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Abstract

The inference of gene regulatory networks is a core problem in systems biology. Many inference algorithms have
been proposed and all suffer from false positives. In this paper, we use the minimum description length (MDL)
principle to reduce the rate of false positives for best-fit algorithms. The performance of these algorithms is evaluated
via two metrics: the normalized-edge Hamming distance and the steady-state distribution distance. Results for
synthetic networks and a well-studied budding-yeast cell cycle network show that MDL-based filtering is more
effective than filtering based on conditional mutual information (CMI). In addition, MDL-based filtering provides better
inference than the MDL algorithm itself.
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1 Introduction
A key goal in systems biology is to characterize the mo-
lecular mechanisms that govern specific cellular behav-
ior and processes. Models of gene regulatory networks
run the gamut from coarse-grained discrete networks to
detailed descriptions of such networks by stochastic dif-
ferential equations [1]. Boolean networks and the more
general class of probabilistic Boolean networks are
among the most popular approaches for modeling gene
networks because they provide a structured way to study
biological phenomena (e.g., the cell cycle) and diseases
(e.g., cancer), ultimately leading to systems-based thera-
peutic strategies. The inference of gene networks from
high-throughput genomic data is an ill-posed problem
known as reverse engineering. It is particularly challenging
when dealing with small sample sizes because the number
of variables in the system (e.g., the number of genes) typ-
ically is much greater than the number of observations
[2]. Many inference algorithms have been proposed to elu-
cidate the regulatory relationships between genes, such as
Reveal [3], ARACNE [4], the minimum description length
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principle (MDL) [5-9], the coefficient of determination
(CoD) [10,11], and the best-fit extension [12,13].
False positives are a common problem in inference, es-

pecially when dealing with small sample sizes and noisy
conditions. In fact, false positives are a kind of structural
redundancy. Given three genes, x1, x2, and x3, they may
interact in a chain-like manner, such as x1 → x2 → x3 or
x1 ← x2 ← x3; or in a hub-based way, such as x1 → x2
← x3 or x1 ← x2 → x3. Indirect interactions between
two genes may produce some correlation in their ex-
pression data, which can lead to a false regulation de-
tection by inference algorithms. The data-processing
inequality (DPI) was first used in ARACNE, which aims
to reduce the false positives produced by chain inter-
action [4]. Later, conditional mutual information (CMI)
was proposed to tackle the false positives produced by
both the chain-like and hub-based interactions [14]. Be-
cause the conditioning gene, x2, is usually not known, a
greedy search strategy was adopted to check if the CMI
between x1 and x3 conditioned on some other genes was
below a given threshold. To check the CMI on other un-
related genes is problematic. Not only is it computationally
burdensome, it also suffers from an enormous multiple-
comparisons problem. Moreover, since the interaction
strength between genes generally varies a lot, their being
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both strong and weak interactions, how to set an appro-
priate threshold is a key problem.
A recent study shows that the best-fit algorithm ap-

pears to give the best results for recovering regulatory
relationships in comparison to the aforementioned algo-
rithms [15]. In the present paper, we propose to reduce
the false positives of the best-fit algorithm by using the
MDL principle. Simulation results show that it is more
effective than the CMI-based method and can reduce
the false positives in the MDL algorithm in [5]. In effect,
the false-positive reducing procedure acts as a filter for
removing false positives.
The aim of filtering in the present framework is to re-

duce the number of false positive connections. As with
any false-positive reducing algorithm, this will invariably
increase the number of false negatives, meaning more
missing connections. Thus, two questions must be ad-
dressed. First, what benefits accrue from reducing the
number of false positives? Second, does the increase in
false negatives significantly impact inference performance?
A salient problem in translational genomics is the

utilization of gene regulatory networks in determining
therapeutic intervention strategies [2,16,17]. A big obs-
tacle in deriving optimal treatment strategies from net-
works is the computational complexity arising directly
from network complexity. Hence, significant effort has
been focused on network reduction [18,19]. As with any
compression scheme, reduction methods sacrifice infor-
mation in return for computational tractability. Because
genes are removed from the network based upon their
regulatory relations with other genes, false positives are
particularly troublesome. First, they increase the amount
of reduction necessary and second, they compete with
true positive connections for retention in the reduced
network. While it is true that an increase in false nega-
tives is not beneficial, a missing connection creates no
additional computational burden (in fact, reduces com-
putation) and plays no role in the reduction procedure.
Now, for the caveat, all of this is fine, so long as the ac-

