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Abstract

Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence’s mapping
technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns
distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique
that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this
paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos
game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic
sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of
the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it
provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis.
Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet
function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic
organization of specific DNA sequences.

Keywords: C. elegans; Complex Morlet wavelet scalogram; Continuous wavelet transform; Frequency chaos
game signal; Local signature

1 Introduction
The fundamental information for a living being resides
essentially in its nucleic material—the DNA. This
molecule contains all the instructions needed to produce
proteins and enzymes for all of the metabolic pathways.
Thus, revealing the structural and organizational features
in DNA sequences is a very interesting topic. However,
the search for relevant information along the genomic
sequences is not an easy task. In fact, although several
programs have been created which aim at detecting valu-
able information concerning the DNA, there is muchwork
remaining to be done. In order to better understand the
genomic sequence role and structure, several signal pro-
cessing approaches have been investigated. To be able to
apply such techniques, it is imperative to convert DNA
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characters into numerical sequences. This operation is the
so-called coding technique. Thereby, various approaches
for DNA character coding have been reported including
the binary coding [1,2], the inter-distance signals [3], cod-
ing with the entropy measure [4], the electron-ion inter-
action pseudo-potential (EIIP) mapping [5], the structural
bending trinucleotide coding (PNUC) [2], etc.
The choice of themost appropriate coding technique for

a desired analysis represents a basic problem. It turns that
coding techniques that are based on physical, chemical
and structural DNA characteristics are efficient in terms
of revealing specific structures as is the case with EIIP and
PNUC coding approaches.
Here, we propose a new mapping technique inspired

from the Chaos Game theory to which we associate the
name of ‘frequency chaos game signals’ (FCGS). The
FCGS approach relies on the frequency value of each
sub-pattern assignment, which gives us the opportunity
to produce several signals for the same input sequence,
depending on the size of the considered sub-patterns. The
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specificity of our coding consists on exploiting the statis-
tical properties of the genomic sequence itself, which may
serve in detecting interesting structures within the DNA
sequences.
The efficiency of our method in detecting different

biological events is demonstrated through application of
the continuous wavelet transform (CWT). The choice
of such analysis method (we mean CWT) is justified
by the need of a time-frequency approach that provides
local frequency information which is not guaranteed by
other transforms such as the Fourier transform. In fact,
the classical Fourier transform does not contain local
information. Thus, it appears that the short-time Fourier
transform (STFT) is better suited to predict sites with
biological relevance in the genomic signals. Nevertheless,
this method requires a good choice of the analysis win-
dow’s size that must balance the frequency and temporal
resolutions. The short Fourier transform induces interfer-
ences and loss of information [6]. With the advent of the
wavelet transform (WT), one can get more precise and
more adequate analysis especially concerning the location
of hotspots in signals with complex nature, which is the
case of genomic signals [5,7-10].
In this paper, we investigate the role of the CWT in

displaying the frequency-dependent structure of genomic
signals by using the complex Morlet wavelet scalogram.
The purpose of this analysis consists in revealing spec-
tral features that might be of biological significance in the
Caenorhabditis elegans (C. elegans) genome. This study is
particular since it exposes a new coding technique which
is efficient in terms of the DNA characterization.
This paper is divided into five sections: First, we

describe the steps required to generate the frequency
chaos game signals in section 2. In section 3, we deal with
the complex wavelet analysis in which we give an overview
on the continuous wavelet transform as well as a brief
description of the complex Morlet wavelet. In section 4,
we analyze the DNA sequences by theMorlet wavelet, and
then we expose and discuss the results in section 5. Finally,
in section 6, we conclude this paper.

2 Introduction to the frequency chaos game
signals

Starting from the pioneer work of Jeffrey in 1990, repre-
senting DNA sequences by the chaos game representation
(CGR) has drawn a resounding success. In fact, for more
than 2 decades, the chaos game representation has been
used as a platform for pattern recognition [11,12], a gen-
eralization of Markov transition tables [13], a tool for sta-
tistical characterization of genomic sequences [11,14,15],
as well as a basis for alignment comparisons [16] and
establishment of phylogenetic trees [17]. The CGR is an
iterative algorithm that provides unique scatter picture
of fractal nature. It consists on mapping a nucleotide

sequence in a unit-square, where each of its vertices is
assigned to a DNA character (nucleotides: A, C, G and
T). Let us consider a given DNA sequence composed of N
nucleotides S ={S1, S2, . . . ., SN }. Thus, an element occu-
pying the ith position in S is represented into the square
by a point xi. The point xi is repeatedly placed halfway
between the previous plotted point xi−1 and the segment
joining the vertex corresponding to the read letter Si [18].
The prolific iterative function of CGR is given by

