to highest. The ranking power of the
list is defined by

�
n,r
D,d = P(ε1 − ε0 < r) , (17)

for r > 0. The ranking power gives the probability that
at least one feature set in the list has error within r of the
best feature set. The closer �

n,r
D,d is to 1, the better the

performance is (as long as m is small; here, m = 10 is
used).
The pseudocode for computing the power rank is

described in Algorithm 1.

Algorithm 1 Power rank computation algorithm
Set up data modelM and determine Abest.
for i = 1 to N do

1) Generate n-point sample T forM.
2) Compute the true error, ε0, forAbest using the
samples fromM.
3) For every feature set of size d, design a classifier
from T .
4) Compute the true and estimated errors for the
classifiers from step (3).
5) Rank all the feature sets by their estimated errors
to get the topm estimated-error list.
6) Select the feature set in the list with the lowest true
error, ε1.
if ε1 − ε0 ≤ r then

count ⇐ count + 1
end if

end for
�

n,r
D,d ⇐ count/N

return �
n,r
D,d;

Effect of purification
Figure 5 displays the effect of purification on the per-
formance of the SRM biomarker validation process. We
can see that increasing the purification factor from 90%
to 99% increases the ranking power by 7%. Increas-
ing the purity from 90% to 99% translates into the
increase of TPR from 50% to 80%. Although our pur-
pose is not to focus on the exact value of each param-
eter in the model, the results show how purification is
an important step in the SRM experiment. This con-
firms the fact that purification strategies, such as albu-
min precipitation, size exclusion, and immuno-depletion,
directly control the accuracy of the SRM-based biomarker
validation.

Effect of peptide specificity
Figure 6 shows the effect of peptide specificity on the
performance of SRM biomarker validation process. The

a

b

Figure 5 Effect of purification on the the SRMmodel on the
performance of the biomarker validation pipeline. (a) �n,r

D,d at list
sizem = 10 vs. purification. (b) TPR vs. purification.

results show that a very small amount of decrease in
the specificity factor can bias the quantification of the
low-abundance proteins to a great extent. For example,
decreasing the specificity from 1 to 0.95 decreases the
TPR by about 75%. These results indicate the importance
of the selection of proper set of proteotypic peptides
emphasizing on the fact that PTPs of a specific protein
should be able to uniquely identify the protein (being
specific peptides).

Effect of peptide efficiency
Although the exact distribution of the peptide efficiency
is not known, observing its effect on the overall per-
formance of the biomarker validation process provides
us with a good insight into the effect of this parame-
ter on the SRM experiment. This effect can be seen in
Figure 7. The variation of peptide efficiency factor, αpe
(the lower bound of ei), in the interval [0, 1] changes
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a

b

Figure 6 Effect of peptide specificity on the SRMmodel on the
performance of the biomarker validation pipeline. (a) �n,r

D,d at list
sizem = 10 vs. peptide specificity. (b) TPR vs. peptide specificity.

the TPR by 6%, increasing it from 45% at αpe = 0
to 51% at αpe = 1. Based on the ranking power plot,
we observe a similar trend: �

n,r
D,d increases from 0.88 to

0.97 by increasing the peptide efficiency factor from 0
to 1. These results agree with our expectations as the
increase of the peptide efficiency reduces the transmission
loss.

Effect of transition noise
Figure 8 shows the effect of transition noise on the per-
formance of SRM biomarker validation process. Both the
ranking power and TPR curves show that an increase
of the transition noise decreases the overall perfor-
mance of the biomarker validation. For example, the
ranking power is 0.96 when the effect of this noise
is set to zero. However, by increasing the noise fac-
tor to 2, �

n,r
D,d reduces to 0.91. We observe a similar

behavior, looking at TPR curve, where the rate decreases

a

b

Figure 7 Effect of peptide efficiency on the SRMmodel on the
performance of the biomarker validation pipeline. (a) �n,r

D,d at list
sizem = 10 vs. peptide efficiency. (b) TPR vs. peptide efficiency.

by 7% as the transition noise increases. This empha-
sizes the importance of applying the proper methods for
validation of the transitions to increase the confidence
on the origin of the quantified signal. Based on the
experiment constraints, methods such as SRM-triggered
MS/MS scanning and spiking of heavy-isotope-labeled
peptides should be used to prevent the contribution of
unspecific signals in the quantification of the proteins of
interest.