curacy of the original inference algorithm is not adversely
impacted. Practically, this means that, relative to some dis-
tance function between a ground-truth network and an
inferred network (which quantifies inference accuracy),
the distance is not increased when using the modified
false-positive reducing algorithm in place of the original
algorithm. In this paper, we will consider two distance
functions, one based on the hamming distance between
the ground-truth and inferred networks and the other
based on the difference between the steady-state distribu-
tions of the ground-truth and inferred networks.
This paper is organized as follows: Background infor-

mation and necessary definitions are given in Section 2.
The implementation of MDL, the best-fit algorithm, and
CMI- and MDL-based filtering is then introduced in
Section 3. Results from simulated networks and from the
cell cycle model of budding yeast are presented in Section
4. Finally, concluding remarks are given in Section 5.

2 Background
2.1 Boolean networks
A Boolean network G(V, F) is defined by a set of nodes
V = {x1, …, xn}, xi ∈ {0, 1}, and a set of Boolean functions

F = {f1, …, fn}, f i : 0; 1f gki→ 0; 1f g Each node xi repre-
sents the expression state of a gene, where xi = 0 means
that the gene is off and xi = 1 means it is on. To update
its value, each node xi is assigned a Boolean function f i
xi1;…; xikið Þwith ki specific input nodes. Under the syn-
chronous updating scheme, all genes are updated si-
multaneously according to their corresponding update
functions. The network's state at time t is represented by
a binary vector x(t) = (x1(t), …, xn(t)). In the absence of
noise, the state of the system at the next time step is

x t þ 1ð Þ ¼ F x1 tð Þ;…; xn tð Þð Þ: ð1Þ
The long-term behavior of a deterministic Boolean

network depends on the initial state. The network will
eventually settle down and cycle endlessly through a set
of states called an attractor cycle. The set of all initial
states that reach a particular attractor cycle forms the
basin of attraction for the cycle. Following a random
perturbation, the network may escape an attractor cycle,
be reinitialized, and then begin its transition process
anew. For a Boolean network with perturbation, its cor-
responding Markov chain possesses a steady-state distri-
bution. It has been hypothesized that attractors or
steady-state distributions in Boolean formalisms corres-
pond to different cell types of an organism or to cell
fates. In other words, the phenotypic traits are encoded
in the attractors or steady-state distribution [1].

2.2 Best-fit extension
One approach to infer Boolean networks is to search a
consistent rule from examples, the so-called consistency
problem [20]. Owing to noise in gene-expression profiles,
we relax it to the called best-fit extension problem, which
has been extensively studied for many function classes
[21]. We briefly introduce the best-fit extension problem
for Boolean functions. A partially defined Boolean func-
tion (pdBf) is defined by two sets, T, F⊆ {0, 1}n, where T
and F represent the set of true and false vectors, respect-
ively. A function f is called an extension of pdBf(T, F) if
T⊆T(f ) = {x ∈ {0, 1}n : f(x) = 1} and F⊆ F(f ) = {x ∈ {0, 1}n :
f(x) = 0}. The magnitude of the error of function f is

ε fð Þ ¼ T∩F fð Þ þ F∪T fð Þ: ð2Þ
The best-fit extension aims to find two subsets T* and

F* such that T* ∩ F* = ϕ and T* ∪ F* = T ∪ F, for which
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the function pdBf(T*, F*) has an extension in some class
C of Boolean functions such that T* ∩ F + F * ∪T is mini-
mized. Clearly, any extension f ∈C of pdBf (T*, F*) has
minimum error magnitude [12,13].