⎧⎨
⎩
x0 = (0.5, 0.5)

xi = xi−1 + 1
2
(yi − xi−1), i = 1, . . . ,N

where yi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) if S[ i] = A
(0, 1) if S[ i] = C
(1, 0) if S[ i] = T
(1, 1) if S[ i] = G

(1)

Usually, the starting point x0 is placed at the center of
the square while the choice of the corners is arbitrary and
can be assigned in any other way. The figure given below
(Figure 1) shows the procedure to draw the sequence
‘TTAGC’.
The usefulness of the chaos game representation goes

beyond the convenience of genome representation and
visualization. In addition, it provides a unique image
which is specific to the considered genome [19,20] and
thus forms an outstanding genomic signature [21].
The CGR technique reveals several hidden patterns

that arise from distinct k-tuple compositions in DNA
sequences. The frequency of occurrence of these patterns
can be estimated by the use of the frequency chaos game
representation (FCGR) [22]. The latter approach consists
on dividing the CGR image into 4k small squares where
each sub-square is associated to a sub-pattern and has a
side of 1/2k . The number of points in each sub-square thus
created is then counted. This procedure allows extraction
of the frequency of k-length words occurrence by dividing
the number of dots onto the correspondent sub-squares
by the complete length of the DNA sequence. To visual-
ize the frequencies of occurrence of associated patterns, a
normalized colour scheme is used. The darker pixels in the
FCGR images represent the most frequently used words;
otherwise, the clearest ones represent the most avoided
words [23]. The Figure 2 is divided into two blocks where
the first block illustrates the arrangement of oligomers in
the FCGR’s sub-squares for k = {1, 2, 3}, and the second
one is related to the frequency chaos game representa-
tions calculated for the chromosome I of the organism
C. elegans.
Although representations based on the chaos game the-

ory (we mean CGR and FCGR) have been successfully
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Figure 1 Illustration of theCGR process to represent the input sequence ‘TTAGC’.

applied to a wide range of problems, their capacity in fol-
lowing the evolution of frequencies along DNA sequences
remains, so far, totally unexplored. This motivates us to
exploit the FCGRmethod in building signals in such a way
that we can follow the frequency evolution of oligomers

through a given sequence. We give a particular name
to these signals—the FCGSs. This new mapping tech-
nique is based on assigning the frequency of occurrence
of each oligomer to the same sub-pattern that exists in the
sequence. For this purpose, two steps are required:

Figure 2 Definition of the k-mer tables for k = {1, 2, 3} (a) and representation of the corresponding frequency matrices (b). These matrices
are extracted from chaos game representation of the C. elegans chromosome I.
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• The first step consists in the generation of the
kth-order FCGR for the entire sequence. The FCGR
matrix is expressed as follows:

FCGRk =[ fi,j]1≤i≤ 2k , 1≤j≤2k (2)

where fi,j is the frequency value of the word situated
at the intersection of the ith row and the jth column
in the k-mer matrix.

• The second step consists in reading the input
sequence by a group of successive k-nucleotides and
replacing them by the corresponding frequency
already calculated in the FCGRk matrix.

In this sense, an FCGSk can be generated by

FCGSk[n, i, j]=
∑L

n=1
FCGRk,i,j[n] .Umotifk,i,j [n] (3)

Here, k is the frequency chaos game representation’s
order and FCGRk,i,j refers to the FCGRk ’s element which
is placed at the intersection of the ith row and the jth
column. Regarding an illustrative example of the FCGS
technique, we consider the sequence S = {TTTTAGT
GAAGCTTCTAGAT}. To encode S by FCGS1, FCGS2
and FCGS3, we must calculate the FCGRs matrices for
orders 1, 2 and 3. Then, we extract all the oligomers
of length {1, 2 and 3}, and we attribute for each of the
monomers, dimers and trimers its occurrence frequency
from the convenient frequency matrix. In this case, we
enumerate 20 monomers, 19 dimers and 18 trimers. For
illustration, we only consider 18 oligomers which are:

• Monomers = {T, T, T, T, A, G, T, G, A, A, G, C, T, T,
C, T, A and G}

• Dimers = {TT, TT, TT, TA, AG, GT, TG, GA, AA,
AG, GC, CT, TT, TC, CT, TA, AG and GA}

• Trimers = {TTT, TTT, TTA, TAG, AGT, GTG,
TGA, GAA, AAG, AGC, GCT, CTT,
TTC, TCT, CTA, TAG, AGA and GAT}

The associated frequencies are:

• Monomer frequencies = {0.45,0.45,0.45,0.45,0.25,0.2,
0.45,0.2,0.25,0.25,0.2,0.1,
0.45,0.45,0.1,0.45,0.25,0.2}

• Dimer frequencies = {0.2632,0.2632,0.2632,0.1579,
0.2105,0.1053,0.1053,0.1579,
0.1053,0.2105,0.1053,0.1579,
0.2632,0.1053,0.1579,0.1579,
0.2105,0.1579}

• Trimer frequencies = {0.1667,0.1667,0.1111,0.1667,
0.1111,0.1111,0.1111,0.1111,
0.1111,0.1111,0.1111,0.1111,
0.1111,0.1111,0.1111,0.1667,
0.1111,0.1111}.

At the end, we obtain three different signals, which are
illustrated in Figure 3.
Note that increasing the FCGS order induces a more

smoothed signal which is useful in capturing the impor-
tant underlying patterns [24]. The smoothing is often used
in enhancing the long-term trends that can be hidden in
the original signal. This makes our coding technique suit-
able for fine studies. To demonstrate the effectiveness and
usefulness of our coding, we chose to apply the complex
Morlet wavelet analysis. By such application, we will note
the smoothing effect in determining the characteristic
patterns of certain areas of the DNA.

3 The wavelet transform analysis
The wavelet transform (WT) was introduced by Morlet
in 1983 to study seismic signals. Then, the proposed pro-
cessing was well formalized in 1984 with contributions of
Grossman [25]. Therefore, the wavelet theory has been the
subject of diverse theoretical developments and practical
applications. In this section, we focus on the application
of wavelet transform on the C. elegans genome aiming to
explore its composition.

3.1 The continuous wavelet transform
The CWT of an arbitrary signal is a linear operation that
consists in projecting the signal x(t) onto a wavelet basis.
Mathematically, the CWT is given by Equation 4:

Wa,b[x(t)]= 1√
a

∫ +∞

−∞
x(t)ψ∗

(
t − b
a

)
dt, a ∈ R

∗+, b ∈ R

(4)

where a (a > 0) and b (b ∈ R) are respectively the
scale and the time-shift parameters. Here, ψ

(
t−b
a

)
is a

scaled and shifted version of the so-called mother wavelet
function ψ(t). Mother wavelet ψ(t), which is a wave-like
oscillation, can be extended to its daughter wavelets in
terms of the shift parameter b and the scale parameter a:

ψa,b(t) = 1√
a
ψ

(
t − b
a

)
(5)

At fixed-scale and translation parameters (a and b), the
wavelet transform coefficient, denoted by W(a,b), repre-
sents the inner product of the daughter wavelet and the
signal; this operation measures the degree of their resem-
blance at the concerned point. If x(t) is equal to ψ(a,b)(t),
the wavelet coefficient is set to 1. Hence, the closer to 1
the coefficient is, the stronger the similarity will be.
Mother wavelets are band-pass filters that oscillate

in the time domain it expands or compresses depend-
ing on the scale value. When a is large, the mother
wavelet becomes stretched and serves for the high fre-
quencies’ detection. In this case, the resolution of the
time domain is low. On the contrary, when a is small, the
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Figure 3 FCGS1 (a), FCGS2 (b) and FCGS3 (c) corresponding to the sequence {TTTTAGTGAAGCTTCTAGAT}.

mother wavelet is compressed, i.e. the frequency domain’s
resolution becomes low in favor of the time domain’s
resolution. Mathematically, the dilated and normalized
mother wavelet function 1√

a ψ
( t
a
)
will admit

√
aψ̂(aω)

as a Fourier transform, which explains the fact that an
expansion in time induces a contraction in the frequency
domain and conversely. This property makes analysis with
wavelets a relevant tool for characterization of signals as
well as for detection and identification of special spectral
features. Mother wavelet function can be real or complex
like in the case of complex Morlet wavelet which will be
briefly described in the following.