Effect of modification
Figure 9 displays the effect of modification noise on the
performance of the SRM biomarker validation process.
Increasing the modification noise factor αpm from 0 to
0.5 reduces the TPR value by 17%. On the other hand,
the ranking power plot behaves the same by decreasing
αpm from 0.96 to 0.8. Decreasing the modification
noise from 0.2 to 0 dramatically increases the ranking
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a

b

Figure 8 Effect of transition noise on the the SRMmodel on the
performance of the biomarker validation pipeline. (a) �n,r

D,d at list
sizem = 10 vs. transition noise. (b) TPR vs. transition noise.

power value, emphasizing the fact that reduction of this
source of error in quantification of the low-abundance
biomarkers is crucial for a successful SRM experiment.
This also shows that one should avoid using peptides with
high tendency for chemical modifications in the list of
PTPs.

Effect of sample size
Compared to the discovery stage of biomarker devel-
opment, where thousands of analytes are measured, a
validation experiment deals with the quantification of
a limited list of analytes, meaning that the sample size
requirement is less demanding. However, the time and
cost of the experiment as well as the challenges of find-
ing patients with correct demographics for the disease
of interest, with proper medical history and lifestyle, still
restricts the number of samples in a biomarker validation

a

b

Figure 9 Effect of modification noise on the the SRMmodel on
the performance of the biomarker validation pipeline. (a) �n,r

D,d at
list sizem = 10 vs. modification noise. (b) TPR vs. modification noise.

experiment to the ‘small-sample’ region [28]. Observing
the effect of the number of samples on the performance
of the biomarker validation process will be beneficial to
the selection of the right amount of replicates consider-
ing the limitations on the time and cost of the experiment.
Figure 10 shows the effect of sample size on the perfor-
mance of SRM biomarker validation process. Both TPR
and ranking power plots show that these two performance
indices are greatly affected by the increase of the sample
size. Increase of the sample size from 40 to 100 results in
10% increase in the TPR value. The similar change in the
sample size translates into the increase of ranking power
value by 0.07.

Summary
General facts can be gleaned from the results reported
above in the paper on the relative importance of each
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a

b

Figure 10 Effect of sample size on the the SRMmodel on the
performance of the biomarker validation pipeline. (a) �n,r

D,d at list
sizem = 10 vs. sample size. (b) TPR vs. sample size.

parameter to the sensitivity of biomarker validation per-
formance using the QQQ-based SRM system.

• Purification critically increases the efficiency of the
whole pipeline by reducing the background
high-abundance proteins.

• On the other hand, peptide ionization efficiency also
plays an important role in the success of biomarker
validation experiment.

• A high value of modification noise can greatly
compromise the performance of the system, as
measured by the decreases of the TPR and ranking
power value.

• Likewise, a decrease of peptide specificity reduces
the TPR and ranking power to a great extent.

The results emphasize the importance of the correct selec-
tion of peptides in an SRM experiment. If the selected

peptides are not unique to the targeted protein, it is hard
to have high-precision quantification of the abundance of
the targeted peptides, which will show itself in the unsuc-
cessful protein validation results. An additional factor is of
course sample size, which not surprisingly showed a clear
effect on the performance of the biomarker discovery
pipeline.

Conclusions
In this paper, the key components of the typical SRM-
based biomarker validation workflow were reviewed,
modeled, and analyzed. Based on the synthetic data, the
process was simulated and the effect of different param-
eter setting on the performance was studied. Ranking
power and the TPR were used as two different met-
rics to assess the performance of the biomarker vali-
dation process as a function of the parameters of the
model. The goal of this study was not the determina-
tion of the exact value of each parameter for reaching
a given performance value but rather to investigate the
effect of the different parameters, namely, sample purifi-
cation, peptide ionization efficiency, peptide specificity,
modification noise, and sample size, on the overall per-
formance of the SRM experiment utilized for biomarker
validation.
The model presented here can not only be utilized to

observe the effect of different instrument and experimen-
tal settings on biomarker validation by SRM but also could
be useful for experimental design, providing an insight
on the working range of the important parameters of
the SRM pipeline. It creates the required infrastructure
for studying the inverse problem, where one can use the
model to set the parameters of the entire experiment
to reach the highest performance considering technical,
experimental and financial constraints. Also, the model
has the advantage of being flexible to future possible
extension in order to includemore detailedmodules of the
SRM pipeline.
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