2.3 Conditional mutual information
Mutual information (MI) is a general measurement that
can detect nonlinear dependence between two random
variables X and Y. For discrete-valued random variables,
the one-time-lag MI from Xt to Yt + 1 is given by

I Y tþ1;Xtð Þ ¼ H Y tþ1ð Þ−H Y tþ1 XtÞjð ð3Þ
where H(•) denotes entropy and Xt and Yt + 1 are two
equal-length vectors. The conditional mutual informa-
tion (CMI) from Xt to Yt + 1 given Zt is

I Y tþ1;Xt ZtÞ ¼ H Y tþ1 ZtÞ−H Y tþ1 Xt ;ZtÞ;jðjðjð ð4Þ
and quantifies the reduction in the uncertainty of Yt+1

due to knowledge of Xt given Zt. In the chain-like or
hub-based scenarios, genes Xt and Yt+1 should be inde-
pendent given the intermediate or hub gene Zt, which
means that I(Xt; Yt + 1|Zt) = 0.

2.4 Minimum description length principle
A fundamental principle in model selection is the mini-
mum description length (MDL) principle, which states
that we should choose the model that gives the shortest
description of the data. The ‘two-part MDL’ developed
by Rissanen consists of writing the description length of
a given model applied to a data set as the sum of the code
length for describing the model and the code length for
describing the data set fit by the model [22]

L ¼ LM þ LD: ð5Þ
There are various ways to encode the model-coding

length LM and the data-coding length LD. Given a time
series of length m, Zhao et al. proposed to encode LM
and LD as [5]

LM ¼ τ
Xn

i¼1
di � ki þ df � 2ki

� �
; ð6Þ

LD ¼ −
Xn

i¼1

Xm−1

t¼1
logp xi t þ 1ð Þ xi1 tð Þ⋯xiki tð ÞÞ;jð

ð7Þ
where τ is a free parameter to balance the model- and
data-coding lengths, n and m are the number of genes
and time points. di = ⌈ log2n⌉ and df = ⌈ log2m⌉ denote
the number of bits needed to code an integer and a
floating-point number, respectively.

3 Implementation
Based on the common assumption that genetic regulatory
networks are sparsely connected, we restrict simulated
Boolean networks to a scale-free topology with maximal
connectivity K = 4 and average connectivity k = 2. The
best-fit algorithm searches for the best-fit function for
each gene by exhaustively searching for all combinations
of potential regulator sets. The search space grows expo-
nentially with the number of genes. In practice, the limit
ki ≤ 3 is generally applied to mitigate model complexity. In
this paper, we restrict best-fit-algorithm searches to com-
binations of 1, 2, or 3 possible regulators. The combina-
torial set with the smallest error is then selected as the
regulatory set. We call this best-fit-I. In practice, the min-
imal error predictor set may not unique. We employ the
heuristic that each of them can be viewed as fitting the
target gene in a different way and if one gene occurs fre-
quently in those sets, then it is highly likely to be a true
regulatory gene. Thus, we can determine the regulatory
set by applying the majority rule in these sets. Here, we
refer to this algorithm as best-fit-II.
Then CMI and MDL criteria are used to filter false-

positive connections. For each regulatory connection, if
the CMI for one of the remaining genes is less than
0.005, then the gene is deleted; otherwise, it remains.
The MDL criterion is applied to each target gene xi.
Given its parent set, Pa(xi), we delete the regulatory gene
xj ∈ Pa(xi) that can maximally reduce its coding length
Li for each point in time, repeating this process until the
deletion of one regulatory gene causes Li to increase.
We implement an MDL inference algorithm by directly
searching the combination of 1, 2, or 3 possible regula-
tors with minimal coding length Li. The free parameter
τ in Equation 6 is set to 0.2.
We have analyzed CMI- and MDL-based filtering by

using both synthetic networks as well as the well-studied
cell-cycle model known as the budding-yeast network.
We compare them with the ground-truth network ac-
cording to the following two distances [15,23]:

(1) The normalized-edge Hamming distance:

μeham ¼ FNþ FP
P

; ð8Þ

where FN and FP represent the number of false-negative
and false-positive wires, respectively, and P represents the
total number of positive wires. This Hamming distance re-
flects the accuracy of the recovered regulatory relationships.

(2) The steady-state distribution distance:

μssd ¼
X2n

k¼1
πk−π′

k

�� ��; ð9Þ

where πk and π′
k are the steady-state probabilities state xk

in the ground-truth and inferred network, respectively. The
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steady-state distribution distance reflects the degree to
which an inferred network approximates the long-run be-
havior of the ground-truth network.