3.2 The complex Morlet wavelet
The effectiveness of the wavelet transform in analyzing
signals with complex nature (like in the case of genomic
signals) depends on the choice of the basis function. In this
study, our choice went to the complexMorlet wavelet. The
advantage of the proposedmother wavelet is that it admits
a parametrized bandwidth. This provides extra flexibil-
ity which ensures a good time-frequency resolution. The
complex Morlet wavelet is a plane wave modulated by a
Gaussian envelope and presents a quick attenuation [26]
whose mother wavelet function is expressed as

ψ(t) = π− 1
4
(
eiω0t − e−

1
2ω2

0
)
e−

1
2 t

2
(6)

where ω0 corresponds to the number of oscillations of
the wavelet. Strictly speaking, ω0 must be greater than
5 to satisfy the admissibility criterion. This admissibility
condition is required by all mother wavelets for the con-
tinuous wavelet transform to be invertible. Admissibility
condition implies that the Fourier transform of themother
wavelet is 0 at frequency 0 [27]. This ensures the mother
wavelet oscillates, which means that it acts as a band-

pass filter. The Fourier transform of the complex Morlet
wavelet function is given by

ψ̂(ω) = √
2π

1
4 e−

1
2 (ω−ω0)2 (7)

At a fixed scale a, the complex Morlet wavelet and its
Fourier transform are given by

ψa,b (t) = 1
a
π

−1
4

(
e−iω0

t−b
a e

1
2

(
t−b
a

)2)
(8)

ψ̂a,b(ω) = √
2π

1
4 e−

1
2 (aω−ω0)2 (9)

In the frequency domain, the wavelet coefficient is a
wavelet filter characterized by the constant QFactor [28]:

QFactor = Center frequency
Bandwidth

(10)

The central frequency of the mother wavelet, denoted
by fc, is the position of the global maximum of ψ̂(ω)which
is given by fc = ω0

2� . As for the bandwidth, denoted by fb,
it is centered around fc and controls the wavelet window
[29]. The complex Morlet wavelet can be expressed by the
following equation:

ψ(t) = 1√
π fb

ei2π fcte−
t2
fb (11)

To allow easy graphical interpretation, it is preferred
to display the modulus of the CWT coefficients: |W(a,b)|.
This representation is called a scalogram and it represents
the amplitude information of the signal at each scale a
and position b. The scalogram can also be depicted in the
time-frequency domain instead of the time-scale domain
by converting the scales to frequencies using the formula:

fc = ω0
2πa

(12)

Thus, a scalogram is a 2D plot where time is on the hor-
izontal axis, frequency on the vertical axis, and amplitude
of CWT coefficients are colored according to a defined
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Figure 4 The scalogram representations of a sequence on the chromosome III of C. elegans. Coded by FCGS2 (position [7403001–7452000]).

code. In the following section of this paper, we will focus
on analyzing the Morlet scalogram.

4 Results and discussion
In this work, we focus our study on the analysis of DNA
sequences within the C. elegans genome. The genomic
sequences are extracted from the NCBI database [30]. As
for the mapping technique, we choose the FCGS algo-
rithm with the three first levels. Thus, the generated
signals are FCGS1, FCGS2 and FCGS3 of the whole chro-
mosomes. Concerning the wavelet analysis, we use the
complex Morlet wavelet with a support size of 1,420.
Application of the continuous wavelet transform on the
appropriate sequences is accomplished along 64 scales
by using a mother wavelet centered on ω0 = 5.4285
(radian units).