4 Results and discussion
4.1 Simulation on synthetic networks
We generated 1,000 random n = 10 genes and for each
network generated a random sample of m = 10, 20, 30, 40,
and 50 time points. As it is hard to obtain one time series
with required length, we adopt the following sampling
strategy: (1) select several start states which are the far-
thest from their attractor; (2) run each start state to its
attactor; (3) select one path as a time series, if its length is
shorter than required, add another path in it until we have
required length of time points. We added 5% and 10%
noise to these samples to investigate the effect of noise.
The perturbation probability to calculate the steady-state
distribution was set to p = 0.0001. In Table 1, we list the
average number of true-positive and false-positive con-
nections for various noise intensities. Figure 1 shows
the average performance of the MDL, best-fit-I, and
best-fit-II filtered by CMI and MDL for 0%, 5%, and
10% noise. As a whole, the performance of these
Table 1 Average number of true-positive and false-positive co
CMI and MDL

Noise (%) Algorithm m = 10 m = 20

TP FP TP FP

0 MDL 10.9 3.0 15.4 1.1

BF-I 11.4 3.8 15.8 1.6

BF-I-CMI 10.4 3.2 14.8 1.3

BF-I-MDL 11.0 2.6 15.4 1.2

BF-II 11.7 2.8 16.1 1.5

BF-II-CMI 10.9 2.3 15.2 1.3

BF-II-MDL 10.8 1.9 15.3 0.9

5 MDL 9.5 5.8 14.1 5.8

BF-I 10.0 9.1 14.5 8.9

BF-I-CMI 9.1 6.7 13.5 7.1

BF-I-MDL 9.4 6.8 14.2 6.0

BF-II 10.4 7.3 14.9 8.5

BF-II-CMI 9.7 5.9 14.0 7.1

BF-II-MDL 9.3 4.9 14.0 5.3

10 MDL 8.3 8.1 12.8 10.4

BF-I 8.8 12.9 13.0 13.7

BF-I-CMI 7.9 9.4 12.1 11.0

BF-I-MDL 8.1 9.6 12.6 10.7

BF-II 9.2 10.9 13.5 13.1

BF-II-CMI 8.4 8.5 12.6 10.8

BF-II-MDL 8.1 7.5 12.6 9.0

BF, best-fit.
algorithms increases as sample size increases from 10 to
50. This result is easy to understand: the more data we
have, the better the inferred results.
Examination of the table reveals several trends. First,

MDL-based filtering (dashed lines in Figure 1) always
performs better than CMI-based filtering (dotted lines in
Figure 1). MDL-based filtering aims to reduce the re-
dundancy of a model according to the MDL principle,
whereas CMI-based filtering attains reduction by blindly
checking if the CMI of a connection conditioned on all
other genes is below a given threshold. The results indi-
cate that the former approach is superior to the latter.
According to Table 1, on the whole, MDL-based filtering
retains more true connections and deletes more false
connections than CMI-based filtering.
Second, the performances of MDL, best-fit-I, and best-

fit-II are very similar when used with noiseless data. In
this case, the MDL algorithm gives a model with LD = 0,
which also corresponds to the zero-error model obtained
by best-fit-I. In addition, MDL-based filtering results in
little improvement over the best-fit algorithms. However,
their performance is strongly related to sample size
when the data are noisy. Specifically, for sample size less
nnections for MDL, best-fit-I, and best-fit-II filtered by

m = 30 m = 40 m = 50

TP FP TP FP TP FP

17.0 0.5 17.5 0.3 17.7 0.1

17.1 0.7 17.4 0.4 17.5 0.3

15.9 0.6 16.2 0.4 16.3 0.3

16.9 0.6 17.3 0.4 17.5 0.2

17.3 0.7 17.6 0.6 17.7 0.3

16.1 0.6 16.4 0.4 16.4 0.2

16.9 0.4 17.5 0.3 17.6 0.2

16.2 5.5 17.0 5.9 17.4 6.4

16.4 6.5 17.0 4.3 17.3 2.7

15.2 5.2 15.7 3.8 15.9 2.5

16.3 5.0 16.9 3.1 17.3 2.0

16.6 6.8 17.3 4.6 17.5 3.0

15.4 5.3 16.0 3.5 16.0 2.4

16.2 4.7 17.0 3.4 17.3 2.2

15.1 10.6 16.2 10.7 16.9 11.0

15.1 11.1 16.3 8.6 16.8 6.4

13.9 9.7 14.9 7.7 15.3 4.5

15.0 8.4 16.2 6.3 16.8 5.8

15.6 11.4 16.6 9.2 17.1 7.0

14.4 8.9 15.1 7.2 15.5 5.0

15.1 8.5 16.3 6.9 16.9 5.6
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Figure 1 Comparison of normalized-edge Hamming distance μeham and steady-state distribution distance μssd with 0%, 5%, and 10%
noise for MDL, best-fit-I, and best-fit-II filtered by CMI and MDL.
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than 30, MDL performs better than best-fit-I and best-
fit-II based on the average Hamming-edge distance μeham.
But MDL performs worse than best-fit-I and best-fit-II
for sample sizes lager than 30, because the structural
regularization of MDL is beneficial only for small sample
sizes whereas it leads to overfitting for large sample sizes.
From Table 1, we see that, compared with best-fit-I and
best-fit-II, the rate of false positives is relatively low for
MDL with small sample sizes and relatively high for
MDL with large sample sizes. Concerning the steady-
state distribution distance μssd, MDL performs better
than best-fit-I and best-fit-II for data with 5% noise, but
the performance of these algorithms becomes equiva-
lent for data with 10% noise. This result may be due to
the noise not only deteriorating the inference of the
regulatory relationships, but also deteriorating the inter-
action Boolean functions, which strongly influence μssd.
Third, for noisy situations, based on μeham and μssd, not

only does MDL-based filtering not degrade performance,
it improves the performance of best-fit-I and best-fit-II,
with the performance for best-fit-II being slightly better
than that of best-fit-I. One reason for this result may be
that best-fit-II infers more true-positive connections and
less false-positive connections in small-sample situations
(see Table 1). It is interesting that, in noisy situations,
MDL-based filtering can even outperform the MDL
algorithm across all sample sizes. In essence, the two
methods are totally different because the former aims to
reduce the structural redundancy of the minimal-error
model obtained by the best-fit algorithm, whereas the latter
aims to search the model with the minimum coding length
L. From the point of view of the MDL principle, the coding
length L of MDL-based filtering may not be the minimum
length. Because MDL-based filtering combines both the
best-fit algorithm and the MDL principle, it reduces struc-
tural redundancy and overcomes the over-fitting in large-
sample-size situations.

4.2 Cell cycle model of budding yeast
The cell cycle is a vital biological process in which one
cell grows and divides into two daughter cells. It consists
of four phases, G1, S, G2, and M, and is regulated by a
highly complex network that is highly conserved among
the eukaryotes. From the 800 genes involved in the cell
cycle process of budding yeast, Li et al. constructed a
network of 11 key regulators: Cln3, MBF, SBF, Cln1,
Cdh1, Swi5, Cdc20, Clb5, Sic1, Clb1, and Mcm1 [24].
This Boolean network model, shown in Figure 2A, has
an attractor whose biggest basin corresponds to the bio-
logical G1 stationary state. The temporal sequence in
Table 2 is a pathway from this basin that follows the bio-
logical trajectory of the cell cycle network.



Figure 2 Simplified cell-cycle network of budding yeast and the inferred networks from time-series in Table 2. (A) Simplified cell-cycle
network of budding yeast. Arrows are positive regulation, “T” lines are negative regulation, “T” loops are self-degradation. (B) Network
inferred by MDL. (C) Network inferred by best-fit-I. (D) Network inferred by best-fit-II. (E) Network inferred by best-fit-I filtered by CMI.
(F) Network inferred by best-fit-II filtered by CMI. (G) Network inferred by best-fit-I filtered by MDL. (H) Network inferred by best-fit-II filtered by MDL.
From panel (B) to (H), the bold solid lines are the correctly inferred regulatory relations, while the light dashed lines are the incorrectly inferred
regulatory relations.
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We applied MDL, best-fit-I, and best-fit-II filtered by
CMI and MDL to the artificial time-series data in Table 2.
The inferred networks are shown in Figure 2. Figure 2B
shows the network inferred by the MDL algorithm, which
is the best network. Figure 2C,D has the same number of
Table 2 Temporal evolution of state for the cell cycle