Close inspection of the resulting scalograms shows the
role played by this analysis in the characterization of dif-
ferent sites along the DNA sequences. In fact, we offer
a standard way to represent genomes and reveal the
biological hotspots, regardless of their nature or their
length. Through a simple zooming of 103 bp, we are
able to observe different features with great precision.
Even the finer details are easily discerned. Several regions
are visually distinguished by typical motifs which include
prominent periodicities. We analyze these regions in the
NCBI database [30] to ascertain their nature. Besides,
it is important to note that not all revealed stretches
are identified; there are some regions that we have not
succeeded in understanding the related biological signif-
icance. For example, in Figure 4, we provide a series of
scalograms which represent a sequence taken from the
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Figure 5 Scalograms of an intron found in the C. elegans gene Y65B4A.2. Coded with FCGS1 (a), FCGS2 (b) and FCGS3 (c).
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Figure 6 Scalograms of a sequence-tagged site (STS). Coded by FCGS1 (a), FCGS2 (b) and FCGS3 (c).

chromosome III of C. elegans. As we can see, this example
well illustrates the presence of different DNA structures
which are easily observed due to their specific behaviors
(the red brackets delimit the boundaries of these ele-
ments). According to the NCBI database, the prominent
signatures relate to the elements CeRep59 (37,899 bp),
CeRep55 (3,797 bp), CeRep59 (1,091 bp) and CeRep59
(2,844 bp).
Among the structures that possess particular signatures,

we selected some elements of the C. elegans chromo-
some I to study them, namely: intron, STS and Cerp3
elements.

4.1 Intron signature
It is well-known that the genomic sequences present a
strong three-base periodicity. The latter periodicity is an
interesting feature of the protein-coding regions (exons).
Several signal processing approaches and computational
algorithms have been developed based on this period-
icity for predicting exons. Most of the coding region
prediction methods used the discrete Fourier transform
(DFT)-based algorithms through which exons refer to
the maximum of the Fourier power spectrum at the
position of 1/3 frequency [31-35]. In the same context,
performing the DFT on the wavelet coefficient of the
correlation function at frequency 1/3 has improved the
peaks that mark exons in the Fourier spectrum [36].

On the other hand, for identification of protein cod-
ing regions, the use of the CWT based on the modi-
fied Morlet wavelet has provided more accurate results
[7,37]. All of these works revolve around exon prediction;
whereas intron prediction has not yet drawn the attention
it deserves (the intron is a non-coding region in eukaryotic
gene).
The novelty in our work consists in providing an effi-

cient way to represent main characteristics of intronic
sequences. Indeed, the FCGS coding highlights motifs
having different forms with a high level of energy around
specific frequency values. In our work, we found that
most of introns in the C. elegans genome present high
energy around the frequency 1/6.5. Figure 5 presents an
illustrative example of an intron found in the C. elegans
chromosome I (position [649752–652010]).
This example (Figure 5a,b,c) exposes the behavior of a

typical intron which is characterized by the presence of
specific motifs with high energy around the frequency
1/6.5 (as shown by the red arrow; P denotes periodic-
ity) [38,39]. Other periodic motifs are also apparent at the
level of harmonics which are marked by a lower intensity
line. We note that the intensity of the lower harmonics
(as indicated by the yellow arrows) increases by increas-
ing the order of the FCGS coding. Otherwise, the intensity
of the upper harmonics (see the black arrows) decreases
by increasing the order of the FCGS coding. From this
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Figure 7 Visualization of the repetitive element Cerp3 by complex Morlet scalogram. FCGS1 (a), FCGS2 (b) and FCGS3 (c) codings.



Messaoudi et al. EURASIP Journal on Bioinformatics and Systems Biology 2014, 2014:16 Page 8 of 13
http://bsb.eurasipjournals.com/content/2014/1/16

Table 1 Position and frequency band of the introns, STS and Cerp3 sequences in the C. elegans chromosome I

Position of the sequences in the C. elegans chromosome I

Structures Sequence 1 Sequence 2 Sequence 3 Frequency band

Introns 649752–652010 669573–671806 692688–693513 0–0.33

STS 3651199–3652332 3654158–3655291 7385764–7386961 0–0.2

Cerp3 953661–954106 593817-594993 686985–687959 0–0.28

example, we can see that this intron presents a remark-
able behavior within the three levels of FCGS despite the
smoothing effect of higher order FCGSs (especially noted
when we code with FCGS3).