Time Cln3 MBF SBF Cln1 Cdh1 Swi5

1 1 0 0 0 1 0

2 0 1 1 0 1 0

3 0 1 1 1 0 0

4 0 1 1 1 0 0

5 0 1 1 1 0 0

6 0 1 1 1 0 0

7 0 0 0 1 0 1

8 0 0 0 0 0 1

9 0 0 0 0 0 1

10 0 0 0 0 0 1

11 0 0 0 0 1 1

12 0 0 0 0 1 0

13 0 0 0 0 1 0
true-positive connections, with the latter having fewer
false-positive connections. This result demonstrates that
the method of selecting regulatory genes in best-fit-II is
superior to using best-fit-I. Compared with Figure 2E,F,
which was filtered by CMI from Figure 2C,D, Figure 2G,H
Cdc20 Clb5 Sic1 Clb1 Mcm1 Phase

0 0 1 0 0 Start

0 0 1 0 0 G1

0 0 1 0 0 G1

0 0 0 0 0 G1

0 1 0 0 0 S

1 1 0 1 1 G2

1 1 0 1 1 M

1 0 0 1 1 M

1 0 1 1 1 M

1 0 1 0 1 M

0 0 1 0 0 M

0 0 1 0 0 M

0 0 1 0 0 G1



Table 3 Comparison of MDL, best-fit-I, and best-fit-II with CMI- and MDL-based filtering for yeast-pathway data

Algorithm Noise = 0 Noise = 5% Noise = 10%

TP FP μeham μssd TP FP μeham μssd TP FP μe
ham μssd

MDL 14 2 0.65 1.31 11.5 9 0.93 1.42 8.9 12.5 1.11 1.45

BF-I 15 5 0.71 1.25 12.2 11.9 0.99 1.44 9.8 18.4 1.25 1.49

BF-I-CMI 11 1 0.71 1.43 10.4 9 0.96 1.47 8.3 14 1.17 1.51

BF-I-MDL 14 2 0.65 1.17 10.8 8.5 0.93 1.43 8.6 13.1 1.13 1.48

BF-II 15 3 0.65 1.41 12.4 10.4 0.94 1.45 10.6 16.5 1.17 1.48

BF-II-CMI 12 2 0.71 1.46 11 8.7 0.93 1.47 8.3 12.4 1.12 1.50

BF-II-MDL 13 1 0.65 1.36 11.1 7.7 0.9 1.42 9.2 11.9 1.08 1.44
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filtered by MDL have more true connections, whereas the
number of false-positive connections are about the same.
Furthermore, we can see that the networks resulting from
CMI-based filtering have two disconnected subgraphs,
whereas the network resulting from MDL is a connected
graph. This result shows that MDL-based filtering is more
effective than CMI-based filtering. In fact, Figure 2G shows
the same result as in Figure 2B, which is the best result.
We also ran 100 simulations with 5% and 10% noise for

the pathway under consideration. Table 3 lists the average
number of true positives and false positives, the norma-
lized Hamming-edge distance μeham and the steady-state
distribution distance μssd. The results are consistent with
those of the simulated networks (Figure 1) and they
demonstrate that MDL-based filtering is effective for
samples containing a small amount of noise.
5 Conclusion
Reducing the rate of false positives is an important
issue in network inference. In this paper, we address
this question by using the minimum description length
(MDL) principle. Specifically, we apply the MDL meas-
urement technique proposed by Zhao et al. to filter the
model obtained by two best-fit algorithms (best-fit-I
and best-fit-II). We compare the performance of MDL,
best-fit-I, and best-fit-II filtered by CMI and MDL both
on simulated networks and on an artificial model of
budding yeast. The results show that, as determined by
the distance metrics μeham and μssd, MDL-based filtering
does not degrade inference performance, can improve
inference performance, and is more effective than CMI-
based filtering. Moreover, the combination of MDL fil-
tering with the best-fit algorithm can even outperform
the MDL algorithm alone. Additionally, applying MDL-
based filtering is computationally less burdensome than
using the MDL algorithm alone because calculating the
data-coding length LD is more complex than calculating
the error estimate of the best-fit algorithm, and the
complexity of the calculation increases dramatically as
the sample size m increases. Last but not the least,
MDL-based filtering can also be applied to the results of
other minimal error algorithms such as CoD.
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