4.2 STS signature
Traditional gene mapping techniques are slow and
painstaking. The discovery of the sequence-tagged sites
(STS) have opened a new way for geneticists to speed
up the establishment of genetic and physical map-
ping of genes along chromosomes. An STS is a spe-
cific region of DNA which can be uniquely identified
through its sequence. In addition, it is an easily
PCR-amplified sequence which can contain repetitive
elements as microsatellites. For the analysis of this
abundant class of DNA, we choose the example of
Figure 6.
By examining the FCGS1 result (Figure 6a), we can note

the presence of periodic patterns with high energy at
the top of the scalogram (which is indicated by the red
arrow). These patterns are located within a considerable
frequency band. If we consider the FCGS2 result, we can
see that the energy level of the frequency band is weak-
ened (Figure 6b). This is due to the smoothing property of
the FCGS coding. The smoothing effect of the FCGS3 is
also noticed in Figure 6c.

4.3 Cerp3 signature
The last example that we are studying here is part of the
Cerp3 repetitive family. The Cerp3 DNA consists of dis-
persed repeated elements with a length of about 1,000 bp
and presents 50 to 100 copies in the C. elegans genome.
Such a nematode segment hides specific periodicities that
we are disclosing in the related scalograms (Figure 7).
All the scalograms, strikingly, display a long chain of

motifs consisting of seven- and six-base periodicities.
Figure 7a (related to the FCGS1 coding) shows other pat-
terns including strong periodicities on the top of the scalo-
grams. As for the FCGS2 coding (Figure 7b), it enhances
periodicities of 5 bp and 3 bp and shows up other periodic-
ities corresponding to the 15-, 12- and six-base repetitive
elements. Finally, Figure 7c underlines the contribution of
the FCGS3 scheme in the enhancement of periodicities
like 15, five and four bases.

5 FCGS and the local signatures in C. elegans
In this work, we have investigated the important role of
color scalograms which offer an easy visual navigation
through genomic sequences. Thus, we have exposed the
behavior adopted by some DNA sequences in the time-
frequency plan which turns out to be easily characterized
by the presence of different periodic patterns within the
FCGSs scalograms. These behaviors appear as strong local
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Figure 8 Contour and 3D visualizations of prominent frequency band of intron 3 when coded by FCGS2.
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Figure 9 Contour and 3D visualizations of prominent frequency band of STS 2 coded by FCGS1.

signatures within the genome. As we have seen, there are
some signatures which strongly appear only when we code
with FCGS1 and other signatures that similarly appear
within the three levels of FCGSs.
Aiming at studying the role of the FCGS order in the

enhancement of the DNA signature, we consider the con-
tribution of the percentage of the frequency band which
specifies the DNA signature in terms of energy mea-
sure. This choice went to the fact that the energy of the
characteristic sub-band is one of the main statistical fea-
tures that can be extracted from the wavelet domain as
texture descriptor [40]. The study is performed with three
examples of each of the intron, STS and Cerp3 sequences
(see Table 1). These sequences are coded by the frequency
chaos game signal order 1, 2 and 3.
To be able to evaluate the energy contribution of the dif-

ferent periodic patterns in these sequences, we have to fix
the frequency band limit in such a way that it includes all
the periodic motifs (see Table 1).

The choice of the frequency boundaries is justified by
the contour and the 3D plots given in Figures 8, 9 and 10.
The dashed red lines in these figures delimit the charac-
teristic frequency band. Figure 8 refers to the third intron
when it is coded by FCGS2.
In Figure 9, we provide the pattern distribution of the

STS 2 sequence (coded by FCGS1) through the contour
and the 3D plots.
Finally, Figure 10 shows the contour and the 3D plots of

the second Cerp3 sequence (coded by FCGS2).
The second part of this study consists in the measure-

ment of the strongest motifs’ energy distribution for the
intron, STS and Cerp3 sequences coded by the frequency
chaos game signals order 1, 2 and 3. Thus, we calculate the
total energy of the scalogram (which is designated by Et)
and the energy measure of the prominent frequency sub-
band (which is designated by Ep). The contribution of this
sub-band energy is then weighted by the percentage ratio
between them.
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Figure 10 Contour and 3D visualizations of prominent frequency band of second Cerp3 coded by FCGS2.
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Figure 11 Characteristic energy contribution of three introns when coded with FCGS1, FCGS2 and FCGS3. (a) Intron 1, (b) intron 2,
(c) intron 3, (d) ratio.

In Figure 11, we provide the energy’s values, which are
calculated over a portion of 800 bp for the three introns.
Based on the histogram plots, we deduce that the par-
tial energy is so close to the total energy for all introns.
In addition, FCGS1, FCGS2 and FCGS3 yield close per-

centage values, which confirm the fact that they similarly
characterize introns.
As for the STS sequences, the scalograms show that the

FCGS1 is better suited to study this DNA type. To prove
this, we consider the contribution of the characteristic
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Figure 12 Complex Morlet scalograms of three sequence-tagged sites (STS) coded by FCGS1, FCGS2 and FCGS3. (a) STS 1, (b) STS 2,
(c) STS 3, (d) ratio.
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Figure 13 Characteristic energy contribution of the considered Cerp3 sequences. (a) Cerp3-1, (b) Cerp3-2, (c) Cerp3-3, (d) ratio.

patterns relating to the three first levels of FCGS. In terms
of energy percentage, we provide the contribution of the
characteristic patterns relating to the FCGS scalograms in
Figure 12. The energy values are calculated over a portion
of 1,134 bp.
Note that the energy values considerably decline when

the FCGS order increases for all the STS sequences. The
ratio values prove, in addition, that FCGS1 is the only
coding that characterizes STS sequences.
Finally, the energy values of the Cerp3 sequences

(through a portion of 445 bp) are provided in Figure 13.
From the latter histograms, we can deduce that the FCGS
order 1, 2 and 3 allow the Cerp3 characterization, which
results in close energy values.
Aside the qualification of these sequences by a spe-

cific signature, there are many DNA classes that are easily
distinguished by relevant motifs in the scalograms. There-
fore, based on the study of significant homology between
signatures, we can establish efficient algorithms for DNA
recognition and classification.

6 Conclusion
DNA coding methods play a major role in revealing infor-
mation about significant biological sequences. However,
the choice of such methods depends on the features that
they can reflect. It appears that the available mapping
techniques rely mostly on the 3-bp or 10-bp behaviors
and are not well adapted to examine all periodic struc-
tures contained in the complex nature of DNA. In this
context, we introduced a new mapping technique, aiming

to characterize a wealth of DNA sequences. The proposed
method is based on the chaos game theory and we refer
to it as FCGS. The FCGS coding consists in assigning
the frequency of occurrence of each sub-pattern to the
same group of nucleotides that exist in the DNA sequence.
Such a mapping has the advantage of providing a mul-
titude of signals which offer the possibility to treat the
DNA sequence from different views, taking into account
the statistical properties of resident oligomers.
The performance of the FCGS scheme in terms of infor-

mation revelation from DNA sequences was tested by
the continuous wavelet transform. The complex Morlet
wavelet was employed to create color scalograms for the
C. elegans’ FCGSs (order 1 to 3).
By reviewing the resulting scalograms, we found that

the selected wavelet transform readily identifies different
DNA structures. Several hidden periodicities and features
which cannot be revealed by classical DNA analysis meth-
ods (such as the STFT) were sharply identified. Simulation
results show a pronounced 6.5 base period in intergenic
residues, more specifically in intronic ones. However,
there are other introns which include periodicities like
5 bp and 3 bp. These periodicities are derived from a spe-
cific organization of periodic patterns forming thus a local
signature. Through this study, it is shown that the variable
patterns observed in the intron DNA are all exhibited by
the FCGS1, FCGS2 and FCGS3 codings. Besides introns,
we have shed the light on another type of DNA sequences:
the STS. The STS are particular DNA sequences recently
used in the genemapping procedures.When we code with
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an FCGS order 1, we managed to find a special signature
of this DNA class that derives from the microsatellite
repetitive elements that it contains.
Overall, in the mapping efforts for the nematode

C. elegans, various classes of repetitive DNA were anno-
tated. Among them, we considered a particular class of
C. elegans dispersed repeats: the Cerp3. The related scalo-
grams provide clear periodical motifs of seven- and eight-
base repeats. This time-frequency signature is illustrated
when the coding schemes FCGS1, FCGS2 and FCGS3 are
used.
In conclusion, the results stemming from the complex

Morlet wavelet analysis of the FCGSs have showed its
accuracy in detection of variable DNA structures. More-
over, this could serve in discovering unknown domains
with potential biological significance in genomes.
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